Newborns' neural processing of native vowels reveals directional asymmetries

. 2021 Dec ; 52 () : 101023. [epub] 20211020

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34717213
Odkazy

PubMed 34717213
PubMed Central PMC8577326
DOI 10.1016/j.dcn.2021.101023
PII: S1878-9293(21)00113-4
Knihovny.cz E-zdroje

Prenatal learning of speech rhythm and melody is well documented. Much less is known about the earliest acquisition of segmental speech categories. We tested whether newborn infants perceive native vowels, but not nonspeech sounds, through some existing (proto-)categories, and whether they do so more robustly for some vowels than for others. Sensory event-related potentials (ERP), and mismatch responses (MMR), were obtained from 104 neonates acquiring Czech. The ERPs elicited by vowels were larger than the ERPs to nonspeech sounds, and reflected the differences between the individual vowel categories. The MMRs to changes in vowels but not in nonspeech sounds revealed left-lateralized asymmetrical processing patterns: a change from a focal [a] to a nonfocal [ɛ], and the change from short [ɛ] to long [ɛ:] elicited more negative MMR responses than reverse changes. Contrary to predictions, we did not find evidence of a developmental advantage for vowel length contrasts (supposedly most readily available in utero) over vowel quality contrasts (supposedly less salient in utero). An explanation for these asymmetries in terms of differential degree of prior phonetic warping of speech sounds is proposed. Future studies with newborns with different language backgrounds should test whether the prenatal learning scenario proposed here is plausible.

Zobrazit více v PubMed

Abboub N., Nazzi T., Gervain J. Prosodic grouping at birth. Brain Lang. 2016;162:46–59. PubMed

Abel S.M. Duration discrimination of noise and tone bursts. J. Acoust. Soc. Am. 1972;51(1972):1219–1223. doi: 10.1121/1.1912963. PubMed DOI

Arimitsu T., Uchida-Ota M., Yagihashi T., Kojima S., Watanabe S., Hokuto I., Ikeda K., Takahashi T., Minagawa-Kawai Y. Functional hemispheric specialization in processing phonemic and prosodic auditory changes in neonates. Front. Psychol. 2011;2:202. doi: 10.3389/fpsyg.2011.00202. PubMed DOI PMC

Bates D., Mächler M., Bolker B., Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67(1):1–48. doi: 10.18637/jss.v067.i01. DOI

Boersma, P., Weenink, D. (1992–2020). Praat: Doing Phonetics by Computer. Available at: 〈http://www.praat.org〉 (accessed 22-Nov-2018).

Cheour M., Ceponiene R., Lehtokoski A., Luuk A., Allik J., Alho K., Näätänen R. Development of language-specific phoneme representations in the infant brain. Nat. Neurosci. 1998;1:351–353. PubMed

Cheour M., Martynova O., Näätänen R., Erkkola R., Sillanpää M., Kero P., Raz A., Kaipio M.L., Hiltunen J., Aaltonen O., Savela J., Hämäläinen H. Psychobiology: speech sounds learned by sleeping newborns. Nature. 2002;415(6872):599–600. PubMed

Chládková, K., Nudga, N., Boersma (2020). A model of prenatal vowel learning. In: Proceedings of the Cognitive Science Society annual meeting, pp. 599–604.

Chládková, K., Černá, M., Paillereau, N., Skarnitzl, R., Oceláková, Z. (2019). Prenatal infant-directed speech: vowels and voice quality. In: Proceedings of ICPhS 2019, 1525–1529.

DeCasper A.J., Lecanuet J.-P., Busnel M.-C., Granier-Deferre C., Maugeais R. Fetal reactions to recurrent maternal speech. Infant Behav. Dev. 1994;17:159–164.

