Improvement of the signal to noise ratio for fluorescent imaging in microfluidic chips
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
2018YFE0109000
Ministry of Science and Technology of the People's Republic of China
52150710541
National Social Science Fund of China
276321
Charles University Grant Agency
LM2018129
MEYS CR
CZ.02.1.01/0.0/0.0/18_046/0016045
European Regional Development Fund
PubMed
36344576
PubMed Central
PMC9640556
DOI
10.1038/s41598-022-23426-z
PII: 10.1038/s41598-022-23426-z
Knihovny.cz E-zdroje
- MeSH
- křemík * chemie MeSH
- mikrofluidika * MeSH
- nanotechnologie metody MeSH
- oxid křemičitý MeSH
- poměr signál - šum MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- křemík * MeSH
- oxid křemičitý MeSH
Microfluidics systems can be fabricated in various ways using original silicon glass systems, with easy Si processing and surface modifications for subsequent applications such as cell seeding and their study. Fluorescent imaging of cells became a standard technique for the investigation of cell behavior. Unfortunately, high sensitivity fluorescent imaging, e.g., using total internal reflection fluorescence (TIRF) microscopy, is problematic in these microfluidic systems because the uneven surfaces of the silicon channels' bottoms affect light penetration through the optical filters. In this work, we study the nature of the phenomenon, finding that the problem can be rectified by using a silicon-on-insulator (SOI) substrate, defining the channel depth by the thickness of the top Si layer, and halting the etching at the buried SiO2 layer. Then the fluorescent background signal drops by = 5 times, corresponding to the limit of detection drop from = 0.05 mM to = 50 nM of fluorescein. We demonstrate the importance of a flat surface using TIRF-based single-molecule detection, improving the signal to a noise ratio more than 18 times compared to a conventional Si wafer. Overall, using very high-quality SOI substrates pays off, as it improves the fluorescence image quality due to the increase in signal-to-noise ratio. Concerning the cost of microfluidic device fabrication-design, mask fabrication, wafer processing, and device testing-the initial SOI wafer cost is marginal, and using it improves the system performance.
Zobrazit více v PubMed
Bard AJ, et al. Electrochemical Methods: Fundamentals and Applications. Wiley; 2022.
Lisdat F, et al. The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 2008;391:1555–1567. doi: 10.1007/s00216-008-1970-7. PubMed DOI
Bogomolova A, et al. Challenges of electrochemical impedance spectroscopy in protein biosensing. Anal. Chem. 2009;81:3944–3949. doi: 10.1021/ac9002358. PubMed DOI
Park J, et al. Direct coupling of a free-flow isotachophoresis (FFITP) device with electrospray ionization mass spectrometry (ESI-MS) Lab Chip. 2015;15:3495–3502. doi: 10.1039/C5LC00523J. PubMed DOI
Länge K, et al. Analytical and bioanalytical chemistry. Anal. Bioanal. Chem. 2008;391:1509–1519. doi: 10.1007/s00216-008-1911-5. PubMed DOI
Rickert J, et al. Quartz crystal microbalances for quantitative biosensing and characterizing protein multilayers. Biosens. Bioelectron. 1997;12:567–575. doi: 10.1016/S0956-5663(96)00077-2. PubMed DOI
Song Y, et al. Colorimetric biosensing using smart materials. Adv. Mater. 2011;23:4215–4236. doi: 10.1002/adma.201101853. PubMed DOI
Dutta S. Point of care sensing and biosensing using ambient light sensor of smartphone: Critical review. TrAC - Trends Anal. Chem. 2019;110:393–400. doi: 10.1016/j.trac.2018.11.014. DOI
Piliarik M, et al. Biosensors and Biodetection. Humana Press; 2009. pp. 65–88.
