Optineurin-facilitated axonal mitochondria delivery promotes neuroprotection and axon regeneration
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
R01 EY034353
NEI NIH HHS - United States
P30 EY026877
NEI NIH HHS - United States
1F32EY029567
U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
EY026877
U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
EY034353
U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
S10 OD025091
NIH HHS - United States
R01 EY032518
NEI NIH HHS - United States
EY032518
U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
R01 EY023295
NEI NIH HHS - United States
EY023295
U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
F32 EY029567
NEI NIH HHS - United States
R01 EY032159
NEI NIH HHS - United States
R01 EY024932
NEI NIH HHS - United States
EY024932
U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
R01 EY025295
NEI NIH HHS - United States
S10 OD030452
NIH HHS - United States
PubMed
39979261
PubMed Central
PMC11842812
DOI
10.1038/s41467-025-57135-8
PII: 10.1038/s41467-025-57135-8
Knihovny.cz E-resources
- MeSH
- Amyotrophic Lateral Sclerosis metabolism pathology genetics MeSH
- Axonal Transport MeSH
- Axons * metabolism MeSH
- Kinesins metabolism genetics MeSH
- Humans MeSH
- Membrane Transport Proteins * metabolism genetics MeSH
- Microtubules * metabolism MeSH
- Mitochondria * metabolism MeSH
- Disease Models, Animal MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Optic Nerve metabolism pathology MeSH
- Neuroprotection MeSH
- Low Tension Glaucoma metabolism genetics pathology MeSH
- Cell Cycle Proteins * metabolism genetics MeSH
- Nerve Regeneration MeSH
- Retinal Ganglion Cells * metabolism pathology MeSH
- Transcription Factor TFIIIA metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Kinesins MeSH
- Membrane Transport Proteins * MeSH
- OPTN protein, human MeSH Browser
- Optn protein, mouse MeSH Browser
- Cell Cycle Proteins * MeSH
- Transcription Factor TFIIIA MeSH
Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We find that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a decrease of axonal mitochondria in mice. We discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Furthermore, overexpressing OPTN/TRAK1/KIF5B prevents not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes robust ON regeneration. Therefore, in addition to generating animal models for NTG and ALS, our results establish OPTN as a facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.
Department of Cell Biology and Human Anatomy University of California Davis CA USA
Department of Electrical Engineering Stanford University Stanford CA USA
Department of Ophthalmology University of California San Francisco San Francisco CA USA
Institute of Biotechnology Czech Academy of Sciences BIOCEV Vestec Prague West Czechia
Viterbi Family Department of Ophthalmology University of California San Diego San Diego CA USA
See more in PubMed
Coleman, M. P. & Perry, V. H. Axon pathology in neurological disease: a neglected therapeutic target. Trends Neurosci.25, 532–537 (2002). PubMed
Raff, M. C., Whitmore, A. V. & Finn, J. T. Axonal self-destruction and neurodegeneration. Science296, 868–871 (2002). PubMed
Fischer, L. R. et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp. Neurol.185, 232–240 (2004). PubMed
Nickells, R. W., Howell, G. R., Soto, I. & John, S. W. Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev. Neurosci.35, 153–179 (2012). PubMed
Anderson, D. R., Drance, S. M., Schulzer, M. & Collaborative Normal-Tension Glaucoma Study G. Natural history of normal-tension glaucoma. Ophthalmology108, 247–253 (2001). PubMed
Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature465, 223–226 (2010). PubMed
Rezaie, T. et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science295, 1077–1079 (2002). PubMed
Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science333, 228–233 (2011). PubMed PMC
Ryan, T. A. & Tumbarello, D. A. Optineurin: a coordinator of membrane-associated cargo trafficking and autophagy. Front Immunol.9, 1024 (2018). PubMed PMC
