• This record comes from PubMed

Neural Processing of Spectral and Durational Changes in Speech and Non-speech Stimuli: An MMN Study With Czech Adults

. 2021 ; 15 () : 643655. [epub] 20210809

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Neural discrimination of auditory contrasts is usually studied via the mismatch negativity (MMN) component of the event-related potentials (ERPs). In the processing of speech contrasts, the magnitude of MMN is determined by both the acoustic as well as the phonological distance between stimuli. Also, the MMN can be modulated by the order in which the stimuli are presented, thus indexing perceptual asymmetries in speech sound processing. Here we assessed the MMN elicited by two types of phonological contrasts, namely vowel quality and vowel length, assuming that both will elicit a comparably strong MMN as both are phonemic in the listeners' native language (Czech) and perceptually salient. Furthermore, we tested whether these phonemic contrasts are processed asymmetrically, and whether the asymmetries are acoustically or linguistically conditioned. The MMN elicited by the spectral change between /a/ and /ε/ was comparable to the MMN elicited by the durational change between /ε/ and /ε:/, suggesting that both types of contrasts are perceptually important for Czech listeners. The spectral change in vowels yielded an asymmetrical pattern manifested by a larger MMN response to the change from /ε/ to /a/ than from /a/ to /ε/. The lack of such an asymmetry in the MMN to the same spectral change in comparable non-speech stimuli spoke against an acoustically-based explanation, indicating that it may instead have been the phonological properties of the vowels that triggered the asymmetry. The potential phonological origins of the asymmetry are discussed within the featurally underspecified lexicon (FUL) framework, and conclusions are drawn about the perceptual relevance of the place and height features for the Czech /ε/-/a/ contrast.

See more in PubMed

Bates D., Mächler M., Bolker B., Walker S. (2015). Fitting Linear Mixed-Effects Models Using lme4. J. Statist. Software 67 1–48. 10.18637/jss.v067.i01 DOI

Boersma P., Weenink D. (1992–2020). Praat: Doing Phonetics by Computer. Available online at: http://www.praat.org (accessed date 22 November, 2018).

Chládková K., Escudero P., Lipski S. C. (2013). Preattentive sensitivity to vowel duration reveals native phonology and predicts learning of second-language sounds. Brain Lang. 126 243–252. 10.1016/j.bandl.2013.05.020 PubMed DOI

Chládková K., Urbanec J., Skálová S., Kremláček J. (under review). Newborns’ neural processing of native vowels. Manuscript Under Rev. PubMed PMC

Cooper R. W., Atkinson R. A., Clark R. A., Michie P. T. (2013). Event-related potentials reveal modelling of auditory repetition in the brain. Internat. J. Psychophysiol. 88 74–81. 10.1016/j.ijpsycho.2013.02.003 PubMed DOI

Cummings A., Madden J., Hefta K. (2017). Converging evidence for [coronal] underspecification in English-speaking adults. J. Neuroling. 44 147–162. 10.1016/j.jneuroling.2017.05.003 PubMed DOI PMC

De Jonge M. J., Boersma P. (2015). French high-mid vowels are underspecified for height. in Proceedings of the 18th International Congress of Phonetic Sciences (Glasgow: The University of Glasgow; ).

Delorme A., Makeig S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134 9–12. 10.1016/j.jneumeth.2003.10.009 PubMed DOI

Eulitz C., Lahiri A. (2004). Neurobiological evidence for abstract phonological representations in the mental lexicon during speech recognition. J. Cogn. Neurosci. 16 577–583. 10.1162/089892904323057308 PubMed DOI

Garrido M. I., Friston K. J., Kiebel S. J., Stephan K. E., Baldeweg T., Kilner J. M. (2008). The functional anatomy of the MMN: a DCM study of the roving paradigm. Neuroimage 42 936–944. 10.1016/j.neuroimage.2008.05.018 PubMed DOI PMC

Goudbeek M., Swingley D., Smits R. (2009). Supervised and Unsupervised Learning of Multidimensional Acoustic Categories. Journal of Experimental Psychology: Human Perception and Performance 35 1913–1933. 10.1037/a0015781 PubMed DOI PMC

