Neural processing of speech sounds at premature and term birth: ERPs and MMR between 32 and 42 weeks of gestation

. 2024 Dec ; 70 () : 101444. [epub] 20240910

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39332108
Odkazy

PubMed 39332108
PubMed Central PMC11470172
DOI 10.1016/j.dcn.2024.101444
PII: S1878-9293(24)00105-1
Knihovny.cz E-zdroje

Prenatal listening experience reportedly modulates how humans process speech at birth, but little is known about how speech perception develops throughout the perinatal period. The present experiment assessed the neural event-related potentials (ERP) and mismatch responses (MMR) to native vowels in 99 neonates born between 32 and 42 weeks of gestation. The vowels elicited reliable ERPs in newborns whose gestational age at time of experiment was at least 36 weeks and 1 day (36 + 1). The ERPs reflected spectral distinctions between vowel onsets from age 36 weeks + 6 days and durational distinctions at vowel offsets from age 37 weeks + 6 days. Starting at age 40 + 4, there was evidence of neural discrimination of vowel length, indexed by a negative MMR response. The present findings extend our understanding of the earliest stages of speech perception development in that they pinpoint the ages at which the cortex reliably responds to the phonetic characteristics of individual speech sounds and discriminates a native phoneme contrast. The age at which the brain reliably differentiates vowel onsets coincides with what is considered term age in many countries (37 weeks + 0 days of gestational age). Future studies should investigate to what extent the perinatal maturation of the cortical responses to speech sounds is modulated by the ambient language.

Zobrazit více v PubMed

Abboub N., Nazzi T., Gervain J. Prosodic grouping at birth. Brain Lang. 2016;162:46–59. PubMed

Baltzell L.S., Billings C.J. Sensitivity of offset and onset cortical auditory evoked potentials to signals in noise. Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. 2014;125(2):370. PubMed PMC

Bates D., Mächler M., Bolker B., Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67(1):1–48.

Bisiacchi P.S., Mento G., Suppiej A. Cortical auditory processing in preterm newborns: an ERP study. Biol. Psychol. 2009;82(2):176–185. PubMed

Boersma, P., Weenink, D., 2024. Praat: doing phonetics by computer [Computer program]. Version 6.4.05, retrieved 27 January 2024 from 〈http://www.praat.org/〉.

Cheour M., Martynova O., Näätänen R., Erkkola R., Sillanpää M., Kero P., Hämäläinen H., et al. Speech sounds learned by sleeping newborns. Nature. 2002;415(6872):599–600. PubMed

Chládková, K., Černá, M., Paillereau, N., Skarnitzl, R., Oceláková, Z., 2019. Prenatal infant-directed speech: vowels and voice quality. In: Proceedings of the 19th ICPhS. Melbourne, pp. 1525–9.

Chládková K., Urbanec J., Skálová S., Kremláček J. Newborns’ neural processing of native vowels reveals directional asymmetries. Dev. Cogn. Neurosci. 2021;52 PubMed PMC

Daneshvarfard F., Abrishami Moghaddam H., Dehaene-Lambertz G., Kongolo G., Wallois F., Mahmoudzadeh M. Neurodevelopment and asymmetry of auditory-related responses to repetitive syllabic stimuli in preterm neonates based on frequency-domain analysis. Sci. Rep. 2019;9(1):10654. PubMed PMC

DeCasper A.J., Fifer W.P. Of human bonding: newborns prefer their mothers' voices. Science. 1980;208(4448):1174–1176. PubMed

DeCasper A.J., Lecanuet J.P., Busnel M.C., Granier-Deferre C., Maugeais R. Fetal reactions to recurrent maternal speech. Infant Behav. Dev. 1994;17(2):159–164.

Delorme A., Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods. 2004;134(1):9–21. PubMed

Eggermont J.J., Moore J.K. Human Auditory Development. Springer; New York, NY: 2012. Morphological and functional development of the auditory nervous system; pp. 61–105.

