Temperature non-uniformity detection on dPCR chips and temperature sensor calibration
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35425215
PubMed Central
PMC8979175
DOI
10.1039/d1ra08138a
PII: d1ra08138a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A microfluidic-based digital polymerase chain reaction (dPCR) chip requires precise temperature control as well as uniform temperature distribution to ensure PCR efficiency. However, measuring local temperature and its distribution over thousands of μL/nL-volume samples with minimum disturbance is challenging. Here, we present a method of non-contact localized temperature measurement for determination of the non-uniformity of temperature distribution over a dPCR chip. We filled the dPCR chip with a PCR solution containing amplified DNA fragments with a known melting temperature (T M). We then captured fluorescent images of the chip when it was heated from 70 to 99 °C, plotted the fluorescence intensity of each partition as a function of temperature, and calculated measured T M values from each partition. Finally, we created a 3-D map of the dPCR chip with the measured T M as the parameter. Even when the actual T M of the PCR solution was constant, the measured T M value varied between locations due to temperature non-uniformity in the dPCR chip. The method described here thereby characterized the distribution of temperature non-uniformity using a PCR solution with known T M as a temperature sensor. Among the non-contact temperature measurement methods, the proposed T M-based method can determine the temperature distribution within the chip, instead of only at the chip surface. The method also does not suffer from the undesirable photobleaching effect of fluorescein-based temperature measurement method. Temperature determination over the dPCR chip based on T M allowed us to calibrate the temperature sensor and improve the dPCR configuration and precision. This method is also suitable for determining the temperature uniformity of other microarray systems where there is no physical access to the system and thus direct temperature measurement is not possible.
Zobrazit více v PubMed
Wu J. Kodzius R. Cao W. Wen W. Microchim. Acta. 2014;181:1611–1631. doi: 10.1007/s00604-013-1140-2. DOI
Vogelstein B. Kinzler K. W. Proc. Natl. Acad. Sci. U. S. A. 1999;96:9236–9241. doi: 10.1073/pnas.96.16.9236. PubMed DOI PMC
Hindson C. M. Chevillet J. R. Briggs H. A. Gallichotte E. N. Ruf I. K. Hindson B. J. Vessella R. L. Tewari M. Nat. Methods. 2013;10:1003–1005. doi: 10.1038/nmeth.2633. PubMed DOI PMC
Sanders R. Huggett J. F. Bushell C. A. Cowen S. Scott D. J. Foy C. A. Anal. Chem. 2011;83:6474–6484. doi: 10.1021/ac103230c. PubMed DOI
Hudecova I. Clin. Biochem. 2015;48:948–956. doi: 10.1016/j.clinbiochem.2015.03.015. PubMed DOI
Gaňová M. Zhang H. Zhu H. Korabečná M. Neužil P. Biosens. Bioelectron. 2021;181:113155. doi: 10.1016/j.bios.2021.113155. PubMed DOI
Khandurina J. McKnight T. E. Jacobson S. C. Waters L. C. Foote R. S. Ramsey J. M. Anal. Chem. 2000;72:2995–3000. doi: 10.1021/ac991471a. PubMed DOI
Miralles V. Huerre A. Malloggi F. Jullien M.-C. Diagnostics. 2013;3:33–67. doi: 10.3390/diagnostics3010033. PubMed DOI PMC