Minegishi, Y., Nakayama, M., Iejima, D., Kawase, K. & Iwata, T. Significance of optineurin mutations in glaucoma and other diseases. Prog. Retin. Eye Res55, 149–181 (2016). PubMed
Qiu, Y. et al. Emerging views of OPTN (optineurin) function in the autophagic process associated with disease. Autophagy18, 73–85 (2022). PubMed PMC
Chamberlain, K. A. & Sheng, Z. H. Mechanisms for the maintenance and regulation of axonal energy supply. J. Neurosci. Res97, 897–913 (2019). PubMed PMC
Cheng, X. T., Huang, N. & Sheng, Z. H. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron110, 1899–1923 (2022). PubMed PMC
Misgeld, T. & Schwarz, T. L. Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. Neuron96, 651–666 (2017). PubMed PMC
Calkins, M. J., Manczak, M., Mao, P., Shirendeb, U. & Reddy, P. H. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum. Mol. Genet20, 4515–4529 (2011). PubMed PMC
Vicario-Orri, E., Opazo, C. M. & Munoz, F. J. The pathophysiology of axonal transport in Alzheimer’s disease. J. Alzheimers Dis.43, 1097–1113 (2015). PubMed
Kanaan, N. M. et al. Axonal degeneration in Alzheimer’s disease: when signaling abnormalities meet the axonal transport system. Exp. Neurol.246, 44–53 (2013). PubMed PMC
Chang, D. T., Rintoul, G. L., Pandipati, S. & Reynolds, I. J. Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol. Dis.22, 388–400 (2006). PubMed
Trushina, E. et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol. Cell Biol.24, 8195–8209 (2004). PubMed PMC
Bilsland, L. G. et al. Deficits in axonal transport precede ALS symptoms in vivo. Proc. Natl Acad. Sci. USA107, 20523–20528 (2010). PubMed PMC
Magrane, J., Cortez, C., Gan, W. B. & Manfredi, G. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum. Mol. Genet23, 1413–1424 (2014). PubMed PMC
Baldwin, K. R., Godena, V. K., Hewitt, V. L. & Whitworth, A. J. Axonal transport defects are a common phenotype in Drosophila models of ALS. Hum. Mol. Genet25, 2378–2392 (2016). PubMed PMC
Ito, Y. A. & Di Polo, A. Mitochondrial dynamics, transport, and quality control: a bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion36, 186–192 (2017). PubMed
Quintero, H. et al. Restoration of mitochondria axonal transport by adaptor Disc1 supplementation prevents neurodegeneration and rescues visual function. Cell Rep.40, 111324 (2022). PubMed
Takihara, Y. et al. In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS. Proc. Natl Acad. Sci. USA112, 10515–10520 (2015). PubMed PMC
Crish, S. D., Sappington, R. M., Inman, D. M., Horner, P. J. & Calkins, D. J. Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc. Natl Acad. Sci. USA107, 5196–5201 (2010). PubMed PMC
Kimball, E. C. et al. The effects of age on mitochondria, axonal transport, and axonal degeneration after chronic IOP elevation using a murine ocular explant model. Exp. Eye Res172, 78–85 (2018). PubMed PMC
Vanhauwaert, R., Bharat, V. & Wang, X. Surveillance and transportation of mitochondria in neurons. Curr. Opin. Neurobiol.57, 87–93 (2019). PubMed
Zahavi, E. E. & Hoogenraad, C. C. Multiple layers of spatial regulation coordinate axonal cargo transport. Curr. Opin. Neurobiol.69, 241–246 (2021). PubMed
Rezaie, T. & Sarfarazi, M. Molecular cloning, genomic structure, and protein characterization of mouse optineurin. Genomics85, 131–138 (2005). PubMed
Monavarfeshani, A. et al. Transcriptomic analysis of the ocular posterior segment completes a cell atlas of the human eye. Proc. Natl Acad. Sci. USA120, e2306153120 (2023). PubMed PMC
Munitic, I. et al. Optineurin insufficiency impairs IRF3 but not NF-kappaB activation in immune cells. J. Immunol.191, 6231–6240 (2013). PubMed PMC
Wang, Q. et al. Mouse gamma-Synuclein promoter-mediated gene expression and editing in mammalian retinal ganglion cells. J. Neurosci.40, 3896–3914 (2020). PubMed PMC
Weil, R., Laplantine, E., Curic, S. & Genin, P. Role of optineurin in the mitochondrial dysfunction: potential implications in neurodegenerative diseases and cancer. Front Immunol.9, 1243 (2018). PubMed PMC