Dehaene-Lambertz G., Baillet S. A phonological representation in the infant brain. Neuroreport. 1998;9:1885–1888. PubMed

Delorme A., Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods. 2004;134(1):9–21. PubMed

Eulitz C., Lahiri A. Neurobiological evidence for abstract phonological representations in the mental lexicon during speech recognition. J. Cogn. Neurosci. 2004;16:577–583. PubMed

Goudbeek M., Swingley D., Smits R. Supervised and unsupervised learning of multidimensional acoustic categories. J. Exp. Psychol.: Hum. Percept. Perform. 2009;35:1913–1933. PubMed PMC

Granier‐Deferre C., Ribeiro A., Jacquet A., Bassereau S. Near‐term fetuses process temporal features of speech. Dev. Sci. 2011;14(2):336–352. PubMed

Graven S.N., Browne J.V. Auditory development in the fetus and infant. Newborn Infant Nurs. Rev. 2008;8(4):187–193.

Haenschel C., Vernon D.J., Dwivedi P., Gruzelier J.H., Baldeweg T. Event-related brain potential correlates of human auditory sensory memory-trace formation. J. Neurosci. 2005;25(45):10494–10501. PubMed PMC

Jaramillo M., Alku P., Paavilainen P. An event-related potential (ERP) study of duration changes in speech and non-speech sounds. NeuroReport. 1999;10:3301–3366.

Kisilevsky B.S., Hains S.M., Brown C.A., Lee C.T., Cowperthwaite B., Stutzman S.S., Huang H. Fetal sensitivity to properties of maternal speech and language. Infant Behav. Dev. 2009;32(1):59–71. PubMed

Kremláček J., Kreegipuu K., Tales A., Astikainen P., Põldver N., Näätänen R., Stefanics G. Visual mismatch negativity (vMMN): a review and meta-analysis of studies in psychiatric and neurological disorders. Cortex. 2016;80:76–112. doi: 10.1016/j.cortex.2016.03.017. PubMed DOI

Kuhl P.K. Human adults and human infants show a “perceptual magnet effect” for the prototypes of speech categories, monkeys do not. Percept. Psychophys. 1991;50(2):93–107. PubMed

Kuhl P.K., Conboy B.T., Coffey-Corina S., Padden D., Rivera-Gaxiola M., Nelson T. Phonetic learning as a pathway to language: new data and native language magnet theory expanded (NLM-e) Philos. Trans. R. Soc. B. 2008;363:979–1000. doi: 10.1098/rstb.2007.2154. PubMed DOI PMC

Kuznetsova A., Brockhoff P.B., Christensen R.H.B. LmerTest package: tests in linear mixed effects models. J. Stat. Softw. 2017;82(13):1–26. doi: 10.18637/jss.v082.i13. DOI

Lahiri A., Reetz H. Distinctive features: phonological underspecification in processing. J. Phonetics. 2010;38:44–59.

Lecanuet, J.-P., Carolyn Granier-Deferre, Decasper, A., R Maugeais, JA Andrieu, Busnel, C. (1987). Fetal Perception and Discrimination of Speech Stimuli; Demonstration by Cardiac Reactivity; Preliminary Results. 305(5), 161–164. PubMed

Lehiste I. MIT Press; Cambridge, MA: 1970. Suprasegmentals.

Lüdecke D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 2018;3(26):772. doi: 10.21105/joss.00772. DOI

Maddieson I. The size and structure of phonological inventories: analysis of UPSID. Exp. Phonol. 1986:105–123.

Mahmoudzadeh, M., Dehaene-Lambertz, G., Fournier, M., Kongolo, G., Goudjil, S., Dubois, J., … Wallois, F. (2013). Syllabic discrimination in premature human infants prior to complete formation of cortical layers. Proceedings of the National Academy of Sciences, 110(12), 4846–4851. PubMed PMC

Martynova O., Kirjavainen J., Cheour M. Mismatch negativity and late discriminative negativity in sleeping human newborns. Neurosci. Lett. 2003;340(2):75–78. doi: 10.1016/s0304-3940(02)01401-5. PubMed DOI

Maurer U., Bucher K., Brem S., Brandeis D. Development of the automatic mismatch response: from frontal positivity in kindergarten children to the mismatch negativity. Clin. Neurophysiol. 2003;114:808–817. PubMed

May L., Gervain J., Carreiras M., Werker J.F. The specificity of the neural response to speech at birth. Dev. Sci. 2018;21(3) PubMed

Mehler J., Jusczyk P., Lambertz G., Halsted N., Bertoncini J., Amiel-Tison C. A precursor of language acquisition in young infants. Cognition. 1988;29(2):143–178. PubMed

