Large-Scale Phylogenetic Analysis of Trypanosomatid Adenylate Cyclases Reveals Associations with Extracellular Lifestyle and Host-Pathogen Interplay

. 2020 Dec 06 ; 12 (12) : 2403-2416.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33104188

Receptor adenylate cyclases (RACs) on the surface of trypanosomatids are important players in the host-parasite interface. They detect still unidentified environmental signals that affect the parasites' responses to host immune challenge, coordination of social motility, and regulation of cell division. A lesser known class of oxygen-sensing adenylate cyclases (OACs) related to RACs has been lost in trypanosomes and expanded mostly in Leishmania species and related insect-dwelling trypanosomatids. In this work, we have undertaken a large-scale phylogenetic analysis of both classes of adenylate cyclases (ACs) in trypanosomatids and the free-living Bodo saltans. We observe that the expanded RAC repertoire in trypanosomatids with a two-host life cycle is not only associated with an extracellular lifestyle within the vertebrate host, but also with a complex path through the insect vector involving several life cycle stages. In Trypanosoma brucei, RACs are split into two major clades, which significantly differ in their expression profiles in the mammalian host and the insect vector. RACs of the closely related Trypanosoma congolense are intermingled within these two clades, supporting early RAC diversification. Subspecies of T. brucei that have lost the capacity to infect insects exhibit high numbers of pseudogenized RACs, suggesting many of these proteins have become redundant upon the acquisition of a single-host life cycle. OACs appear to be an innovation occurring after the expansion of RACs in trypanosomatids. Endosymbiont-harboring trypanosomatids exhibit a diversification of OACs, whereas these proteins are pseudogenized in Leishmania subgenus Viannia. This analysis sheds light on how ACs have evolved to allow diverse trypanosomatids to occupy multifarious niches and assume various lifestyles.

Zobrazit více v PubMed

Almagro Armenteros JJ, et al.2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 37(4):420–423. PubMed

Bachmaier S, et al.2019. Nucleoside analogue activators of cyclic AMP-independent protein kinase A of trypanosoma. Nat Commun. 10(1):1421. PubMed PMC

Bao Y, Weiss LM, Braunstein VL, Huang H. 2008. Role of protein kinase A in Trypanosoma cruzi. IAI 76(10):4757–4763. PubMed PMC

Bao Y, Weiss LM, Ma YF, Kahn S, Huang H. 2010. Protein kinase A catalytic subunit interacts and phosphorylates members of trans-sialidase super-family in Trypanosoma cruzi. Microbes Infect. 12(10):716–726. PubMed PMC

Barquilla A, et al.2012. Third target of rapamycin complex negatively regulates development of quiescence in Trypanosoma brucei. Proc Natl Acad Sci U S A. 109(36):14399–14404. PubMed PMC

Beneke T, et al.2017. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R Soc Open Sci. 4(5):1–16. PubMed PMC

Bonilla M, Krull E, Irigoín F, Salinas G, Comini MA. 2016. Selenoproteins of African trypanosomes are dispensable for parasite survival in a mammalian host. Mol Biochem Parasitol. 206(1–2):13–19. PubMed

Bruschi F, Gradoni L, editors. 2018. The leishmaniases: old neglected tropical diseases. Cham, Switzerland: Springer.

Büscher P, Cecchi G, Jamonneau V, Priotto G. 2017. Human African trypanosomiasis. Lancet 390(10110):2397–2409. PubMed

Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973. PubMed PMC

Carnes J, et al.2015. Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty. PLoS Negl Trop Dis. 9(1):e3404. PubMed PMC

De Koning HP, et al.2012. Pharmacological validation of Trypanosoma brucei phosphodiesterases as novel drug targets. J Infect Dis. 206(2):229–237. PubMed PMC

Dean S, et al.2015. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 5(1):140197. PubMed PMC

Durante IM, Cámara MDLM, Buscaglia CA. 2015. A novel Trypanosoma cruzi protein associated to the flagellar pocket of replicative stages and involved in parasite growth. PLoS One 10(6):e0130099. PubMed PMC

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5):1792–1797. PubMed PMC

El-Sayed NM. 2005. Comparative genomics of trypanosomatid parasitic protozoa. Science. 309(5733):404–409. PubMed

Flegontov P, et al.2013. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol. 23(18):1787–1793. PubMed

Fraidenraich D, et al.1993. Stimulation of Trypanosoma cruzi adenylyl cyclase by an α D-globin fragment from Triatoma hindgut: effect on differentiation of epimastigote to trypomastigote forms. Proc Natl Acad Sci U S A. 90(21):10140–10144. PubMed PMC

Gancedo JM. 2013. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev. 88(3):645–668. PubMed

Gibson W, Kay C, Peacock L. 2017. Trypanosoma congolense: molecular toolkit and resources for studying a major livestock pathogen and model trypanosome. Adv Parasitol. 98:283–309. PubMed