Weishaupt, J. H. et al. A novel optineurin truncating mutation and three glaucoma-associated missense variants in patients with familial amyotrophic lateral sclerosis in Germany. Neurobiol. Aging34, 1516.e1519-1515 (2013). PubMed
Ozoguz, A. et al. The distinct genetic pattern of ALS in Turkey and novel mutations. Neurobiol. Aging36, 1764 e1769–1764 e1718 (2015). PubMed PMC
Goldstein, O. et al. OPTN 691_692insAG is a founder mutation causing recessive ALS and increased risk in heterozygotes. Neurology86, 446–453 (2016). PubMed PMC
Zhang, J. et al. Silicone oil-induced ocular hypertension and glaucomatous neurodegeneration in mouse. eLife8, e45881 (2019). PubMed PMC
Fang, F. et al. Chronic mild and acute severe glaucomatous neurodegeneration derived from silicone oil-induced ocular hypertension. Sci. Rep.11, 9052 (2021). PubMed PMC
Zhang J., et al. A reversible silicon oil-induced ocular hypertension model in mice. J. Vis. Exp.153, 10.3791/60409 (2019). PubMed PMC
Moshiri, A. et al. Silicone oil-induced glaucomatous neurodegeneration in rhesus macaques. Int J. Mol. Sci.23, 15896 (2022). PubMed PMC
Li, L. et al. Longitudinal morphological and functional assessment of RGC neurodegeneration after optic nerve crush in mouse. Front Cell Neurosci.14, 109 (2020). PubMed PMC
Li, L. et al. Single-cell transcriptome analysis of regenerating RGCs reveals potent glaucoma neural repair genes. Neuron110, 2646–2663.e2646 (2022). PubMed PMC
Chou, T. H., Bohorquez, J., Toft-Nielsen, J., Ozdamar, O. & Porciatti, V. Robust mouse pattern electroretinograms derived simultaneously from each eye using a common snout electrode. Invest Ophthalmol. Vis. Sci.55, 2469–2475 (2014). PubMed PMC
Porciatti, V. Electrophysiological assessment of retinal ganglion cell function. Exp. Eye Res141, 164–170 (2015). PubMed PMC
Prusky, G. T., Alam, N. M., Beekman, S. & Douglas, R. M. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol. Vis. Sci.45, 4611–4616 (2004). PubMed
Douglas, R. M. et al. Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Vis. Neurosci.22, 677–684 (2005). PubMed
Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron71, 142–154 (2011). PubMed PMC
Tran, N. M. et al. Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron104, 1039–1055.e1012 (2019). PubMed PMC
Jacobi, A. et al. Overlapping transcriptional programs promote survival and axonal regeneration of injured retinal ganglion cells. Neuron110, 2625–2645.e2627 (2022). PubMed PMC
Oswald, M. J., Tantirigama, M. L., Sonntag, I., Hughes, S. M. & Empson, R. M. Diversity of layer 5 projection neurons in the mouse motor cortex. Front Cell Neurosci.7, 174 (2013). PubMed PMC
Scherrer, G. et al. VGLUT2 expression in primary afferent neurons is essential for normal acute pain and injury-induced heat hypersensitivity. Proc. Natl Acad. Sci. USA107, 22296–22301 (2010). PubMed PMC
Pivetta, C., Esposito, M. S., Sigrist, M. & Arber, S. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin. Cell156, 537–548 (2014). PubMed
Xu, Z. et al. Whole-brain connectivity atlas of glutamatergic and GABAergic neurons in the mouse dorsal and median raphe nuclei. eLife10, e65502 (2021). PubMed PMC
Xu, J. et al. Intersectional mapping of multi-transmitter neurons and other cell types in the brain. Cell Rep.40, 111036 (2022). PubMed PMC
Borgius, L., Restrepo, C. E., Leao, R. N., Saleh, N. & Kiehn, O. A transgenic mouse line for molecular genetic analysis of excitatory glutamatergic neurons. Mol. Cell Neurosci.45, 245–257 (2010). PubMed
Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature524, 309–314 (2015). PubMed PMC
Wong, Y. C. & Holzbaur, E. L. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl Acad. Sci. USA111, E4439–E4448 (2014). PubMed PMC
Evans, C. S. & Holzbaur, E. L. Degradation of engulfed mitochondria is rate-limiting in Optineurin-mediated mitophagy in neurons. eLife9, e50260 (2020). PubMed PMC
Sun, N. et al. Measuring In Vivo Mitophagy. Mol. Cell60, 685–696 (2015). PubMed PMC
Chertkova, A. O. et al. Robust and bright genetically encoded fluorescent markers for highlighting structures and compartments in mammalian cells. bioRxiv10.1101/160374 (2020).
