Tau phosphorylation impedes functionality of protective tau envelopes
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
101071583
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
101071583
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ALTF 1069-2024
European Molecular Biology Organization (EMBO)
204125
Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
268723
Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
PubMed
41593416
DOI
10.1038/s41589-025-02122-9
PII: 10.1038/s41589-025-02122-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Tau is an axonal microtubule-associated protein. Tau interaction with microtubules is regulated by phosphorylation. Hyperphosphorylation of tau is implicated in microtubule destabilization related to neurodegenerative disorders. However, how tau phosphorylation leads to microtubule destabilization is unknown. Recently, it was shown that tau molecules on microtubules cooperatively assemble into cohesive layers termed envelopes. Tau envelopes protect microtubules against degradation by microtubule-severing enzymes, suggesting a functional link between envelopes and microtubule stability. Here we show that tau phosphorylation has deleterious effects on the microtubule-protective function of tau envelopes. Using reconstitution and live-cell experiments, we found that tau phosphorylation destabilizes tau envelopes and decreases their integrity, leading to reduced microtubule protection against microtubule-severing enzymes. Our data suggest that a perturbation of microtubule homeostasis linked to tau hyperphosphorylation in neurodegeneration can be explained by the disassembly and impaired functionality of the tau envelopes.
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Institut Curie Université PSL CNRS UMR3348 Orsay France
Institute of Biotechnology Czech Academy of Sciences BIOCEV Vestec Czech Republic
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Drechsel, D. N., Hyman, A. A., Cobb, M. H. & Kirschner, M. W. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell 3, 1141–1154 (1992). PubMed DOI PMC
Kowalski, R. J. & Williams, R. C. Microtubule-associated protein 2 alters the dynamic properties of microtubule assembly and disassembly. J. Biol. Chem. 268, 9847–9855 (1993). PubMed DOI
McNally, F. J. & Vale, R. D. Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell 75, 419–429 (1993). PubMed DOI
Qiang, L. et al. Tau does not stabilize axonal microtubules but rather enables them to have long labile domains. Curr. Biol. 28, 2181–2189 (2018). PubMed DOI
Qiang, L., Yu, W., Andreadis, A., Luo, M. & Baas, P. W. Tau protects microtubules in the axon from severing by katanin. J. Neurosci. 26, 3120–3129 (2006). PubMed DOI PMC
Lasagna-Reeves, C. A. et al. Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J. 26, 1946–1959 (2012). PubMed DOI PMC
Berger, Z. et al. Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J. Neurosci. 27, 3650–3662 (2007). PubMed DOI PMC
Guo, T., Noble, W. & Hanger, D. P. Roles of tau protein in health and disease. Acta Neuropathol. 133, 665–704 (2017). PubMed DOI PMC
Lee, G. & Leugers, C. J. Tau and tauopathies. Prog. Mol. Biol. Transl. Sci. 107, 263–293 (2012). PubMed DOI PMC
Schneider, A., Biernat, J., von Bergen, M., Mandelkow, E.-M. & Mandelkow, E. M. Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 38, 3549–3558 (1999). PubMed DOI
Cho, J.-H. & Johnson, G. V. W. Glycogen synthase kinase 3β phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding. J. Biol. Chem. 278, 187–193 (2003). PubMed DOI
Tan, R. et al. Microtubules gate tau condensation to spatially regulate microtubule functions. Nat. Cell Biol. 21, 1078–1085 (2019). PubMed DOI PMC
Siahaan, V. et al. Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes. Nat. Cell Biol. 21, 1086–1092 (2019). PubMed DOI
Siahaan, V. et al. Microtubule lattice spacing governs cohesive envelope formation of tau family proteins. Nat. Chem. Biol. 18, 1224–1235 (2022). PubMed DOI PMC
Henrichs, V. et al. Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments. Nat. Commun. 11, 3123 (2020). PubMed DOI PMC
Cruz, J. C., Tseng, H.-C., Goldman, J. A., Shih, H. & Tsai, L.-H. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40, 471–483 (2003). PubMed DOI
Kimura, T., Ishiguro, K. & Hisanaga, S. Physiological and pathological phosphorylation of tau by Cdk5. Front. Mol. Neurosci. 7, 65 (2014). PubMed DOI PMC
Biernat, J., Gustke, N., Drewes, G., Mandelkow, E. M. & Mandelkow, E. Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron 11, 153–163 (1993). PubMed DOI
Lindwall, G. & Cole, R. D. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J. Biol. Chem. 259, 5301–5305 (1984). PubMed DOI
Drewes, G. et al. Microtubule-associated protein/microtubule affinity-regulating kinase (p110 PubMed
Cho, J.-H. & Johnson, G. V. W. Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3β (GSK3β) plays a critical role in regulating tau’s ability to bind and stabilize microtubules. J. Neurochem. 88, 349–358 (2004). PubMed DOI
Jijumon, A. S., Krishnan, A. & Janke, C. A. A platform for medium-throughput cell-free analyses of microtubule-interacting proteins using mammalian cell lysates. Curr. Protoc. 4, e1070 (2024). PubMed DOI
Jijumon, A. S. et al. Lysate-based pipeline to characterize microtubule-associated proteins uncovers unique microtubule behaviours. Nat. Cell Biol. 24, 253–267 (2022). PubMed DOI
Kusakawa, G. I. et al. Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. J. Biol. Chem. 275, 17166–17172 (2000). PubMed DOI
Patrick, G. N. et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622 (1999). PubMed DOI
Preuss, U., Döring, F., Illenberger, S. & Mandelkow, E. M. Cell cycle-dependent phosphorylation and microtubule binding of tau protein stably transfected into Chinese hamster ovary cells. Mol. Biol. Cell 6, 1397–1410 (1995). PubMed DOI PMC
Illenberger, S. et al. The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: implications for Alzheimer's disease. Mol. Biol. Cell 9, 1495–1512 (1998). PubMed DOI PMC
Nigg, E. A. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol. 2, 21–32 (2001). PubMed DOI
Iqbal, K., Liu, F., Gong, C.-X. & Grundke-Iqbal, I. Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res. 7, 656–664 (2010). PubMed DOI PMC
Charafeddine, R. A. et al. Tau repeat regions contain conserved histidine residues that modulate microtubule-binding in response to changes in pH. J. Biol. Chem. 294, 8779–8790 (2019). PubMed DOI PMC
Hinrichs, M. H. et al. Tau protein diffuses along the microtubule lattice. J. Biol. Chem. 287, 38559–38568 (2012). PubMed DOI PMC
Fan, X., Okada, K., Lin, H., Ori-McKenney, K. M. & McKenney, R. J. A pathological phosphorylation pattern enhances tau cooperativity on microtubules and facilitates tau filament assembly. Preprint at bioRxiv https://doi.org/10.1101/2025.01.29.635117 (2025).
Amniai, L. et al. Alzheimer disease specific phosphoepitopes of tau interfere with assembly of tubulin but not binding to microtubules. FASEB J. 23, 1146–1152 (2009). PubMed DOI
Jiang, K. et al. Microtubule minus-end regulation at spindle poles by an ASPM–katanin complex. Nat. Cell Biol. 19, 480–492 (2017). PubMed DOI PMC
Castoldi, M. & Popov, A. V. Purification of brain tubulin through two cycles of polymerization–depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83–88 (2003). PubMed DOI
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed DOI
Liu, H. & Naismith, J. H. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 8, 91 (2008). PubMed DOI PMC
Chu, D. T. W. & Klymkowsky, M. W. The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus. Dev. Biol. 136, 104–117 (1989). PubMed DOI