Gould MK, et al.2013. Cyclic AMP effectors in African trypanosomes revealed by genome-scale RNA interference library screening for resistance to the phosphodiesterase inhibitor CpdA. Antimicrob Agents Chemother. 57(10):4882–4893. PubMed PMC

Grisard EC. 2002. Salivaria or Stercoraria? The Trypanosoma rangeli dilemma. Kinetoplastid Biol Dis. 1(1):5. PubMed PMC

Hashimi H, McDonald L, Stříbrná E, Lukeš J. 2013. Trypanosome letm1 protein is essential for mitochondrial potassium homeostasis. J Biol Chem. 288(37):26914–26925. PubMed PMC

Hoare CA. 1929. Studies on Trypanosoma grayi. Trans R Soc Trop Med Hyg. 23(1):39–56.

Hoare CA. 1972. The trypanosomes of mammals. A zoological monograph. Science. 169(4068):60.

Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755. PubMed

Jackson AP, et al.2013. A cell-surface phylome for African trypanosomes. PLoS Negl Trop Dis. 7(3):e2121. PubMed PMC

Jackson AP, et al.2016. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol. 26(2):161–172. PubMed PMC

Jaskowska E, Butler C, Preston G, Kelly S. 2015. Phytomonas: trypanosomatids adapted to plant environments. PLoS Pathog. 11(1):e1004484. PubMed PMC

Kelly S, Ivens A, Manna PT, Gibson W, Field MC. 2014. A draft genome for the African crocodilian trypanosome. Sci Data. 1(1):140024. PubMed PMC

Kostygov AY, et al.2016. Novel trypanosomatid-bacterium association: evolution of endosymbiosis in action. mBio 7(2):e01985. PubMed PMC

Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO, Yurchenko V. 2014. Molecular revision of the genus Wallaceina. Protist 165(5):594–604. PubMed

Kostygov AY, Yurchenko V. 2017. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae). Folia Parasit. 64:020. PubMed

Kraeva N, et al.2019. LmxM.22.0250-encoded dual specificity protein/lipid phosphatase impairs Leishmania mexicana virulence in vitro. Pathogens 8(4):241. PubMed PMC

Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 305(3):567–580. PubMed

Labunskyy VM, Hatfield DL, Gladyshev VN. 2014. Selenoproteins: molecular pathways and physiological roles. Physiol Rev. 94(3):739–777. PubMed PMC

Lai D-H, Hashimi H, Lun Z-R, Ayala FJ, Lukes J. 2008. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc Natl Acad Sci U S A. 105(6):1999–2004. PubMed PMC

Lobanov AV, Gromer S, Salinas G, Gladyshev VN. 2006. Selenium metabolism in Trypanosoma: characterization of selenoproteomes and identification of a Kinetoplastida-specific selenoprotein. Nucleic Acids Res. 34(14):4012–4024. PubMed PMC

Lopez MA, Saada EA, Hill KL. 2015. Insect stage-specific adenylate cyclases regulate social motility in African trypanosomes. Eukaryot Cell 14(1):104–112. PubMed PMC

Lukeš J, et al.2018. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 34(6):466–480. PubMed

Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. 2014. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 195(2):115–122. PubMed

Madeira F, et al.2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47(W1):W636–W641. PubMed PMC

Makin L, Gluenz E. 2015. cAMP signalling in trypanosomatids: role in pathogenesis and as a drug target. Trends Parasitol. 31(8):373–379. PubMed PMC

Maslov DA, et al.2019. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 146(1):1–27. PubMed

Maslov DA, Votýpka J, Yurchenko V, Lukeš J. 2013. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol. 29(1):43–52. PubMed

Minh BQ, Nguyen MAT, von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 30(5):1188–1195. PubMed PMC

Musikant D, et al.2017. Host Epac1 is required for cAMP-mediated invasion by Trypanosoma cruzi. Mol Biochem Parasitol. 211:67–70. PubMed PMC

Oberholzer M, et al.2007. The Trypanosoma brucei cAMP phosphodiesterases TbrPDEB1 and TbrPDEB2: flagellar enzymes that are essential for parasite virulence. FASEB J. 21(3):720–731. PubMed

Oberholzer M, Saada EA, Hill KL. 2015. Cyclic AMP regulates social behavior in African trypanosomes. mBio. 6(3):e01954. PubMed PMC

Ooi CP, et al.2016. The cyclical development of Trypanosoma vivax in the tsetse fly involves an asymmetric division. Front Cell Infect Microbiol. 6:115. PubMed PMC

Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. 2016. Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J Eukaryot Microbiol. 63(5):657–678. PubMed

Paindavoine P, et al.1992. A gene from the variant surface glycoprotein expression site encodes one of several transmembrane adenylate cyclases located on the flagellum of Trypanosoma brucei. Mol Cell Biol. 12(3):1218–1225. PubMed PMC

Pierleoni A, Martelli P, Casadio R. 2008. PredGPI: a GPI-anchor predictor. BMC Bioinformatics. 9(1):392. PubMed PMC

