Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32561740
PubMed Central
PMC7305210
DOI
10.1038/s41467-020-16972-5
PII: 10.1038/s41467-020-16972-5
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny vezikulární transportní genetika izolace a purifikace metabolismus MeSH
- fluorescenční mikroskopie MeSH
- kineziny genetika izolace a purifikace metabolismus MeSH
- luminescentní proteiny genetika metabolismus MeSH
- mikrotubuly metabolismus MeSH
- mitochondrie metabolismus MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- proteiny tau genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- vnitřně neuspořádané proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny vezikulární transportní MeSH
- KIF5B protein, human MeSH Prohlížeč
- kineziny MeSH
- luminescentní proteiny MeSH
- proteiny tau MeSH
- rekombinantní proteiny MeSH
- TRAK1 protein, human MeSH Prohlížeč
- vnitřně neuspořádané proteiny MeSH
Intracellular trafficking of organelles, driven by kinesin-1 stepping along microtubules, underpins essential cellular processes. In absence of other proteins on the microtubule surface, kinesin-1 performs micron-long runs. Under crowding conditions, however, kinesin-1 motility is drastically impeded. It is thus unclear how kinesin-1 acts as an efficient transporter in intracellular environments. Here, we demonstrate that TRAK1 (Milton), an adaptor protein essential for mitochondrial trafficking, activates kinesin-1 and increases robustness of kinesin-1 stepping on crowded microtubule surfaces. Interaction with TRAK1 i) facilitates kinesin-1 navigation around obstacles, ii) increases the probability of kinesin-1 passing through cohesive islands of tau and iii) increases the run length of kinesin-1 in cell lysate. We explain the enhanced motility by the observed direct interaction of TRAK1 with microtubules, providing an additional anchor for the kinesin-1-TRAK1 complex. Furthermore, TRAK1 enables mitochondrial transport in vitro. We propose adaptor-mediated tethering as a mechanism regulating kinesin-1 motility in various cellular environments.
Faculty of Science Charles University Prague 12800 Prague Czech Republic
Max Planck Institute of Molecular Cell Biology and Genetics 01307 Dresden Sachsen Germany
School of Medical Science Griffith University Southport QLD 4222 Australia
Zobrazit více v PubMed
Chang DTW, Reynolds IJ. Mitochondrial trafficking and morphology in healthy and injured neurons. Prog. Neurobiol. 2006;80:241–268. PubMed
Correia, S. C., Perry, G. & Moreira, P. I. Mitochondrial traffic jams in Alzheimer’s disease—pinpointing the roadblocks. Biochim. Biophys. Acta.1862, 1909–1917 (2016). PubMed
Hsieh C-H, et al. Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell. 2016;19:709–724. PubMed PMC
Pereira AJ, Dalby B, Stewart RJ, Doxsey SJ, Goldstein LS. Mitochondrial association of a plus end-directed microtubule motor expressed during mitosis in Drosophila. J. Cell Biol. 1997;136:1081–1090. PubMed PMC
Lawrence EJ, Mandato CA. Mitochondria localize to the cleavage furrow in mammalian cytokinesis. PLoS ONE. 2013;8:1–12. PubMed PMC
Ahmad T, et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 2014;33:994–1010. PubMed PMC
Dong L-F, et al. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. Elife. 2017;6:e22187. PubMed PMC
Rustom A, Saffrich R, Markovic I, Walther P, Gerdes H-H. Nanotubular highways for intercellular organelle. Transp. Sci. 2004;303:1007–1010. PubMed
Bajzikova M, et al. Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab. 2019;29:399–416.e10. PubMed PMC
Tan AS, et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 2015;21:81–94. PubMed
Tanaka Y, et al. Targeted disruption of mouse conventional kinesin heavy chain kif5B, results in abnormal perinuclear clustering of mitochondria. Cell. 1998;93:1147–1158. PubMed
Brady ST. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature. 1985;317:73–75. PubMed
Vale RD, Reese TS, Sheetz MP. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985;42:39–50. PubMed PMC
Vale RD, et al. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell. 1985;43:623–632. PubMed
Wang X, Schwarz TL. The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell. 2009;136:163–174. PubMed PMC
