Neural processing of speech sounds at premature and term birth: ERPs and MMR between 32 and 42 weeks of gestation
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
39332108
PubMed Central
PMC11470172
DOI
10.1016/j.dcn.2024.101444
PII: S1878-9293(24)00105-1
Knihovny.cz E-zdroje
- Klíčová slova
- Event-related potentials, Mismatch response, Newborn speech perception, Perinatal development, Premature birth, Vowels,
- MeSH
- akustická stimulace * metody MeSH
- elektroencefalografie * MeSH
- evokované potenciály fyziologie MeSH
- fonetika * MeSH
- gestační stáří * MeSH
- lidé MeSH
- novorozenec nedonošený fyziologie MeSH
- novorozenec MeSH
- percepce řeči * fyziologie MeSH
- sluchové evokované potenciály fyziologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Prenatal listening experience reportedly modulates how humans process speech at birth, but little is known about how speech perception develops throughout the perinatal period. The present experiment assessed the neural event-related potentials (ERP) and mismatch responses (MMR) to native vowels in 99 neonates born between 32 and 42 weeks of gestation. The vowels elicited reliable ERPs in newborns whose gestational age at time of experiment was at least 36 weeks and 1 day (36 + 1). The ERPs reflected spectral distinctions between vowel onsets from age 36 weeks + 6 days and durational distinctions at vowel offsets from age 37 weeks + 6 days. Starting at age 40 + 4, there was evidence of neural discrimination of vowel length, indexed by a negative MMR response. The present findings extend our understanding of the earliest stages of speech perception development in that they pinpoint the ages at which the cortex reliably responds to the phonetic characteristics of individual speech sounds and discriminates a native phoneme contrast. The age at which the brain reliably differentiates vowel onsets coincides with what is considered term age in many countries (37 weeks + 0 days of gestational age). Future studies should investigate to what extent the perinatal maturation of the cortical responses to speech sounds is modulated by the ambient language.
Zobrazit více v PubMed
Abboub N., Nazzi T., Gervain J. Prosodic grouping at birth. Brain Lang. 2016;162:46–59. PubMed
Baltzell L.S., Billings C.J. Sensitivity of offset and onset cortical auditory evoked potentials to signals in noise. Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. 2014;125(2):370. PubMed PMC
Bates D., Mächler M., Bolker B., Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67(1):1–48.
Bisiacchi P.S., Mento G., Suppiej A. Cortical auditory processing in preterm newborns: an ERP study. Biol. Psychol. 2009;82(2):176–185. PubMed
Boersma, P., Weenink, D., 2024. Praat: doing phonetics by computer [Computer program]. Version 6.4.05, retrieved 27 January 2024 from 〈http://www.praat.org/〉.
Cheour M., Martynova O., Näätänen R., Erkkola R., Sillanpää M., Kero P., Hämäläinen H., et al. Speech sounds learned by sleeping newborns. Nature. 2002;415(6872):599–600. PubMed
Chládková, K., Černá, M., Paillereau, N., Skarnitzl, R., Oceláková, Z., 2019. Prenatal infant-directed speech: vowels and voice quality. In: Proceedings of the 19th ICPhS. Melbourne, pp. 1525–9.
Chládková K., Urbanec J., Skálová S., Kremláček J. Newborns’ neural processing of native vowels reveals directional asymmetries. Dev. Cogn. Neurosci. 2021;52 PubMed PMC
Daneshvarfard F., Abrishami Moghaddam H., Dehaene-Lambertz G., Kongolo G., Wallois F., Mahmoudzadeh M. Neurodevelopment and asymmetry of auditory-related responses to repetitive syllabic stimuli in preterm neonates based on frequency-domain analysis. Sci. Rep. 2019;9(1):10654. PubMed PMC
DeCasper A.J., Fifer W.P. Of human bonding: newborns prefer their mothers' voices. Science. 1980;208(4448):1174–1176. PubMed
DeCasper A.J., Lecanuet J.P., Busnel M.C., Granier-Deferre C., Maugeais R. Fetal reactions to recurrent maternal speech. Infant Behav. Dev. 1994;17(2):159–164.
Delorme A., Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods. 2004;134(1):9–21. PubMed
Eggermont J.J., Moore J.K. Human Auditory Development. Springer; New York, NY: 2012. Morphological and functional development of the auditory nervous system; pp. 61–105.