Lin, M. Y. et al. Releasing syntaphilin removes stressed mitochondria from axons independent of mitophagy under pathophysiological conditions. Neuron94, 595–610 e596 (2017). PubMed PMC
Zhou, B. et al. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J. Cell Biol.214, 103–119 (2016). PubMed PMC
Han, Q. et al. Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab.31, 623–641.e628 (2020). PubMed PMC
Luppi, P. H., Fort, P. & Jouvet, M. Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons. Brain Res534, 209–224 (1990). PubMed
Angelucci, A., Clasca, F. & Sur, M. Anterograde axonal tracing with the subunit B of cholera toxin: a highly sensitive immunohistochemical protocol for revealing fine axonal morphology in adult and neonatal brains. J. Neurosci. Methods65, 101–112 (1996). PubMed
Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol.36, 880–887 (2018). PubMed PMC
Xu, Y., Fan, X. & Hu, Y. In vivo interactome profiling by enzyme-catalyzed proximity labeling. Cell Biosci.11, 27 (2021). PubMed PMC
Heo, J. M. et al. Integrated proteogenetic analysis reveals the landscape of a mitochondrial-autophagosome synapse during PARK2-dependent mitophagy. Sci. Adv.5, eaay4624 (2019). PubMed PMC
Henrichs, V. et al. Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments. Nat. Commun.11, 3123 (2020). PubMed PMC
Han, S. M., Baig, H. S. & Hammarlund, M. Mitochondria localize to injured axons to support regeneration. Neuron92, 1308–1323 (2016). PubMed PMC
Cartoni, R. et al. The mammalian-specific protein Armcx1 regulates mitochondrial transport during axon regeneration. Neuron92, 1294–1307 (2016). PubMed PMC
Huang, N. et al. Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Curr. Biol.31, 3098–3114.e3097 (2021). PubMed PMC
Kalinski, A. L. et al. Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. J. Cell Biol.218, 1871–1890 (2019). PubMed PMC
Chernyshova, K., Inoue, K., Yamashita, S. I., Fukuchi, T. & Kanki, T. Glaucoma-associated mutations in the optineurin gene have limited impact on parkin-dependent mitophagy. Invest Ophthalmol. Vis. Sci.60, 3625–3635 (2019). PubMed
Slowicka, K. & van Loo, G. Optineurin functions for optimal immunity. Front Immunol.9, 769 (2018). PubMed PMC
Fabisiak, T. & Patel, M. Crosstalk between neuroinflammation and oxidative stress in epilepsy. Front Cell Dev. Biol.10, 976953 (2022). PubMed PMC
van Spronsen, M. et al. TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron77, 485–502 (2013). PubMed
Lopez-Domenech, G. et al. Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J.37, 321–336 (2018). PubMed PMC
Fenton, A. R., Jongens, T. A. & Holzbaur, E. L. F. Mitochondrial adaptor TRAK2 activates and functionally links opposing kinesin and dynein motors. Nat. Commun.12, 4578 (2021). PubMed PMC
Ogawa, F. et al. DISC1 complexes with TRAK1 and Miro1 to modulate anterograde axonal mitochondrial trafficking. Hum. Mol. Genet23, 906–919 (2014). PubMed PMC
Ogawa, F. et al. NDE1 and GSK3beta associate with TRAK1 and regulate axonal mitochondrial motility: identification of cyclic AMP as a novel modulator of axonal mitochondrial trafficking. ACS Chem. Neurosci.7, 553–564 (2016). PubMed
Shao, C. Y. et al. Distinct functions of nuclear distribution proteins LIS1, Ndel1 and NudCL in regulating axonal mitochondrial transport. Traffic14, 785–797 (2013). PubMed
Guillaud, L., El-Agamy, S. E., Otsuki, M. & Terenzio, M. Anterograde axonal transport in neuronal homeostasis and disease. Front Mol. Neurosci.13, 556175 (2020). PubMed PMC