Taylor EW, Borisy GG. Kinesin processivity. J. Cell Biol. 2000;151:27–30. PubMed PMC
Furuta K, et al. Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors. Proc. Natl Acad. Sci. USA. 2013;110:501–506. PubMed PMC
Beeg J, et al. Transport of beads by several kinesin motors. Biophys. J. 2008;94:532–541. PubMed PMC
Li, Q., Tseng, K., King, S. J., Qiu, W. & Xu, J. A fluid membrane enhances the velocity of cargo transport by small teams of kinesin-1. J. Chem. Phys. 148, 123318 (2018). PubMed PMC
Feng Q, Mickolajczyk KJ, Chen G-Y, Hancock WO. Motor reattachment kinetics play a dominant role in multimotor-driven cargo transport. Biophys. J. 2018;114:400–409. PubMed PMC
Kural C, et al. Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science. 2005;308:1469–1472. PubMed
Levi V, Serpinskaya AS, Gratton E, Gelfand V. Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors. Biophys. J. 2006;90:318–327. PubMed PMC
Welte MA, Gross SP, Postner M, Block SM, Wieschaus EF. Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell. 1998;92:547–557. PubMed
Mandelkow E, Mandelkow E-M. Microtubules and microtubule-associated proteins. Curr. Opin. Cell Biol. 1995;7:72–81. PubMed
Schneider R, Korten T, Walter WJ, Diez S. Kinesin-1 motors can circumvent permanent roadblocks by side-shifting to neighboring protofilaments. Biophys. J. 2015;108:15–17. PubMed PMC
Ferro LS, Can S, Turner MA, ElShenawy MM, Yildiz A. Kinesin and dynein use distinct mechanisms to bypass obstacles. Elife. 2019;8:e48629. PubMed PMC
Hoeprich GJ, Thompson AR, Mcvicker DP, Hancock WO, Berger CL. Kinesin’s neck-linker determines its ability to navigate obstacles on the microtubule surface. Biophys. J. 2014;106:1691–1700. PubMed PMC
Telley IA, Bieling P, Surrey T. Obstacles on the microtubule reduce the processivity of kinesin-1 in a minimal in vitro system and in cell extract. Biophys. J. 2009;96:3341–3353. PubMed PMC
Vershinin M, Carter BC, Razafsky DS, King SJ, Gross SP. Multiple-motor based transport and its regulation by Tau. Proc. Natl Acad. Sci. USA. 2007;104:87–92. PubMed PMC
Trinczek B, Ebneth A, Mandelkow EM, Mandelkow E. Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J. Cell Sci. 1999;112:2355–2367. PubMed
Ebneth A, et al. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J. Cell Biol. 1998;143:777–794. PubMed PMC
Siahaan V, et al. Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes. Nat. Cell Biol. 2019;21:1086–1092. PubMed
Dixit R, Ross JL, Goldman YE, Holzbaur ELF. Differential regulation of dynein and kinesin motor proteins by Tau. Science. 2008;319:1086–1089. PubMed PMC
Tan R, et al. Microtubules gate Tau condensation to spatially regulate microtubule functions. Nat. Cell Biol. 2019;21:1078–1085. PubMed PMC
Friedman DS, Vale RD. Single-molecule analysis of kinesin motility reveals regulation by the cargo- binding tail domain. Nat. Cell Biol. 1999;1:293–297. PubMed
Coy DL, Hancock WO, Wagenbach M, Howard J. Kinesin’s tail domain is an inhibitory regulator of the motor domain. Nat. Cell Biol. 1999;1:288–292. PubMed
Kaan HYK, Hackney DD, Kozielski F. The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition. Science. 2011;333:883–885. PubMed PMC
Stowers RS, Megeath LJ, Górska-Andrzejak J, Meinertzhagen IA, Schwarz TL. Axonal transport of mitochondria to synapses depends on milton, a novel drosophila protein. Neuron. 2002;36:1063–1077. PubMed
Brickley K, Smith MJ, Beck M, Stephenson FA. GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: Association in vivo and in vitro with kinesin. J. Biol. Chem. 2005;280:14723–14732. PubMed
Fransson Å, Ruusala A, Aspenström P. The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem. Biophys. Res. Commun. 2006;344:500–510. PubMed
Glater EE, Megeath LJ, Stowers RS, Schwarz TL. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J. Cell Biol. 2006;173:545–557. PubMed PMC
Brickley K, Stephenson FA. Trafficking Kinesin Protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons. J. Biol. Chem. 2011;286:18079–18092. PubMed PMC
van Spronsen M, et al. TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron. 2013;77:485–502. PubMed
Iijima-Ando, K. et al. Loss of axonal mitochondria promotes Tau-mediated neurodegeneration and Alzheimer’s disease-related Tau phosphorylation via PAR-1. PLoS Genet. 8, e1002918 (2012). PubMed PMC