François C., Rodriguez-Fornells A., Teixidó M., Agut T., Bosch L. Attenuated brain responses to speech sounds in moderate preterm infants at term age. Dev. Sci. 2021;24(1) PubMed
Garrido M.I., Kilner J.M., Stephan K.E., Friston K.J. The mismatch negativity: a review of underlying mechanisms. Clin. Neurophysiol. 2009;120(3):453–463. PubMed PMC
Govaart, G.H., Dvořáková, M., Chládková, K., Männel, C., 2023. Infant Brain Responses in Auditory Perception: A Review of the Factors Influencing the Polarity of the Mismatch Response. Preprint at 〈https://osf.io/bx952/〉.
Granier-Deferre C., Ribeiro A., Jacquet A.Y., Bassereau S. Near-term fetuses process temporal features of speech. Dev. Sci. 2011;14(2):336–352. PubMed
Guzzetta F., Conti G., Mercuri E. Auditory processing in infancy: do early abnormalities predict disorders of language and cognitive development? Dev. Med. Child Neurol. 2011;53(12):1085–1090. PubMed
Hämäläinen J.A., Guttorm T.K., Richardson U., Alku P., Lyytinen H., Leppänen P.H. Auditory event-related potentials measured in kindergarten predict later reading problems at school age. Dev. Neuropsychol. 2013;38(8):550–566. PubMed
Kostilainen K., Partanen E., Mikkola K., Wikström V., Pakarinen S., Fellman V., Huotilainen M. Neural processing of changes in phonetic and emotional speech sounds and tones in preterm infants at term age. Int. J. Psychophysiol. 2020;148:111–118. PubMed
Kremláček J., Kreegipuu K., Tales A., Astikainen P., Poldver N., Näätänen R., Stefanics G. Visual mismatch negativity (vMMN): a review and meta-analysis of studies in psychiatric and neurological disorders. Cortex. 2016;80:76–112. PubMed
Kushnerenko E., Ceponiene R., Balan P., Fellman V., Huotilainen M., Näätänen R. Maturation of the auditory event-related potentials during the first year of life. Neuroreport. 2002;13(1):47–51. PubMed
Kuznetsova A., Brockhoff P.B., Christensen R.H.B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 2017;82(13):1–26.
Lecanuet J.P., Granier-Deferre C., DeCasper A.J., Maugeais R., Andrieu A.J., Busnel M.C. Fetal perception and discrimination of speech stimuli; demonstration by cardiac reactivity; preliminary results. Comptes Rendus de l′Acad. des Sci. Ser. III Sci. de la vie. 1987;305(5):161–164. PubMed
Lippé S., Kovacevic N., McIntosh R. Differential maturation of brain signal complexity in the human auditory and visual system. Front. Hum. Neurosci. 2009;3:792. PubMed PMC
Lüdecke D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 2018;3(26):772.
Mahajan Y., McArthur G. Maturation of auditory event-related potentials across adolescence. Hear. Res. 2012;294(1-2):82–94. PubMed
Mahmoudzadeh M., Dehaene-Lambertz G., Fournier M., Kongolo G., Goudjil S., Dubois J., Wallois F., et al. Syllabic discrimination in premature human infants prior to complete formation of cortical layers. Proc. Natl. Acad. Sci. 2013;110(12):4846–4851. PubMed PMC
Mahmoudzadeh M., Wallois F., Kongolo G., Goudjil S., Dehaene-Lambertz G. Functional maps at the onset of auditory inputs in very early preterm human neonates. Cereb. Cortex. 2017;27(4):2500–2512. PubMed
Maitre N.L., Lambert W.E., Aschner J.L., Key A.P. Cortical speech sound differentiation in the neonatal intensive care unit predicts cognitive and language development in the first 2 years of life. Dev. Med. Child Neurol. 2013;55(9):834–839. PubMed PMC
Mampe B., Friederici A.D., Christophe A., Wermke K. Newborns' cry melody is shaped by their native language. Curr. Biol. 2009;19(23):1994–1997. PubMed
May L., Gervain J., Carreiras M., Werker J.F. The specificity of the neural response to speech at birth. Dev. Sci. 2018;21(3) PubMed
Moon C., Lagercrantz H., Kuhl P.K. Language experienced in utero affects vowel perception after birth: a two-country study. Acta Paediatr. 2013;102(2):156–160. PubMed PMC
Paillereau N., Podlipský V.J., Šimáčková Š., Smolík F., Oceláková Z., Chládková K. Perceptual sensitivity to vowel quality and vowel length in the first year of life. JASA Express Lett. 2021;1:2. PubMed
Partanen E., Kujala T., Näätänen R., Liitola A., Sambeth A., Huotilainen M. Learning-induced neural plasticity of speech processing before birth. Proc. Natl. Acad. Sci. 2013;110(37):15145–15150. PubMed PMC
Pena M., Werker J.F., Dehaene-Lambertz G. Earlier speech exposure does not accelerate speech acquisition. J. Neurosci. 2012;32(33):11159–11163. PubMed PMC
Picton T.W., Taylor M.J. Electrophysiological evaluation of human brain development. Dev. Neuropsychol. 2007;31(3):249–278. PubMed
Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Savitzky-Golay Smoothing Filters. Cambridge University Press; Cambridge: 1992. Numerical recipes in C: the art of scientific computing; pp. 650–655.