Shah, S. H. & Goldberg, J. L. The role of axon transport in neuroprotection and regeneration. Dev. Neurobiol.78, 998–1010 (2018). PubMed PMC
Shah, S. H. et al. Quantitative transportomics identifies Kif5a as a major regulator of neurodegeneration. eLife11, e68148 (2022). PubMed PMC
Yokota, S. et al. Kif5a regulates mitochondrial transport in developing retinal ganglion cells in vitro. Invest Ophthalmol. Vis. Sci.64, 4 (2023). PubMed PMC
Shlevkov, E. et al. A high-content screen identifies TPP1 and Aurora B as regulators of axonal mitochondrial transport. Cell Rep.28, 3224–3237.e3225 (2019). PubMed PMC
Nishijima, E. et al. Vision protection and robust axon regeneration in glaucoma models by membrane-associated Trk receptors. Mol. Ther.31, 810–824 (2023). PubMed PMC
Lu, Y. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature588, 124–129 (2020). PubMed PMC
Chi, Z. L. et al. Overexpression of optineurin E50K disrupts Rab8 interaction and leads to a progressive retinal degeneration in mice. Hum. Mol. Genet19, 2606–2615 (2010). PubMed PMC
Tseng, H. C. et al. Visual impairment in an optineurin mouse model of primary open-angle glaucoma. Neurobiol. Aging36, 2201–2212 (2015). PubMed PMC
Ito, Y. et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science353, 603–608 (2016). PubMed PMC
Harada, T. et al. The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J. Clin. Invest117, 1763–1770 (2007). PubMed PMC
Sano, H. et al. Differential effects of N-acetylcysteine on retinal degeneration in two mouse models of normal tension glaucoma. Cell Death Dis.10, 75 (2019). PubMed PMC
Buffelli, M. et al. Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition. Nature424, 430–434 (2003). PubMed
Fang, F. et al. NMNAT2 is downregulated in glaucomatous RGCs, and RGC-specific gene therapy rescues neurodegeneration and visual function. Mol. Ther.30, 1421–1431 (2022). PubMed PMC
Masin, L. et al. A novel retinal ganglion cell quantification tool based on deep learning. Sci. Rep.11, 702 (2021). PubMed PMC
Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell159, 896–910 (2014). PubMed
Vowinckel, J., Hartl, J., Butler, R. & Ralser, M. MitoLoc: a method for the simultaneous quantification of mitochondrial network morphology and membrane potential in single cells. Mitochondrion24, 77–86 (2015). PubMed PMC
Basu, H., Ding, L., Pekkurnaz, G., Cronin, M. & Schwarz, T. L. Kymolyzer, a Semi-Autonomous Kymography Tool to Analyze Intracellular Motility. Curr. Protoc. Cell Biol.87, e107 (2020). PubMed PMC
Wang, X. & Schwarz, T. L. The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell136, 163–174 (2009). PubMed PMC
Chen, W. W., Freinkman, E. & Sabatini, D. M. Rapid immunopurification of mitochondria for metabolite profiling and absolute quantification of matrix metabolites. Nat. Protoc.12, 2215–2231 (2017). PubMed PMC
Bayraktar, E. C. et al. MITO-Tag Mice enable rapid isolation and multimodal profiling of mitochondria from specific cell types in vivo. Proc. Natl Acad. Sci. USA116, 303–312 (2019). PubMed PMC
Laser peripheral iridotomy for pupillary-block glaucoma. American Academy of Ophthalmology. Ophthalmology101, 1749–1758 (1994). PubMed
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods9, 676–682 (2012). PubMed PMC
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature596, 583–589 (2021). PubMed PMC
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv10.1101/2021.10.04.463034 (2022).