François C., Rodriguez-Fornells A., Teixidó M., Agut T., Bosch L. Attenuated brain responses to speech sounds in moderate preterm infants at term age. Dev. Sci. 2021;24(1) PubMed

Garrido M.I., Kilner J.M., Stephan K.E., Friston K.J. The mismatch negativity: a review of underlying mechanisms. Clin. Neurophysiol. 2009;120(3):453–463. PubMed PMC

Govaart, G.H., Dvořáková, M., Chládková, K., Männel, C., 2023. Infant Brain Responses in Auditory Perception: A Review of the Factors Influencing the Polarity of the Mismatch Response. Preprint at 〈https://osf.io/bx952/〉.

Granier-Deferre C., Ribeiro A., Jacquet A.Y., Bassereau S. Near-term fetuses process temporal features of speech. Dev. Sci. 2011;14(2):336–352. PubMed

Guzzetta F., Conti G., Mercuri E. Auditory processing in infancy: do early abnormalities predict disorders of language and cognitive development? Dev. Med. Child Neurol. 2011;53(12):1085–1090. PubMed

Hämäläinen J.A., Guttorm T.K., Richardson U., Alku P., Lyytinen H., Leppänen P.H. Auditory event-related potentials measured in kindergarten predict later reading problems at school age. Dev. Neuropsychol. 2013;38(8):550–566. PubMed

Kostilainen K., Partanen E., Mikkola K., Wikström V., Pakarinen S., Fellman V., Huotilainen M. Neural processing of changes in phonetic and emotional speech sounds and tones in preterm infants at term age. Int. J. Psychophysiol. 2020;148:111–118. PubMed

Kremláček J., Kreegipuu K., Tales A., Astikainen P., Poldver N., Näätänen R., Stefanics G. Visual mismatch negativity (vMMN): a review and meta-analysis of studies in psychiatric and neurological disorders. Cortex. 2016;80:76–112. PubMed

Kushnerenko E., Ceponiene R., Balan P., Fellman V., Huotilainen M., Näätänen R. Maturation of the auditory event-related potentials during the first year of life. Neuroreport. 2002;13(1):47–51. PubMed

Kuznetsova A., Brockhoff P.B., Christensen R.H.B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 2017;82(13):1–26.

Lecanuet J.P., Granier-Deferre C., DeCasper A.J., Maugeais R., Andrieu A.J., Busnel M.C. Fetal perception and discrimination of speech stimuli; demonstration by cardiac reactivity; preliminary results. Comptes Rendus de l′Acad. des Sci. Ser. III Sci. de la vie. 1987;305(5):161–164. PubMed

Lippé S., Kovacevic N., McIntosh R. Differential maturation of brain signal complexity in the human auditory and visual system. Front. Hum. Neurosci. 2009;3:792. PubMed PMC

Lüdecke D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 2018;3(26):772.

Mahajan Y., McArthur G. Maturation of auditory event-related potentials across adolescence. Hear. Res. 2012;294(1-2):82–94. PubMed

Mahmoudzadeh M., Dehaene-Lambertz G., Fournier M., Kongolo G., Goudjil S., Dubois J., Wallois F., et al. Syllabic discrimination in premature human infants prior to complete formation of cortical layers. Proc. Natl. Acad. Sci. 2013;110(12):4846–4851. PubMed PMC

Mahmoudzadeh M., Wallois F., Kongolo G., Goudjil S., Dehaene-Lambertz G. Functional maps at the onset of auditory inputs in very early preterm human neonates. Cereb. Cortex. 2017;27(4):2500–2512. PubMed

Maitre N.L., Lambert W.E., Aschner J.L., Key A.P. Cortical speech sound differentiation in the neonatal intensive care unit predicts cognitive and language development in the first 2 years of life. Dev. Med. Child Neurol. 2013;55(9):834–839. PubMed PMC

Mampe B., Friederici A.D., Christophe A., Wermke K. Newborns' cry melody is shaped by their native language. Curr. Biol. 2009;19(23):1994–1997. PubMed

May L., Gervain J., Carreiras M., Werker J.F. The specificity of the neural response to speech at birth. Dev. Sci. 2018;21(3) PubMed

Moon C., Lagercrantz H., Kuhl P.K. Language experienced in utero affects vowel perception after birth: a two-country study. Acta Paediatr. 2013;102(2):156–160. PubMed PMC