Smith MJ, Pozo K, Brickley K, Stephenson FA. Mapping the GRIF-1 binding domain of the kinesin, KIF5C, substantiates a role for GRIF-1 as an adaptor protein in the anterograde trafficking of cargoes. J. Biol. Chem. 2006;281:27216–27228. PubMed
Randall TS, Moores C, Stephenson FA. Delineation of the TRAK binding regions of the kinesin-1 motor proteins. FEBS Lett. 2013;587:3763–3769. PubMed PMC
Lu H, Ali MY, Bookwalter CS, Warshaw DM, Trybus KM. Diffusive movement of processive kinesin-1 on microtubules. Traffic. 2009;10:1429–1438. PubMed PMC
Chaudhary AR, et al. MAP7 regulates organelle transport by recruiting kinesin-1 to microtubules. J. Biol. Chem. 2019;294:10160–10171. PubMed PMC
Nakata T, Hirokawa N. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. J. Cell Biol. 1995;131:1039–1053. PubMed PMC
Mickolajczyk KJ, Hancock WO. Kinesin processivity is determined by a kinetic race from a vulnerable one-head-bound state. Biophys. J. 2017;112:2615–2623. PubMed PMC
Hooikaas PJ, et al. MAP7 family proteins regulate kinesin-1 recruitment and activation. J. Cell Biol. 2019;218:1298–1318. PubMed PMC
Monroy BY, et al. Competition between microtubule-associated proteins directs motor transport. Nat. Commun. 2018;9:1487. PubMed PMC
Pekkurnaz G, Trinidad JC, Wang X, Kong D, Schwarz TL. Glucose regulates mitochondrial motility via milton modification by O-GlcNAc transferase. Cell. 2014;158:54–68. PubMed PMC
Sung H-H, et al. Drosophila ensconsin promotes productive recruitment of Kinesin-1 to microtubules. Dev. Cell. 2008;15:866–876. PubMed
Kempf M, Clement A, Faissner A, Lee G, Brandt R. Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J. Neurosci. 1996;16:5583–5592. PubMed PMC
Black MM, Slaughter T, Moshiach S, Obrocka M, Fischer I. Tau is enriched on dynamic microtubules in the distal region of growing axons. J. Neurosci. 1996;16:3601–3619. PubMed PMC
Khatoon S, Grundke-Iqbal I, Iqbal K. Brain levels of microtubule-associated protein τ are elevated in Alzheimer’s disease: a radioimmuno-slot-blot assay for nanograms of the protein. J. Neurochem. 1992;59:750–753. PubMed
Varga V, et al. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat. Cell Biol. 2006;8:957–962. PubMed
Monroy BY, et al. A Combinatorial MAP Code Dictates Polarized Microtubule Transport. Dev Cell. 2020;53:60–72. PubMed PMC
Jiang MY, Sheetz MP. Cargo-activated ATPase activity of kinesin. Biophys. J. 1995;68:283S–285S. PubMed PMC
Sun F, Zhu C, Dixit R, Cavalli V. Sunday/Driver JIP3 binds kinesin heavy chain directly and enhances its motility. EMBO J. 2011;30:3416–3429. PubMed PMC
Cho K, et al. RANBP2 is an allosteric activator of the concentional kinesin-1 motor protein, KIF5B, in a minimal cell-free system. EMBO Rep. 2009;10:480–486. PubMed PMC
Misgeld T, Kerschensteiner M, Bareyre FM, Burgess RW, Lichtman JW. Imaging axonal transport of mitochondria in vivo. Nat. Methods. 2007;4:559. PubMed
Lemaitre RP, Bogdanova A, Borgonovo B, Woodruff JB, Drechsel DN. FlexiBAC: a versatile, open-source baculovirus vector system for protein expression, secretion, and proteolytic processing. BMC Biotechnol. 2019;19:20. PubMed PMC
Hernández-Vega A, et al. Local nucleation of microtubule bundles through tubulin concentration into a condensed Tau phase. Cell Rep. 2017;20:2304–2312. PubMed PMC
Ruhnow F, Zwicker D, Diez S. Tracking single particles and elongated filaments with nanometer precision. Biophys. J. 2011;100:2820–2828. PubMed PMC
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. PubMed PMC
Optineurin-facilitated axonal mitochondria delivery promotes neuroprotection and axon regeneration
Optineurin-facilitated axonal mitochondria delivery promotes neuroprotection and axon regeneration
Mitochondria on the move: Horizontal mitochondrial transfer in disease and health
Tubulin polyglutamylation differentially regulates microtubule-interacting proteins
Improvement of the signal to noise ratio for fluorescent imaging in microfluidic chips
Microtubule lattice spacing governs cohesive envelope formation of tau family proteins
In Vitro Reconstitution of Molecular Motor-Driven Mitochondrial Transport
Alpha-Synuclein Aggregates Associated with Mitochondria in Tunnelling Nanotubes
figshare
10.6084/m9.figshare.12311867