The Nanolithography Toolbox
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34434635
PubMed Central
PMC7339749
DOI
10.6028/jres.121.024
PII: jres.121.024
Knihovny.cz E-zdroje
- Klíčová slova
- CAD, lithography, nanofabrication, nanofluidic, nanophotonic, nanoplasmonic, nanoscale curved features, nanoscale design, nanoscale devices,
- Publikační typ
- časopisecké články MeSH
This article introduces in archival form the Nanolithography Toolbox, a platform-independent software package for scripted lithography pattern layout generation. The Center for Nanoscale Science and Technology (CNST) at the National Institute of Standards and Technology (NIST) developed the Nanolithography Toolbox to help users of the CNST NanoFab design devices with complex curves and aggressive critical dimensions. Using parameterized shapes as building blocks, the Nanolithography Toolbox allows users to rapidly design and layout nanoscale devices of arbitrary complexity through scripting and programming. The Toolbox offers many parameterized shapes, including structure libraries for micro- and nanoelectromechanical systems (MEMS and NEMS) and nanophotonic devices. Furthermore, the Toolbox allows users to precisely define the number of vertices for each shape or create vectorized shapes using Bezier curves. Parameterized control allows users to design smooth curves with complex shapes. The Toolbox is applicable to a broad range of design tasks in the fabrication of microscale and nanoscale devices.
Brno University of Technology Technicka 3058 10 CZ 616 00 Brno Czech Republic
Center for Nanoscale Materials Argonne National Laboratory Lemont IL 60439 USA
Department of Microsystems Northwestern Polytechnical University Xi'an P R China
Edico Genome La Jolla CA 92037 USA
Harvey Mudd College Claremont CA 91711 USA
National Institute of Standards and Technology Gaithersburg MD 20899 USA
Quattrone Nanofabrication Facility University of Pennsylvania Philadelphia PA 19104 USA
Roche Sequencing Solutions Pleasanton CA 94588 USA
Tel Aviv University School of Mechanical Engineering Ramat Aviv 69978 Tel Aviv Israel
University of Alaska Mechanical Engineering Anchorage AK 99508 USA
University of Maryland Maryland NanoCenter College Park MD 20740 USA
Worcester Polytechnic Institute Mechanical Engineering Worcester MA 01609 USA
Zobrazit více v PubMed
Isaacson M, Murray A (1981) Insitu Vaporization of Very Low-Molecular Weight Resists Using 1–2 Nm Diameter Electron-Beams. J Vac Sci Technol 19(4):1117–1120. 10.1116/1.571180 DOI
Chou SY, Krauss PR (1997) Imprint lithography with sub-10 nm feature size and high throughput. Microelectronic Engineering 35(1):237–240. 10.1016/S0167-9317(96)00097-4 DOI
Guillorn MA, Carr DW, Tiberio RC, Greenbaum E, & Simpson ML (2000) Fabrication of dissimilar metal electrodes with nanometer interelectrode distance for molecular electronic device characterization. Journal of Vacuum Science & Technology B 18(3):1177–1181. 10.1116/1.591355 DOI
Yasin S, Hasko DG, Ahmed H (2001) Fabrication of <5 nm width lines in poly(methylmethacrylate) resist using a water:isopropyl alcohol developer and ultrasonically-assisted development. Appl Phys Lett 78(18):2760–2762. 10.1063/1.1369615 DOI
Word MJ, Adesida I, & Berger PR (2003) Nanometer-period gratings in hydrogen silsesquioxane fabricated by electron beam lithography. Journal of Vacuum Science & Technology B 21(6):L12–L15. 10.1116/1.1629711 DOI
An L, Zheng Y, Li K, Luo P, & Wu Y (2005) Nanometer metal line fabrication using a ZEP520∕50K PMMA bilayer resist by e-beam lithography. Journal of Vacuum Science & Technology B 23(4):1603–1606. 10.1116/1.1978893 DOI
Baek I-B, Yang J-H, Cho W-J, Ahn C-G, Im K, & Lee S (2005) Electron beam lithography patterning of sub-10nm line using hydrogen silsesquioxane for nanoscale device applications. Journal of Vacuum Science & Technology B 23(6):3120–3123. 10.1116/1.2132328 DOI
Chao W, Harteneck BD, Liddle JA, Anderson EH, & Attwood DT (2005) Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435(7046):1210–1213. 10.1038/nature03719 PubMed DOI
Grigorescu AE, van der Krogt MC, Hagen CW, & Kruit P (2007) 10 nm lines and spaces written in HSQ, using electron beam lithography. Microelectronic Engineering 84(5–8):822–824. 10.1016/j.mee.2007.01.022 DOI
Yang JKW & Berggren KK (2007) Using high-contrast salty development of hydrogen silsesquioxane for sub-10 nm half-pitch lithography. Journal of Vacuum Science & Technology B 25(6):2025–2029. 10.1116/1.2801881 DOI
Pease RF & Chou SY (2008) Lithography and Other Patterning Techniques for Future Electronics. Proc IEEE 96(2):248–270. 10.1109/JPROC.2007.911853 DOI
Manfrinato VR, Zhang LH, Su D, Duan HG, Hobbs RG, Stach EA, & Berggren KK (2013) Resolution Limits of Electron-Beam Lithography toward the Atomic Scale. Nano Lett 13(4):1555–1558. 10.1021/nl304715p PubMed DOI
JGDS - Java GDS Library. Available at http://www.skinni.com. Accessed October 17, 2016.