Paillereau N., Podlipský V.J., Šimáčková Š., Smolík F., Oceláková Z., Chládková K. Perceptual sensitivity to vowel quality and vowel length in the first year of life. JASA Express Lett. 2021;1:2. PubMed

Partanen E., Kujala T., Näätänen R., Liitola A., Sambeth A., Huotilainen M. Learning-induced neural plasticity of speech processing before birth. Proc. Natl. Acad. Sci. 2013;110(37):15145–15150. PubMed PMC

Pena M., Werker J.F., Dehaene-Lambertz G. Earlier speech exposure does not accelerate speech acquisition. J. Neurosci. 2012;32(33):11159–11163. PubMed PMC

Picton T.W., Taylor M.J. Electrophysiological evaluation of human brain development. Dev. Neuropsychol. 2007;31(3):249–278. PubMed

Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Savitzky-Golay Smoothing Filters. Cambridge University Press; Cambridge: 1992. Numerical recipes in C: the art of scientific computing; pp. 650–655.

R Core Team, 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 〈https://www.R-project.org/〉.

Richards D.S., Frentzen B., Gerhardt K.J., McCann M.E., Abrams R.M. Sound levels in the human uterus. Obstet. Gynecol. 1992;80(2):186–190. PubMed

Rotteveel J.J., De Graaf R., Stegeman D.F., Colon E.J., Visco Y.M. The maturation of the central auditory conduction in preterm infants until three months post term. V. The auditory cortical response (ACR) Hear. Res. 1987;27(1):95–110. PubMed

Ruhnau P., Herrmann B., Maess B., Schröger E. Maturation of obligatory auditory responses and their neural sources: evidence from EEG and MEG. Neuroimage. 2011;58(2):630–639. PubMed

Starr A., Amlie R.N., Martin W.H., Sanders S. Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics. 1977;60(6):831–839. PubMed

Stefanics G., Háden G., Huotilainen M., Balázs L., Sziller I., Beke A., Winkler I., et al. Auditory temporal grouping in newborn infants. Psychophysiology. 2007;44(5):697–702. PubMed

Suppiej A., Mento G., Zanardo V., Franzoi M., Battistella P.A., Ermani M., Bisiacchi P.S. Auditory processing during sleep in preterm infants: an event related potential study. Early Hum. Dev. 2010;86(12):807–812. PubMed

Svoboda, M., Chládková, K., Kocjančič Antolík, T., Paillereau, N., Slížková, P., 2023. Vowel length in infant-directed speech: the realisation of short-long contrasts in Czech IDS. In: Proceedings of the 20th ICPhS. Prague, pp. 2363–7.

Thiede A., Virtala P., Ala-Kurikka I., Partanen E., Huotilainen M., Mikkola K., Kujala T., et al. An extensive pattern of atypical neural speech-sound discrimination in newborns at risk of dyslexia. Clin. Neurophysiol. 2019;130(5):634–646. PubMed

Tomé D., Barbosa F., Nowak K., Marques-Teixeira J. The development of the N1 and N2 components in auditory oddball paradigms: a systematic review with narrative analysis and suggested normative values. J. Neural Transm. 2015;122:375–391. PubMed

Wakai R.T., Lutter W.J., Chen M., Maier M.M. On and off magnetic auditory evoked responses in early infancy: a possible marker of brain immaturity. Clin. Neurophysiol. 2007;118(7):1480–1487. PubMed PMC

Wanrooij K., Boersma P., Van Zuijen T.L. Fast phonetic learning occurs already in 2-to-3-month old infants: an ERP study. Front. Psychol. 2014;5:77. PubMed PMC

Wu Y.J., Hou X., Peng C., Yu W., Oppenheim G.M., Thierry G., Zhang D. Rapid learning of a phonemic discrimination in the first hours of life. Nat. Hum. Behav. 2022;6(8):1169–1179. PubMed PMC

Wunderlich J.L., Cone-Wesson B.K. Maturation of CAEP in infants and children: a review. Hear. Res. 2006;212(1-2):212–223. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...