Nuclear Genome Assembly and Annotation of Kinetoplastids
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
- Klíčová slova
- Euglenozoa, Kinetoplastea, Next-generation sequencing, Trypanosomatids,
- MeSH
- anotace sekvence * metody MeSH
- buněčné jádro * genetika MeSH
- genom protozoální * MeSH
- genomika * metody MeSH
- Kinetoplastida * genetika MeSH
- kinetoplastová DNA genetika MeSH
- sekvenční analýza DNA metody MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kinetoplastová DNA MeSH
In this chapter, we describe a pipeline for the nuclear genome analysis of kinetoplastids. Our approach relies on a combination of short- and long-sequencing reads and can be universally applied to studies of other kinetoplastids' genomes.
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec Czechia
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czechia
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czechia
Zobrazit více v PubMed
Kostygov AY, Karnkowska A, Votýpka J et al (2021) Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 11:200407 PubMed PMC
Butenko A, Hammond M, Field MC et al (2021) Reductionist pathways for parasitism in euglenozoans? Expanded datasets provide new insights. Trends Parasitol 37(2):100–116 PubMed
Jackson AP (2015) Genome evolution in trypanosomatid parasites. Parasitology 142(Suppl 1):S40–S56 PubMed
Yurchenko V, Butenko A, Kostygov AY (2021) Genomics of Trypanosomatidae: where we stand and what needs to be done? Pathogens 10(9):1124 PubMed PMC
Briggs EM, Marques CA, Reis-Cunha J et al (2020) Next-generation analysis of trypanosomatid genome stability and instability. In: Methods Mol Biol, vol 2116, pp 225–262
Maslov DA, Opperdoes FR, Kostygov AY et al (2019) Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146(1):1–27 PubMed
Tanifuji G, Cenci U, Moog D et al (2017) Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis. Sci Rep 7(1):11688 PubMed PMC
Clayton C (2019) Regulation of gene expression in trypanosomatids: living with polycistronic transcription. Open Biol 9(6):190072 PubMed PMC
Kostygov AY, Skýpalová K, Kraeva N et al (2024) Comprehensive analysis of the Kinetoplastea intron landscape reveals a novel intron-containing gene and the first exclusively trans-splicing eukaryote. BMC Biol 22(1):281 PubMed PMC
Ghedin E, Bringaud F, Peterson J et al (2004) Gene synteny and evolution of genome architecture in trypanosomatids. Mol Biochem Parasitol 134(2):183–191 PubMed
Wu F, Mai Y, Chen C et al (2024) SynGAP: a synteny-based toolkit for gene structure annotation polishing. Genome Biol 25(1):218 PubMed PMC
Silva Pereira S, Jackson AP, Figueiredo LM (2022) Evolution of the variant surface glycoprotein family in African trypanosomes. Trends Parasitol 38(1):23–36 PubMed
Pita S, Díaz-Viraqué F, Iraola G et al (2019) The tritryps comparative repeatome: insights on repetitive element evolution in trypanosomatid pathogens. Genome Biol Evol 11(2):546–551 PubMed PMC
Albanaz ATS, Gerasimov ES, Shaw JJ et al (2021) Genome analysis of Endotrypanum and Porcisia spp., closest phylogenetic relatives of Leishmania, highlights the role of amastins in shaping pathogenicity. Genes 12(3):444 PubMed PMC
Jackson AP (2010) The evolution of amastin surface glycoproteins in trypanosomatid parasites. Mol Biol Evol 27(1):33–45 PubMed
Freitas LM, dos Santos SL, Rodrigues-Luiz GF et al (2011) Genomic analyses, gene expression and antigenic profile of the trans-sialidase superfamily of Trypanosoma cruzi reveal an undetected level of complexity. PLoS One 6(10):e25914 PubMed PMC
Abrahim M, Machado E, Alvarez-Valin F et al (2022) Uncovering pseudogenes and intergenic protein-coding sequences in TriTryps’ genomes. Genome Biol Evol 14(10):evac142 PubMed PMC
Durante IM, Butenko A, Rašková V et al (2020) Large-scale phylogenetic analysis of trypanosomatid adenylate cyclases reveals associations with extracellular lifestyle and host-pathogen interplay. Genome Biol Evol 12(12):2403–2416 PubMed PMC
Santi AMM, Ribeiro JM, Reis-Cunha JL et al (2022) Disruption of multiple copies of the prostaglandin F2alpha synthase gene affects oxidative stress response and infectivity in Trypanosoma cruzi. PLoS Negl Trop Dis 16(10):e0010845 PubMed PMC
Reis-Cunha JL, Pimenta-Carvalho SA, Almeida LV et al (2024) Ancestral aneuploidy and stable chromosomal duplication resulting in differential genome structure and gene expression control in trypanosomatid parasites. Genome Res 34(3):441–453 PubMed PMC
Dumetz F, Imamura H, Sanders M et al (2017) Modulation of aneuploidy in Leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression. mBio 8(3):e00599–e00517 PubMed PMC
Negreira GH, de Groote R, Van Giel D et al (2023) The adaptive roles of aneuploidy and polyclonality in Leishmania in response to environmental stress. EMBO Rep 24(9):e57413 PubMed PMC