Mejía-Salazar J, et al. Plasmonic biosensing: Focus review. Chem. Rev. 2018;118:10617–10625. doi: 10.1021/acs.chemrev.8b00359. PubMed DOI
Neuzil P, et al. Palm-sized biodetection system based on localized surface plasmon resonance. Anal. Chem. 2008;80:6100–6103. doi: 10.1021/ac800335q. PubMed DOI
Fang C, et al. Progress of the electrochemiluminescence biosensing strategy for clinical diagnosis with luminol as the sensing probe. ChemElectroChem. 2017;4:1587–1593. doi: 10.1002/celc.201700465. DOI
Wang H, et al. Recent progress in strategies for the creation of protein-based fluorescent biosensors. ChemBioChem. 2009;10:2560–2577. doi: 10.1002/cbic.200900249. PubMed DOI
Podešva P, et al. Single nanostructured gold amalgam microelectrode electrochemiluminescence: From arrays to a single point. Sens. Actuators B Chem. 2019;286:282–288. doi: 10.1016/j.snb.2018.11.127. DOI
Jusková P, et al. Detection of electrochemiluminescence from floating metal platelets in suspension. Lab Chip. 2013;13:781–784. doi: 10.1039/c2lc41086a. PubMed DOI
Martin MM, et al. The pH dependence of fluorescein fluorescence. J. Lumin. 1975;10:381–390. doi: 10.1016/0022-2313(75)90003-4. DOI
Zehentbauer FM, et al. Fluorescence spectroscopy of Rhodamine 6G: Concentration and solvent effects. Spectrochim. Acta A. 2014;121:147–151. doi: 10.1016/j.saa.2013.10.062. PubMed DOI
Valasek MA, et al. The power of real-time PCR. Adv. Physiol. Educ. 2005;29:151–159. doi: 10.1152/advan.00019.2005. PubMed DOI
Vogelstein B, et al. Digital pcr. Proc. Natl. Acad. Sci. U.S.A. 1999;96:9236–9241. doi: 10.1073/pnas.96.16.9236. PubMed DOI PMC
Song Y, et al. Recent progress in microfluidics-based biosensing. Anal. Chem. 2018;91:388–404. doi: 10.1021/acs.analchem.8b05007. PubMed DOI
Wiedenmann J, et al. Fluorescent proteins for live cell imaging: Opportunities, limitations, and challenges. IUBMB Life. 2009;61:1029–1042. doi: 10.1002/iub.256. PubMed DOI
Nienhaus K, Ulrich NG. Fluorescent proteins for live-cell imaging with super-resolution. Chem. Rev. 2014;43:1088–1106. PubMed
Semrock, https://www.semrock.com/FilterDetails.aspx?id=FF02-472/30-25 (2022).
Madic J, et al. Three-color crystal digital PCR. Biomol. Detect. Quantif. 2016;10:34–46. doi: 10.1016/j.bdq.2016.10.002. PubMed DOI PMC
Chroma, I. 49002 - ET - EGFP (FITC/Cy2), https://www.chroma.com/products/sets/49002-et-egfp-fitc-cy2 (2022).
Hardee, C. et al.Interference Filters for Fluorescence Microscopy, https://www.olympus-lifescience.com.cn/en/microscope-resource/primer/techniques/fluorescence/interferencefilterintro/ (2022).
Kuhn WK, et al. Effects of surface roughness on surface analysis via soft and ultrasoft X-ray fluorescence spectroscopy. Appl. Surf. Sci. 2001;185:84–91. doi: 10.1016/S0169-4332(01)00652-3. DOI
Tsuji K, et al. The effects of surface roughness on the angle‐dependent total‐reflection x‐ray fluorescence of ultrathin films. J. Appl. Phys. 1995;78:969–973. doi: 10.1063/1.360291. DOI
Goossens T, et al. Thin-film interference filters illuminated by tilted apertures. Appl. Opt. 2020;59:A112–A122. doi: 10.1364/AO.59.00A112. PubMed DOI
Balram, K. C. et al.J. Res. Natl. Inst. Stand. Technol. 464–476, (2016). PubMed PMC
Zhang H, et al. Nanolithography toolbox—Simplifying the design complexity of microfluidic chips. J. Vac. Sci. Technol. B. 2020;38:063002. doi: 10.1116/6.0000562. DOI
Zhu H, et al. Continuous microfluidic mixing and the highly controlled nanoparticle synthesis using direct current-induced thermal buoyancy convection. Microfluid. Nanofluidics. 2020;24:1–8. doi: 10.1007/s10404-019-2306-y. DOI
Laerme, F. et al. in Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 99CH36291). 211–216 (IEEE).
Castro ER, et al. Determination of dynamic contact angles within microfluidic devices. Microfluid. Nanofluidics. 2018;22:1–11. doi: 10.1007/s10404-018-2066-0. DOI
Henrichs V, et al. Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments. Nat. Commun. 2020;11:1–13. doi: 10.1038/s41467-020-16972-5. PubMed DOI PMC
Lima RT, et al. Modulation of autophagy by a thioxanthone decreases the viability of melanoma cells. Molecules. 2016;21:1343. doi: 10.3390/molecules21101343. PubMed DOI PMC
Wang Y, et al. Review of surface profile measurement techniques based on optical interferometry. Opt. Lasers Eng. 2017;93:164–170. doi: 10.1016/j.optlaseng.2017.02.004. DOI
Gell C, et al. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Methods Cell Biol. 2010;95:221–245. doi: 10.1016/S0091-679X(10)95013-9. PubMed DOI
Bauhuber M, et al. Isotropic wet chemical etching of deep channels with optical surface quality in silicon with HNA based etching solutions. Mater. Sci. Semicond. Process. 2013;16:1428–1433. doi: 10.1016/j.mssp.2013.05.017. DOI