Poon SK, Peacock L, Gibson W, Gull K, Kelly S. 2012. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor. Open Biol. 2(2):110037. PubMed PMC

Porcel BM, et al.2014. The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS Genet. 10(2):e1004007. PubMed PMC

Robinson O, Dylus D, Dessimoz C, Rosenberg M. 2016. Phylo.io: interactive viewing and comparison of large phylogenetic trees on the web. Mol Biol Evol. 33(8):2163–2166. PubMed PMC

Rogozin I, Charyyeva A, Sidorenko I, Babenko V, Yurchenko V. 2020. Frequent recombination events in Leishmania donovani: mining population data. Pathogens 9(7):572. PubMed PMC

Rojas F, et al.2019. Oligopeptide signaling through TbGPR89 drives trypanosome quorum sensing. Cell 176(1–2):306–317. PubMed PMC

Saada EA, et al.2014. Insect stage-specific receptor adenylate cyclases are localized to distinct subdomains of the Trypanosoma brucei flagellar membrane. Eukaryot Cell 13(8):1064–1076. PubMed PMC

Saldivia M, Ceballos-Pérez G, Bart JM, Navarro M. 2016. The AMPKα1 pathway positively regulates the developmental transition from proliferation to quiescence in Trypanosoma brucei. Cell Rep. 17(3):660–670. PubMed PMC

Salmon D. 2018. Adenylate cyclases of Trypanosoma brucei, environmental sensors and controllers of host innate immune response. Pathogens 7(2):48. PubMed PMC

Salmon D, et al.2012. a. Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host. Science 337(6093):463–466. PubMed

Salmon D, et al.2012. b. Cytokinesis of Trypanosoma brucei bloodstream forms depends on expression of adenylyl cyclases of the ESAG4 or ESAG4-like subfamily. Mol Microbiol. 84(2):225–242. PubMed

Sanchez MA, Zeoli D, Klamo EM, Kavanaugh MP, Landfear SM. 1995. A family of putative receptor-adenylate cyclases from Leishmania donovani. J Biol Chem. 270(29):17551–17558. PubMed

Sen Santara S, et al.2013. Globin-coupled heme containing oxygen sensor soluble adenylate cyclase in Leishmania prevents cell death during hypoxia. Proc Natl Acad Sci U S A. 110(42):16790–16795. PubMed PMC

Schindelin J, et al.2012. Fiji: an open-source platform for biological-image analysis. Nat Methods. 9(7):676–682. PubMed PMC

Schnaufer A, Domingo GJ, Stuart K. 2002. Natural and induced dyskinetoplastic trypanosomatids: how to live without mitochondrial DNA. Int J Parasitol. 32(9):1071–1084. PubMed

Shalaby T, Liniger M, Seebeck T. 2001. The regulatory subunit of a cGMP-regulated protein kinase A of Trypanosoma brucei. Eur J Biochem. 268(23):6197–6206. PubMed

Shaw S, et al.2019. Flagellar cAMP signaling controls trypanosome progression through host tissues. Nat Commun. 10(1):803. PubMed PMC

Shimogawa MM, et al.2015. Cell surface proteomics provides insight into stage-specific remodeling of the host-parasite interface in Trypanosoma brucei. Mol Cell Proteomics. 14(7):1977–1988. PubMed PMC

Smith TK, Bringaud F, Nolan DP, Figueiredo LM. 2017. Metabolic reprogramming during the Trypanosoma brucei life cycle. F1000Res 6:683. PubMed PMC

Stoco PH, et al.2014. Genome of the avirulent human-infective trypanosome-Trypanosoma rangeli. PLoS Negl Trop Dis. 8(9):e3176. PubMed PMC

Taylor SS, Zhang P, Steichen JM, Keshwani MM, Kornev AP. 2013. PKA: lessons learned after twenty years. Biochim Biophys Acta 1834(7):1271–1278. PubMed PMC

Telleria J, Tibayrenc M, editors. 2017. American trypanosomiasis Chagas disease: one hundred years of research. Cambridge: Elsevier.

Trindade S, et al.2016. Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host Microbe 19(6):837–848. PubMed PMC

Urbaniak MD, Guther MLS, Ferguson MAJ. 2012. Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages. PLoS One 7(5):e36619. PubMed PMC

Van Den Abbeele J, et al.1995. Trypanosoma brucei: stimulation of adenylate cyclase by proventriculus and esophagus tissue of the tsetse fly, Glossina morsitans morsitans. Exp Parasitol. 81(4):618–620. PubMed

Vasquez J-J, Hon C-C, Vanselow JT, Schlosser A, Siegel TN. 2014. Comparative ribosome profiling reveals extensive translational complexity in different Trypanosoma brucei life cycle stages. Nucleic Acids Res. 42(6):3623–3637. PubMed PMC

Vassella E, Reuner B, Yutzy B, Boshart M. 1997. Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. J Cell Sci. 110(21):2661–2671 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...