Improvement of the signal to noise ratio for fluorescent imaging in microfluidic chips

. 2022 Nov 07 ; 12 (1) : 18911. [epub] 20221107

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36344576

Grantová podpora
2018YFE0109000 Ministry of Science and Technology of the People's Republic of China
52150710541 National Social Science Fund of China
276321 Charles University Grant Agency
LM2018129 MEYS CR
CZ.02.1.01/0.0/0.0/18_046/0016045 European Regional Development Fund

Odkazy

PubMed 36344576
PubMed Central PMC9640556
DOI 10.1038/s41598-022-23426-z
PII: 10.1038/s41598-022-23426-z
Knihovny.cz E-zdroje

Microfluidics systems can be fabricated in various ways using original silicon glass systems, with easy Si processing and surface modifications for subsequent applications such as cell seeding and their study. Fluorescent imaging of cells became a standard technique for the investigation of cell behavior. Unfortunately, high sensitivity fluorescent imaging, e.g., using total internal reflection fluorescence (TIRF) microscopy, is problematic in these microfluidic systems because the uneven surfaces of the silicon channels' bottoms affect light penetration through the optical filters. In this work, we study the nature of the phenomenon, finding that the problem can be rectified by using a silicon-on-insulator (SOI) substrate, defining the channel depth by the thickness of the top Si layer, and halting the etching at the buried SiO2 layer. Then the fluorescent background signal drops by = 5 times, corresponding to the limit of detection drop from = 0.05 mM to = 50 nM of fluorescein. We demonstrate the importance of a flat surface using TIRF-based single-molecule detection, improving the signal to a noise ratio more than 18 times compared to a conventional Si wafer. Overall, using very high-quality SOI substrates pays off, as it improves the fluorescence image quality due to the increase in signal-to-noise ratio. Concerning the cost of microfluidic device fabrication-design, mask fabrication, wafer processing, and device testing-the initial SOI wafer cost is marginal, and using it improves the system performance.

Zobrazit více v PubMed

Bard AJ, et al. Electrochemical Methods: Fundamentals and Applications. Wiley; 2022.

Lisdat F, et al. The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 2008;391:1555–1567. doi: 10.1007/s00216-008-1970-7. PubMed DOI

Bogomolova A, et al. Challenges of electrochemical impedance spectroscopy in protein biosensing. Anal. Chem. 2009;81:3944–3949. doi: 10.1021/ac9002358. PubMed DOI

Park J, et al. Direct coupling of a free-flow isotachophoresis (FFITP) device with electrospray ionization mass spectrometry (ESI-MS) Lab Chip. 2015;15:3495–3502. doi: 10.1039/C5LC00523J. PubMed DOI

Länge K, et al. Analytical and bioanalytical chemistry. Anal. Bioanal. Chem. 2008;391:1509–1519. doi: 10.1007/s00216-008-1911-5. PubMed DOI

Rickert J, et al. Quartz crystal microbalances for quantitative biosensing and characterizing protein multilayers. Biosens. Bioelectron. 1997;12:567–575. doi: 10.1016/S0956-5663(96)00077-2. PubMed DOI

Song Y, et al. Colorimetric biosensing using smart materials. Adv. Mater. 2011;23:4215–4236. doi: 10.1002/adma.201101853. PubMed DOI

Dutta S. Point of care sensing and biosensing using ambient light sensor of smartphone: Critical review. TrAC - Trends Anal. Chem. 2019;110:393–400. doi: 10.1016/j.trac.2018.11.014. DOI

Piliarik M, et al. Biosensors and Biodetection. Humana Press; 2009. pp. 65–88.

Mejía-Salazar J, et al. Plasmonic biosensing: Focus review. Chem. Rev. 2018;118:10617–10625. doi: 10.1021/acs.chemrev.8b00359. PubMed DOI

Neuzil P, et al. Palm-sized biodetection system based on localized surface plasmon resonance. Anal. Chem. 2008;80:6100–6103. doi: 10.1021/ac800335q. PubMed DOI

Fang C, et al. Progress of the electrochemiluminescence biosensing strategy for clinical diagnosis with luminol as the sensing probe. ChemElectroChem. 2017;4:1587–1593. doi: 10.1002/celc.201700465. DOI

Wang H, et al. Recent progress in strategies for the creation of protein-based fluorescent biosensors. ChemBioChem. 2009;10:2560–2577. doi: 10.1002/cbic.200900249. PubMed DOI

Podešva P, et al. Single nanostructured gold amalgam microelectrode electrochemiluminescence: From arrays to a single point. Sens. Actuators B Chem. 2019;286:282–288. doi: 10.1016/j.snb.2018.11.127. DOI

Jusková P, et al. Detection of electrochemiluminescence from floating metal platelets in suspension. Lab Chip. 2013;13:781–784. doi: 10.1039/c2lc41086a. PubMed DOI