Mitterer H. The mental lexicon is fully specified: Evidence from eye-tracking. J. Exp. Psychol.: Hum. Percept. Perform. 2011;37:496–513. PubMed

Monahan P.J., Idsardi W.J. Auditory sensitivity to formant ratios: toward an account of vowel normalization. Lang. Cogn. Process. 2010;25(6):808–839. doi: 10.1080/01690965.2010.490047. PubMed DOI PMC

Moon C., Cooper R.P., Fifer W.P. Two-day-olds prefer their native language. Infant Behav. Dev. 1993;16:495–500.

Moon C., Lagercrantz H., Kuhl P.K. Language experienced in utero affects vowel perception after birth: a two‐country study. Acta Paediatr. 2013;102(2):156–160. PubMed PMC

Mueller J.L., Friederici A.G., Männel C. Auditory perception at the root of language leanring. PNAS. 2012;109:15953–15958. PubMed PMC

Näätänen R. The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm) Psychophysiology. 2001;38(1):1–21. doi: 10.1111/1469-8986.3810001. PubMed DOI

Nenonen S., Shestakova A., Huotilainen M., Näätänen R. Speech-sound duration processing in a second language is specific to phonetic categories. Brain Lang. 2005;92:26–32. PubMed

ORAL v1: Czech National Corpus — ORAL v1 (2019). Institute of the Czech national corpus, Faculy of Arts, Charles University, Prague. url: 〈https://kontext.korpus.cz/〉 [accessed 23–12-2019].

Nudga N., Urbanec J., Oceláková Z., Kremláček J., Chládková K. Neural processing of spectral and durational changes in speech and non-speech stimuli: an MMN study with Czech adults. Front. Hum. Neurosci. 2021;15 doi: 10.3389/fnhum.2021.643655. PubMed DOI PMC

Ortiz Barajas M.C., Guevara R., Gervain J. The origins and development of speech envelope tracking during the first months of life. Dev. Cogn. Neurosci. 2021;48 doi: 10.1016/j.dcn.2021.100915. PubMed DOI PMC

Paillereau N., Chládková K. Spectral and temporal characteristics of Czech vowels in spontaneous speech. AUC Philol. 2019;2019:77–95. doi: 10.14712/24646830.2019.19. DOI

Partanen E., Kujala T., Näätänen R., Liitola A., Sambeth A., Huotilainen M. Learning-induced neural plasticity of speech processing before birth. Proc. Natl. Acad. Sci. U.S.A. 2013;110:15145–15150. PubMed PMC

Peter V., Kalashnikova M., Santos A., Burnham D. Mature neural responses to infant-directed speech but not adult-directed speech in pre-verbal infants. Sci. Rep. 2016;6:34273. doi: 10.1038/srep34273. PubMed DOI PMC

Polka L., Bohn O.-S. Asymmetries in vowel perception. Speech Commun. 2003;41(1):221–231.

Polka L., Bohn O. Natural referent vowel (NRV) framework: an emerging view of early phonetic development. J. Phonetics. 2011;39:467–478.

Polka L., Molnar M., Zhao C., Masapollo M. Neurophysiological correlates of asymmetries in vowel perception: an English-French cross-linguistic ERP study. Front. Hum. Neurosci. 2021;15 doi: 10.3389/fnhum.2021.607148. PubMed DOI PMC

Pons F., Albareda‐Castellot B., Sebastián‐Gallés N. The interplay between input and initial biases: Asymmetries in vowel perception during the first year of life. Child Dev. 2012;83(3):965–976. PubMed

Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press; Cambridge: 1992. Savitzky-Golay smoothing filters; pp. 650–655.

Querleu D., Renard X., Versyp F., Paris-Delrue L., Crèpin G. Fetal hearing. Eur. J. Obstetr. Gynecol. Reprod. Biol. 1988;28(3):191–212. PubMed

R Core Team (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. [〈www.r-project.org〉].