Waithaka A, Maiakovska O, Grimm D et al (2022) Sequences and proteins that influence mRNA processing in Trypanosoma brucei: evolutionary conservation of SR-domain and PTB protein functions. PLoS Negl Trop Dis 16(10):e0010876 PubMed PMC
Novak EM, de Mello MP, Gomes HB et al (1993) Repetitive sequences in the ribosomal intergenic spacer of Trypanosoma cruzi. Mol Biochem Parasitol 60(2):273–280 PubMed
Field H, Field MC (1997) Tandem duplication of rab genes followed by sequence divergence and acquisition of distinct functions in Trypanosoma brucei. J Biol Chem 272(16):10498–10505 PubMed
Zakharova A, Tashyreva D, Butenko A et al (2023) A neo-functionalized homolog of host transmembrane protein controls localization of bacterial endosymbionts in the trypanosomatid Novymonas esmeraldas. Curr Biol 33(13):2690–2701 PubMed
Záhonová K, Kostygov A, Ševčíková T et al (2016) An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr Biol 26(17):2364–2369 PubMed
Opperdoes FR, Záhonová K, Škodová-Sveráková I et al (2024) In silico prediction of the metabolism of Blastocrithidia nonstop, a trypanosomatid with non-canonical genetic code. BMC Genomics 25(1):184 PubMed PMC
Kachale A, Pavlíková Z, Nenarokova A et al (2023) Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment. Nature 613(7945):751–758 PubMed
Albanaz ATS, Carrington M, Frolov AO et al (2023) Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae. BMC Genomics 24(1):471 PubMed PMC
Butenko A, Kostygov AY, Sádlová J et al (2019) Comparative genomics of Leishmania (Mundinia). BMC Genomics 20(1):726 PubMed PMC
Andrews S (2019) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc . Accessed 25 Feb 2025
Bushnell B, Rood J, Singer E (2017) BBMerge – accurate paired shotgun read merging via overlap. PLoS One 12(10):e0185056 PubMed PMC
Allam A, Kalnis P, Solovyev V (2015) Karect: accurate correction of substitution, insertion and deletion errors for next-generation sequencing data. Bioinformatics 31(21):3421–3428 PubMed
Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477 PubMed PMC
Kajitani R, Toshimoto K, Noguchi H et al (2014) Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 24(8):1384–1395 PubMed PMC
Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18 PubMed PMC
Wick RR (2017) Filtlong. https://github.com/rrwick/Filtlong . Accessed 25 Feb 2025
Hackl T, Hedrich R, Schultz J et al (2014) Proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 30(21):3004–3011 PubMed PMC
Kolmogorov M, Yuan J, Lin Y et al (2019) Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 37(5):540–546 PubMed
Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421 PubMed PMC
Buchfink B, Reuter K, Drost HG (2021) Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods 18(4):366–368 PubMed PMC
Gurevich A, Saveliev V, Vyahhi N et al (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075 PubMed PMC
Tegenfeldt F, Kuznetsov D, Manni M et al (2025) OrthoDB and BUSCO update: annotation of orthologs with wider sampling of genomes. Nucleic Acids Res 53(D1):D516–D522 PubMed
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359 PubMed PMC
Danecek P, Bonfield JK, Liddle J et al (2021) Twelve years of SAMtools and BCFtools. Gigascience 10(2):1–4
Kim D, Paggi JM, Park C et al (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37(8):907–915 PubMed PMC
Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7(3):562–578 PubMed PMC
Pertea G, Pertea M (2020) GFF utilities: GffRead and GffCompare. F1000Res 9:304
Chan PP, Lin BY, Mak AJ et al (2021) tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res 49(16):9077–9096 PubMed PMC
Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32(1):11–16 PubMed PMC
Robinson JT, Thorvaldsdottir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26 PubMed PMC
Carver T, Harris SR, Berriman M et al (2012) Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28(4):464–469 PubMed
Steinbiss S, Silva-Franco F, Brunk B et al (2016) Companion: a web server for annotation and analysis of parasite genomes. Nucleic Acids Res 44(W1):W29–W34 PubMed PMC
Stanke M, Keller O, Gunduz I et al (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34:W435–W439 PubMed PMC
Valach M, Moreira S, Petitjean C et al (2023) Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol 21(1):99 PubMed PMC
Tashyreva D, Simpson AGB, Prokopchuk G et al (2022) Diplonemids – a review on “new” flagellates on the oceanic block. Protist 173(2):125868 PubMed
Dlugosz M, Deorowicz S (2017) RECKONER: read error corrector based on KMC. Bioinformatics 33(7):1086–1089 PubMed
Kallenborn F, Hildebrandt A, Schmidt B (2021) CARE: context-aware sequencing read error correction. Bioinformatics 37(7):889–895 PubMed
Zimin AV, Marcais G, Puiu D et al (2013) The MaSuRCA genome assembler. Bioinformatics 29(21):2669–2677 PubMed PMC
Di Genova A, Buena-Atienza E, Ossowski S et al (2021) Efficient hybrid de novo assembly of human genomes with WENGAN. Nat Biotechnol 39(4):422–430 PubMed