Martin MM, et al. The pH dependence of fluorescein fluorescence. J. Lumin. 1975;10:381–390. doi: 10.1016/0022-2313(75)90003-4. DOI

Zehentbauer FM, et al. Fluorescence spectroscopy of Rhodamine 6G: Concentration and solvent effects. Spectrochim. Acta A. 2014;121:147–151. doi: 10.1016/j.saa.2013.10.062. PubMed DOI

Valasek MA, et al. The power of real-time PCR. Adv. Physiol. Educ. 2005;29:151–159. doi: 10.1152/advan.00019.2005. PubMed DOI

Vogelstein B, et al. Digital pcr. Proc. Natl. Acad. Sci. U.S.A. 1999;96:9236–9241. doi: 10.1073/pnas.96.16.9236. PubMed DOI PMC

Song Y, et al. Recent progress in microfluidics-based biosensing. Anal. Chem. 2018;91:388–404. doi: 10.1021/acs.analchem.8b05007. PubMed DOI

Wiedenmann J, et al. Fluorescent proteins for live cell imaging: Opportunities, limitations, and challenges. IUBMB Life. 2009;61:1029–1042. doi: 10.1002/iub.256. PubMed DOI

Nienhaus K, Ulrich NG. Fluorescent proteins for live-cell imaging with super-resolution. Chem. Rev. 2014;43:1088–1106. PubMed

Semrock, https://www.semrock.com/FilterDetails.aspx?id=FF02-472/30-25 (2022).

Madic J, et al. Three-color crystal digital PCR. Biomol. Detect. Quantif. 2016;10:34–46. doi: 10.1016/j.bdq.2016.10.002. PubMed DOI PMC

Chroma, I. 49002 - ET - EGFP (FITC/Cy2), https://www.chroma.com/products/sets/49002-et-egfp-fitc-cy2 (2022).

Hardee, C. et al.Interference Filters for Fluorescence Microscopy, https://www.olympus-lifescience.com.cn/en/microscope-resource/primer/techniques/fluorescence/interferencefilterintro/ (2022).

Kuhn WK, et al. Effects of surface roughness on surface analysis via soft and ultrasoft X-ray fluorescence spectroscopy. Appl. Surf. Sci. 2001;185:84–91. doi: 10.1016/S0169-4332(01)00652-3. DOI

Tsuji K, et al. The effects of surface roughness on the angle‐dependent total‐reflection x‐ray fluorescence of ultrathin films. J. Appl. Phys. 1995;78:969–973. doi: 10.1063/1.360291. DOI

Goossens T, et al. Thin-film interference filters illuminated by tilted apertures. Appl. Opt. 2020;59:A112–A122. doi: 10.1364/AO.59.00A112. PubMed DOI

Balram, K. C. et al.J. Res. Natl. Inst. Stand. Technol. 464–476, (2016). PubMed PMC

Zhang H, et al. Nanolithography toolbox—Simplifying the design complexity of microfluidic chips. J. Vac. Sci. Technol. B. 2020;38:063002. doi: 10.1116/6.0000562. DOI

Zhu H, et al. Continuous microfluidic mixing and the highly controlled nanoparticle synthesis using direct current-induced thermal buoyancy convection. Microfluid. Nanofluidics. 2020;24:1–8. doi: 10.1007/s10404-019-2306-y. DOI

Laerme, F. et al. in Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 99CH36291). 211–216 (IEEE).

Castro ER, et al. Determination of dynamic contact angles within microfluidic devices. Microfluid. Nanofluidics. 2018;22:1–11. doi: 10.1007/s10404-018-2066-0. DOI

Henrichs V, et al. Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments. Nat. Commun. 2020;11:1–13. doi: 10.1038/s41467-020-16972-5. PubMed DOI PMC

Lima RT, et al. Modulation of autophagy by a thioxanthone decreases the viability of melanoma cells. Molecules. 2016;21:1343. doi: 10.3390/molecules21101343. PubMed DOI PMC

Wang Y, et al. Review of surface profile measurement techniques based on optical interferometry. Opt. Lasers Eng. 2017;93:164–170. doi: 10.1016/j.optlaseng.2017.02.004. DOI

Gell C, et al. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Methods Cell Biol. 2010;95:221–245. doi: 10.1016/S0091-679X(10)95013-9. PubMed DOI

Bauhuber M, et al. Isotropic wet chemical etching of deep channels with optical surface quality in silicon with HNA based etching solutions. Mater. Sci. Semicond. Process. 2013;16:1428–1433. doi: 10.1016/j.mssp.2013.05.017. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Microfluidics chips fabrication techniques comparison

. 2024 Nov 20 ; 14 (1) : 28793. [epub] 20241120

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...