Chang THP (1975) Proximity effect in electron beam lithography. J Vac Sci Technol 12(6):1271–1275. 10.1116/1.568515 DOI
Grutter KE, Davanço MI, & Srinivasan K (2015) Slot-mode optomechanical crystals: a versatile platform for multimode optomechanics. Optica 2(11):994–1001. 10.1364/OPTICA.2.000994 PubMed DOI PMC
Zhang R, Ti C, Davanço MI, Ren Y, Aksyuk V, Liu Y, & Srinivasan K (2015) Integrated tuning fork nanocavity optomechanical transducers with high fMQM product and stress-engineered frequency tuning. Appl Phys Lett 107(13):131110 10.1063/1.4932201 DOI
Sapienza L, Davanco M, Badolato A, & Srinivasan K (2015) Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat Commun 6(7833). 10.1038/ncomms8833 PubMed DOI PMC
Li Q, Briles TC, Westly D, Stone J, Ilic R, Diddams S, Papp S, & Srinivasan K (2015) Octave-spanning microcavity Kerr frequency combs with harmonic dispersive-wave emission on a silicon chip Frontiers in Optics 2015, (Optical Society of America; ), p FW6C.5. 10.1364/FIO.2015.FW6C.5 DOI
Li Q, Davanço M, & Srinivasan K (2016) Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat Photon 10(6):406–414. 10.1038/nphoton.2016.64 DOI
Drake TE, Briles TC, Li Q, Westly D, Ilic BR, Stone JR, Srinivasan K, Diddams SA, & Papp SB (2016) An Octave-Bandwidth Kerr Optical Frequency Comb on a Silicon Chip Conference on Lasers and Electro-Optics, (Optical Society of America; ), p STu3Q.4. 10.1364/CLEO_SI.2016.STu3Q.4 DOI
Balram KC, Davanço MI, Song JD, & Srinivasan K (2016) Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat Photon 10(5):346–352. 10.1038/nphoton.2016.46 PubMed DOI PMC
Ahrberg CD, Ilic BR, Manz A, & Neuzil P (2016) Handheld real-time PCR device. Lab on a Chip 16(3):586–592. 10.1039/C5LC01415H PubMed DOI PMC
Abrahamsson S, Ilic R, Wisniewski J, Mehl B, Yu L, Chen L, Davanco M, Oudjedi L, Fiche J-B, Hajj B, Jin X, Pulupa J, Cho C, Mir M, El Beheiry M, Darzacq X, Nollmann M, Dahan M, Wu C, Lionnet T, Liddle JA, & Bargmann CI (2016) Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging. Biomed Opt Express 7(3):855–869. 10.1364/BOE.7.000855 PubMed DOI PMC
Michels T, Aksyuk V (2016) Cavity optical transducer platform with integrated actuation for multiple sensing applications. In Proceedings, Solid State Sensor, Actuator and Microsystems Workshop, (Hilton Head Island, SC), pp 112–116.
Balram KC, Westly DA, Davanco M, Grutter KE, Li Q, Michels T, Ray CH, Yu L, Kasica RJ, Wallin CB, Gilbert IJ, Bryce BA, Simelgor G, Topolancik J, Lobontiu N, Liu Y, Neuzil P, Svatos V, Dill KA, Bertrand NA, Metzler MG, Lopez G, Czaplewski DA, Ocola L, Srinivasan KA, Stavis SM, Aksyuk VA, Liddle JA, Krylov S, Ilic BR (2016) The Nanolithography Toolbox (U.S. Department of Commerce, Washington, D.C.), NIST Handbook 160 10.6028/NIST.HB.160 PubMed DOI PMC
A low-cost picowatt calorimeter using a flexible printed circuit board
Microfluidics chips fabrication techniques comparison
An integrated microfluidic platform for nucleic acid testing
SPEED: an integrated, smartphone-operated, handheld digital PCR Device for point-of-care testing
Improvement of the signal to noise ratio for fluorescent imaging in microfluidic chips
Temperature non-uniformity detection on dPCR chips and temperature sensor calibration
Recent advances in lab-on-a-chip technologies for viral diagnosis
Infinite Selectivity of Wet SiO2 Etching in Respect to Al
IoT PCR for pandemic disease detection and its spread monitoring