Green P., MacLeod C. J. (2016). SIMR: an R package for power analysis of generalized linear mixed models by simulation. Methods Ecol. Evol. 7 493–498. 10.1111/2041-210X.12504 DOI

Haenschel C., Vernon D. J., Dwivedi P., Gruzelier J. H., Baldeweg T. (2005). Event-related brain potential correlates of human auditory sensory memory-trace formation. J. Neurosci. 25 10494–10501. 10.1523/jneurosci.1227-05.2005 PubMed DOI PMC

Harris J., Lindsey G. (1995). “The elements of phonological representation,” in Frontiers of phonology: atoms, structures, derivations, eds Durand J., Katamba F. (Harlow: Longman; ), 34–79.

Hisagi M., Shafer V. L., Strange W., Sussman E. S. (2010). Perception of a Japanese vowel length contrast by Japanese and American English listeners: behavioral and electrophysiological measures. Brain Res. 1360 89–105. 10.1016/j.brainres.2010.08.092 PubMed DOI PMC

Højlund A., Line Gebauer L., McGregor W. B., Wallentin M. (2019). Context and perceptual asymmetry effects on the mismatch negativity (MMNm) to speech sounds: an MEG study. Lang. Cogn. Neurosci. 34 1–16. 10.1080/23273798.2019.1572204 DOI

Johnson K. (2015). Vowel Perception Asymmetry in Auditory and Phonemic Listening. UC Berk. PhonLab Ann. Rep. 2015:11.

Kewley-Port D. (2001). Vowel formant discrimination II: Effects of stimulus uncertainty, consonantal context, and training. J. Acoust. Soc. Am. 110 2141–2155. 10.1121/1.1400737 PubMed DOI

Kirmse U., Ylinen S., Tervaniemi M., Vainio M., Schröger E., Jacobsen T. (2008). Modulation of the mismatch negativity (MMN) to vowel duration changes in native speakers of Finnish and German as a result of language experience. Internat. J. Psychophysiol. 67 131–143. 10.1016/j.ijpsycho.2007.10.012 PubMed DOI

Kuznetsova A., Brockhoff P. B., Christensen R. H. B. (2017). LmerTest Package: Tests in Linear Mixed Effects Models. J. Statist. Software 82 1–26. 10.18637/jss.v082.i13 DOI

Lahiri A., Reetz H. (2002). Underspecified recognition. Lab. Phonol. 7 637–675. 10.1515/9783110197105.2.637 DOI

Lahiri A., Reetz H. (2010). Distinctive features: Phonological underspecification in processing. J. Phonet. 38 44–59. 10.1016/j.wocn.2010.01.002 DOI

Lipski S. C., Lahiri A., Eulitz C. (2007). Differential height specification in front vowels for German speakers and Turkish-German bilinguals: an electroencephalographic study. in Proceedings of the International Congress of Phonetic Sciences XVI, 809–812 (Saarbrücken).

Lüdecke D. (2018). ggeffects: Tidy Data Frames of Marginal Effects from Regression Models. J. Open Sour. Software 3:772. 10.21105/joss.00772 DOI

Näätänen R., Lehtokoski A., Lennes M., Cheour M., Huotilainen M., Iivonen A., et al. (1997). Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature 385 432–434. 10.1038/385432a0 PubMed DOI

Näätänen R., Pakarinen S., Rinne T., Takegata R. (2004). The mismatch negativity (MMN): towards the optimal paradigm. Clin. Neurophysiol. 115 140–144. 10.1016/j.clinph.2003.04.001 PubMed DOI

Nooteboom S. G., Doodeman G. J. N. (1980). Production and perception of vowel length in spoken sentences. J. Acoust. Soc. Am. 67 276–287. 10.1121/1.383737 PubMed DOI

Paillereau N., Chládková K. (2019). Spectral and temporal characteristics of Czech vowels in spontaneous speech. AUC Philologica 2019:19. 10.14712/24646830.2019.19 DOI

Paillereau N., Podlipský V. J., Šimáčková Š, Smolík F., Oceláková Z., Chládková K. (2021). Perceptual sensitivity to vowel quality and vowel length in the first year of life. JASA Exp. Lett. 1:025202. 10.1121/10.0003369 PubMed DOI

Palková Z. (1994). Fonetika a fonologie češtiny. Prague: Karolinum.