R Core Team, 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 〈https://www.R-project.org/〉.
Richards D.S., Frentzen B., Gerhardt K.J., McCann M.E., Abrams R.M. Sound levels in the human uterus. Obstet. Gynecol. 1992;80(2):186–190. PubMed
Rotteveel J.J., De Graaf R., Stegeman D.F., Colon E.J., Visco Y.M. The maturation of the central auditory conduction in preterm infants until three months post term. V. The auditory cortical response (ACR) Hear. Res. 1987;27(1):95–110. PubMed
Ruhnau P., Herrmann B., Maess B., Schröger E. Maturation of obligatory auditory responses and their neural sources: evidence from EEG and MEG. Neuroimage. 2011;58(2):630–639. PubMed
Starr A., Amlie R.N., Martin W.H., Sanders S. Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics. 1977;60(6):831–839. PubMed
Stefanics G., Háden G., Huotilainen M., Balázs L., Sziller I., Beke A., Winkler I., et al. Auditory temporal grouping in newborn infants. Psychophysiology. 2007;44(5):697–702. PubMed
Suppiej A., Mento G., Zanardo V., Franzoi M., Battistella P.A., Ermani M., Bisiacchi P.S. Auditory processing during sleep in preterm infants: an event related potential study. Early Hum. Dev. 2010;86(12):807–812. PubMed
Svoboda, M., Chládková, K., Kocjančič Antolík, T., Paillereau, N., Slížková, P., 2023. Vowel length in infant-directed speech: the realisation of short-long contrasts in Czech IDS. In: Proceedings of the 20th ICPhS. Prague, pp. 2363–7.
Thiede A., Virtala P., Ala-Kurikka I., Partanen E., Huotilainen M., Mikkola K., Kujala T., et al. An extensive pattern of atypical neural speech-sound discrimination in newborns at risk of dyslexia. Clin. Neurophysiol. 2019;130(5):634–646. PubMed
Tomé D., Barbosa F., Nowak K., Marques-Teixeira J. The development of the N1 and N2 components in auditory oddball paradigms: a systematic review with narrative analysis and suggested normative values. J. Neural Transm. 2015;122:375–391. PubMed
Wakai R.T., Lutter W.J., Chen M., Maier M.M. On and off magnetic auditory evoked responses in early infancy: a possible marker of brain immaturity. Clin. Neurophysiol. 2007;118(7):1480–1487. PubMed PMC
Wanrooij K., Boersma P., Van Zuijen T.L. Fast phonetic learning occurs already in 2-to-3-month old infants: an ERP study. Front. Psychol. 2014;5:77. PubMed PMC
Wu Y.J., Hou X., Peng C., Yu W., Oppenheim G.M., Thierry G., Zhang D. Rapid learning of a phonemic discrimination in the first hours of life. Nat. Hum. Behav. 2022;6(8):1169–1179. PubMed PMC
Wunderlich J.L., Cone-Wesson B.K. Maturation of CAEP in infants and children: a review. Hear. Res. 2006;212(1-2):212–223. PubMed