Sreejith K. R. Ooi C. H. Jin J. Dao D. V. Nguyen N.-T. Lab on a Chip. 2018;18:3717–3732. doi: 10.1039/C8LC00990B. PubMed DOI
Ahrberg C. D. Choi J. W. Lee J. M. Lee K. G. Lee S. J. Manz A. Chung B. G. Lab Chip. 2020;20:3560–3568. doi: 10.1039/D0LC00788A. PubMed DOI
Mao C.-y., Chen R.-s., Chen Y.-s., 1st Electronic Systemintegration Technology Conference, 2006, vol. 2, pp. 1242–1248
Nagai H. Murakami Y. Yokoyama K. Tamiya E. Biosens. Bioelectron. 2001;16:1015–1019. doi: 10.1016/S0956-5663(01)00248-2. PubMed DOI
Hsieh T.-M. Luo C.-H. Huang F.-C. Wang J.-H. Chien L.-J. Lee G.-B. Sens. Actuators, B. 2008;130:848–856. doi: 10.1016/j.snb.2007.10.063. DOI
Quan P.-L. Sauzade M. Brouzes E. Sensors. 2018;18:1271. doi: 10.3390/s18041271. PubMed DOI PMC
Lagally E. T. Simpson P. C. Mathies R. A. Sens. Actuators, B. 2000;63:138–146. doi: 10.1016/S0925-4005(00)00350-6. DOI
Lee C.-Y. Lee G.-B. Liu H.-H. Huang F.-C. Int. J. Nonlinear Sci. Numer. Simul. 2002;3:215–218. doi: 10.1016/0925-4005(91)80008-8. DOI
Wang Y. Zhang Q. Tao R. Chen D. Xie J. Torun H. Dodd L. E. Luo J. Fu C. Vernon J. Sens. Actuators, A. 2021;318:112508. doi: 10.1016/j.sna.2020.112508. DOI
Selck D. A. Ismagilov R. F. PLoS One. 2016;11:e0163060. doi: 10.1371/journal.pone.0163060. PubMed DOI PMC
Gou T. Hu J. Wu W. Ding X. Zhou S. Fang W. Mu Y. Biosens. Bioelectron. 2018;120:144–152. doi: 10.1016/j.bios.2018.08.030. PubMed DOI
Yin H. Wu Z. Shi N. Qi Y. Jian X. Zhou L. Tong Y. Cheng Z. Zhao J. Mao H. Biosens. Bioelectron. 2021;188:113282. doi: 10.1016/j.bios.2021.113282. PubMed DOI PMC
Ho Kim Y. Yang I. Bae Y.-S. Park S.-R. BioTechniques. 2008;44:495–505. doi: 10.2144/000112705. PubMed DOI
Ni S. Bu Y. Zhu H. Neuzil P. Yobas L. J. Microelectromech. Syst. 2021;30:759–769.
Shen C. Gau C. Biosens. Bioelectron. 2004;20:103–114. doi: 10.1016/j.bios.2003.10.014. PubMed DOI
Li H. Zhang H. Xu Y. Tureckova A. Zahradník P. Chang H. Neuzil P. Sens. Actuators, B. 2019;283:677–684. doi: 10.1016/j.snb.2018.12.072. DOI
Khalid M. W. Whitehouse C. Ahmed R. Hassan M. U. Butt H. Adv. Opt. Mater. 2019;7:1801013. doi: 10.1002/adom.201801013. DOI
Neuzil P. Sun W. Karasek T. Manz A. Appl. Phys. Lett. 2015;106:024104. doi: 10.1063/1.4905851. DOI
Neuzil P. Cheng F. Soon J. B. W. Qian L. L. Reboud J. Lab Chip. 2010;10:2818–2821. doi: 10.1039/C005243D. PubMed DOI
Zhang H. Gaňová M. Yan Z. Chang H. Neužil P. ACS Omega. 2020;5:30267–30273. doi: 10.1021/acsomega.0c04766. PubMed DOI PMC
Ni S. Zhu H. Neuzil P. Yobas L. J. Microelectromech. Syst. 2020;29:1103–1105.
Balram K. C. Westly D. A. Davanco M. Grutter K. E. Li Q. Michels T. Ray C. H. Yu L. Kasica R. J. Wallin C. B. J. Res. Natl. Inst. Stand. Technol. 2016;121:464–476. doi: 10.6028/jres.121.024. PubMed DOI PMC
Gerdes L. Iwobi A. Busch U. Pecoraro S. Biomol. Detect. Quantif. 2016;7:9–20. doi: 10.1016/j.bdq.2015.12.003. PubMed DOI PMC
Tan C. Chen X. Wang F. Wang D. Cao Z. Zhu X. Lu C. Yang W. Gao N. Gao H. Guo Y. Zhu L. Analyst. 2019;144:2239–2247. doi: 10.1039/C8AN02018C. PubMed DOI
Exploring the Frontiers of Cell Temperature Measurement and Thermogenesis
An integrated microfluidic platform for nucleic acid testing
SPEED: an integrated, smartphone-operated, handheld digital PCR Device for point-of-care testing