Phillips C., Pellathy T., Marantz A., Yellin E., Wexler K., Poeppel D., et al. (2000). Auditory cortex accesses phonological categories: an MEG mismatch study. J. Cogn. Neurosci. 12 1038–1055. 10.1162/08989290051137567 PubMed DOI

Podlipský V. J., Chládková K., Šimáčková Š. (2019). Spectrum as a perceptual cue to vowel length in Czech, a quantity language. J. Acoust. Soc. Am. 146 EL352–EL357. PubMed

Polka L., Bohn O. S. (2003). Asymmetries in vowel perception. Speech Comm. 41 221–231. 10.1016/S0167-6393(02)00105-X DOI

Polka L., Bohn O. S. (2011). Natural Referent Vowel (NRV) framework: An emerging view of early phonetic development. J. Phonet. 39 467–478. 10.1016/j.wocn.2010.08.007 DOI

R Core Team. (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna: R Core Team.

Repp B. H., Crowder R. G. (1990). Stimulus order effects in vowel discrimination. J. Acoust. Soc. Am. 88 2080–2090. 10.1121/1.400105 PubMed DOI

Rosch E. (1975). Cognitive reference points. Cogn. Psychol. 7 532–547. 10.1016/0010-0285(75)90021-3 DOI

Scharinger M., Herrmann B., Nierhaus T., Obleser J. (2014). Simultaneous EEG-fMRI brain signatures of auditory cue utilization. Front. Neurosci. 8:137. 10.3389/fnins.2014.00137 PubMed DOI PMC

Scharinger M., Monahan P. J., Idsardi W. J. (2012). Asymmetries in the Processing of Vowel Height. J. Speech Lang. Hear. Res. 55 903–918. 10.1044/1092-4388(2011/11-0065) PubMed DOI

Scharinger M., Monahan P. J., Idsardi W. J. (2016). Linguistic category structure influences early auditory processing: Converging evidence from mismatch responses and cortical oscillations. NeuroImage 128 293–301. 10.1016/j.neuroimage.2016.01.003 PubMed DOI PMC

Schluter K., Politzer-Ahles S., Almeida D. (2016). No place for /h/: an ERP investigation of English fricative place features. Lang. Cogn. Neurosci. 31 728–740. 10.1080/23273798.2016.1151058 PubMed DOI PMC

Schwartz J.-L., Abry C., Boë L.-J., Vallée N. (2005). The dispersion-focalization theory of sound systems. J. Acoust. Soc. Am. 117:4. 10.1121/1.4786487 DOI

Skarnitzl R., Volín J. (2012). Referenční hodnoty vokalických formantů pro mladé dospělé mluvčí standardní češtiny. (Reference values of vowel formants of young adult speakers of standard Czech.). Akustické listy 18 7–11.

Skarnitzl R., Šturm P., Volín J. (2016). Zvuková báze øečové komunikace. Prague: Karolinum.

Timm J., Weise A., Grimm S., Schröger E. (2011). An asymmetry in the automatic detection of the presence or absence of a frequency modulation within a tone: a mismatch negativity study. Front. Psychol. 2:189. 10.3389/fpsyg.2011.00189 PubMed DOI PMC

Tversky A., Gati I. (1978). “Studies of similarity,” in Cognition and Categorization, eds Rosch E., Lloyd B. B. (Lawrence: Erlbaum; ).

Wanrooij K., Boersma P., van Zuijen T. L. (2014). Distributional Vowel Training Is Less Effective for Adults than for Infants. A Study Using the Mismatch Response. PLoS One 9:e109806. 10.1371/journal.pone.0109806 PubMed DOI PMC

Werker J. F., Logan J. S. (1985). Cross-language evidence for three factors in speech perception. Percept. Psychophy. 37 35–44. 10.3758/bf03207136 PubMed DOI

Ylinen S., Huotilainen M., Näätänen R. (2005). Phoneme quality and quantity are processed independently in the human brain. Neuroreport 16 1857–1860. 10.1097/01.wnr.0000185959.11465.9b PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...