Richards D.S., Frentzen B., Gerhardt K.J., McCann M.E., Abrams R.M. Sound levels in the human uterus. Obstetr. Gynecol. 1992;80:186–190. PubMed

Sato H., Hirabayashi Y., Tsubokura H., Kanai M., Ashida T., Konishi I., Maki A. Cerebral hemodynamics in newborn infants exposed to speech sounds: a whole‐head optical topography study. Hum. Brain Mapp. 2012;33(9):2092–2103. PubMed PMC

Scharinger M., Herrmann B., Nierhaus T., Obleser J. Simultaneous EEG-fMRI brain signatures of auditory cue utilization. Front. Neurosci. 2014;8:137. PubMed PMC

Scharinger M., Idsardi W.J., Poe S. A comprehensive three-dimensional cortical map of vowel space. J. Cogn. Neurosci. 2011;23:3972–3982. PubMed

Scharinger M., Monahan P.J., Idsardi W.J. Asymmetries in the processing of vowel height. J. Speech Lang. Hearing Res. 2012;55:903–918. PubMed

Schimmel H. The (+-) reference: accuracy of estimated mean components in average response studies. Science. 1967;157:92–94. PubMed

Schwartz J.-L., Abry C., Boë L.-J., Vallée N. The dispersion-focalization theory of sound systems. J. Acoust. Soc. Am. 2005;117(4):2422. doi: 10.1121/1.4786487. DOI

Seebach B.S., Intrator N., Lieberman P., Cooper L.N. A model of prenatal acquisition of speech parameters. 1994;91:7473–7476. doi: 10.1073/pnas.91.16.7473. PubMed DOI PMC

Shahidullah S., Hepper P.G. Frequency discrimination by the fetus. Early Hum. Dev. 1994;36(1):13–26. PubMed

Thiede A., Virtala P., Ala-Kurikka I., Partanen E., Huotilainen M., Mikkola K., Kujala T. An extensive pattern of atypical neural speech-sound discrimination in newborns at risk of dyslexia. Clin. Neurophysiol. 2019;130(5):634–646. PubMed

Tremblay K., Kraus N., McGee T. The time-course of auditory perceptual learning: Which comes first, the chicken or the egg. NeuroReport. 1998;9:3557–3560. PubMed

Tsuji, S., Cristia, A. (2017). Which acoustic and phonological factors shape infants vowel discrimination? Exploiting natural variation in InPhonDB. In: Proceedings of Interspeech 2017, pp. 2108–2112. doi: 〈10.21437/Interspeech.2017–1468〉. DOI

Virtala P., Partanen E., Tervaniemi M., Kujala T. Neural discrimination of speech sound changes in a variable context occurs irrespective of attention and explicit awareness. Biol. Psychol. 2018;132:217–227. doi: 10.1016/j.biopsycho.2018.01.002. PubMed DOI

Virtala P., Talola S., Partanen E., Kujala T. Poor neural and perceptual phoneme discrimination during acoustic variation in dyslexia. Sci. Rep. 2020;10:8646. doi: 10.1038/s41598-020-65490-3. PubMed DOI PMC

Vouloumanos A., Werker J.F. Listening to language at birth: evidence for a bias for speech in neonates. Dev. Sci. 2007;10:159–164. PubMed

Wanrooij K., Boersma P., Van Zuijen T. Fast phonetic learning occurs already in 2-to-3-month old infants: An ERP study. Front. Psychol. 2014;5:77. PubMed PMC

Weikum W.M., Oberlander T.F., Hensch T.K., Werker J.F. Prenatal exposure to antidepressants and depressed maternal mood alter trajectory of infant speech perception. Proc. Natl. Acad. Sci. U.S.A. 2012;109:17221–17227. PubMed PMC

Winkler I., Czigler I. Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations. Int. J. Psychophysiol. 2012;83:132–143. PubMed

Ylinen S., Shestakova A., Huotilainen M., Alku P., Näätänen R. Mismatch negativity (MMN) elicited by changes in phoneme length: a crosslinguistic study. Brain Res. 2006;1072:175–185. PubMed

Zhao T., Moon C., Lagercrantz H., Kuhl P.K. Prenatal motherese? Newborn speech perception may be enhanced by having a young sibling. Psi Chi J. Undergrad. Res. 2011;16:90–94. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...