Temperature non-uniformity detection on dPCR chips and temperature sensor calibration

. 2022 Jan 12 ; 12 (4) : 2375-2382. [epub] 20220117

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35425215

A microfluidic-based digital polymerase chain reaction (dPCR) chip requires precise temperature control as well as uniform temperature distribution to ensure PCR efficiency. However, measuring local temperature and its distribution over thousands of μL/nL-volume samples with minimum disturbance is challenging. Here, we present a method of non-contact localized temperature measurement for determination of the non-uniformity of temperature distribution over a dPCR chip. We filled the dPCR chip with a PCR solution containing amplified DNA fragments with a known melting temperature (T M). We then captured fluorescent images of the chip when it was heated from 70 to 99 °C, plotted the fluorescence intensity of each partition as a function of temperature, and calculated measured T M values from each partition. Finally, we created a 3-D map of the dPCR chip with the measured T M as the parameter. Even when the actual T M of the PCR solution was constant, the measured T M value varied between locations due to temperature non-uniformity in the dPCR chip. The method described here thereby characterized the distribution of temperature non-uniformity using a PCR solution with known T M as a temperature sensor. Among the non-contact temperature measurement methods, the proposed T M-based method can determine the temperature distribution within the chip, instead of only at the chip surface. The method also does not suffer from the undesirable photobleaching effect of fluorescein-based temperature measurement method. Temperature determination over the dPCR chip based on T M allowed us to calibrate the temperature sensor and improve the dPCR configuration and precision. This method is also suitable for determining the temperature uniformity of other microarray systems where there is no physical access to the system and thus direct temperature measurement is not possible.

Zobrazit více v PubMed

Wu J. Kodzius R. Cao W. Wen W. Microchim. Acta. 2014;181:1611–1631. doi: 10.1007/s00604-013-1140-2. DOI

Vogelstein B. Kinzler K. W. Proc. Natl. Acad. Sci. U. S. A. 1999;96:9236–9241. doi: 10.1073/pnas.96.16.9236. PubMed DOI PMC

Hindson C. M. Chevillet J. R. Briggs H. A. Gallichotte E. N. Ruf I. K. Hindson B. J. Vessella R. L. Tewari M. Nat. Methods. 2013;10:1003–1005. doi: 10.1038/nmeth.2633. PubMed DOI PMC

Sanders R. Huggett J. F. Bushell C. A. Cowen S. Scott D. J. Foy C. A. Anal. Chem. 2011;83:6474–6484. doi: 10.1021/ac103230c. PubMed DOI

Hudecova I. Clin. Biochem. 2015;48:948–956. doi: 10.1016/j.clinbiochem.2015.03.015. PubMed DOI

Gaňová M. Zhang H. Zhu H. Korabečná M. Neužil P. Biosens. Bioelectron. 2021;181:113155. doi: 10.1016/j.bios.2021.113155. PubMed DOI

Khandurina J. McKnight T. E. Jacobson S. C. Waters L. C. Foote R. S. Ramsey J. M. Anal. Chem. 2000;72:2995–3000. doi: 10.1021/ac991471a. PubMed DOI

Miralles V. Huerre A. Malloggi F. Jullien M.-C. Diagnostics. 2013;3:33–67. doi: 10.3390/diagnostics3010033. PubMed DOI PMC

Sreejith K. R. Ooi C. H. Jin J. Dao D. V. Nguyen N.-T. Lab on a Chip. 2018;18:3717–3732. doi: 10.1039/C8LC00990B. PubMed DOI

Ahrberg C. D. Choi J. W. Lee J. M. Lee K. G. Lee S. J. Manz A. Chung B. G. Lab Chip. 2020;20:3560–3568. doi: 10.1039/D0LC00788A. PubMed DOI

Mao C.-y., Chen R.-s., Chen Y.-s., 1st Electronic Systemintegration Technology Conference, 2006, vol. 2, pp. 1242–1248

Nagai H. Murakami Y. Yokoyama K. Tamiya E. Biosens. Bioelectron. 2001;16:1015–1019. doi: 10.1016/S0956-5663(01)00248-2. PubMed DOI

Hsieh T.-M. Luo C.-H. Huang F.-C. Wang J.-H. Chien L.-J. Lee G.-B. Sens. Actuators, B. 2008;130:848–856. doi: 10.1016/j.snb.2007.10.063. DOI

Quan P.-L. Sauzade M. Brouzes E. Sensors. 2018;18:1271. doi: 10.3390/s18041271. PubMed DOI PMC

Lagally E. T. Simpson P. C. Mathies R. A. Sens. Actuators, B. 2000;63:138–146. doi: 10.1016/S0925-4005(00)00350-6. DOI

Lee C.-Y. Lee G.-B. Liu H.-H. Huang F.-C. Int. J. Nonlinear Sci. Numer. Simul. 2002;3:215–218. doi: 10.1016/0925-4005(91)80008-8. DOI

Wang Y. Zhang Q. Tao R. Chen D. Xie J. Torun H. Dodd L. E. Luo J. Fu C. Vernon J. Sens. Actuators, A. 2021;318:112508. doi: 10.1016/j.sna.2020.112508. DOI

Selck D. A. Ismagilov R. F. PLoS One. 2016;11:e0163060. doi: 10.1371/journal.pone.0163060. PubMed DOI PMC

Gou T. Hu J. Wu W. Ding X. Zhou S. Fang W. Mu Y. Biosens. Bioelectron. 2018;120:144–152. doi: 10.1016/j.bios.2018.08.030. PubMed DOI

Yin H. Wu Z. Shi N. Qi Y. Jian X. Zhou L. Tong Y. Cheng Z. Zhao J. Mao H. Biosens. Bioelectron. 2021;188:113282. doi: 10.1016/j.bios.2021.113282. PubMed DOI PMC

Ho Kim Y. Yang I. Bae Y.-S. Park S.-R. BioTechniques. 2008;44:495–505. doi: 10.2144/000112705. PubMed DOI

Ni S. Bu Y. Zhu H. Neuzil P. Yobas L. J. Microelectromech. Syst. 2021;30:759–769.

Shen C. Gau C. Biosens. Bioelectron. 2004;20:103–114. doi: 10.1016/j.bios.2003.10.014. PubMed DOI

Li H. Zhang H. Xu Y. Tureckova A. Zahradník P. Chang H. Neuzil P. Sens. Actuators, B. 2019;283:677–684. doi: 10.1016/j.snb.2018.12.072. DOI

Khalid M. W. Whitehouse C. Ahmed R. Hassan M. U. Butt H. Adv. Opt. Mater. 2019;7:1801013. doi: 10.1002/adom.201801013. DOI

Neuzil P. Sun W. Karasek T. Manz A. Appl. Phys. Lett. 2015;106:024104. doi: 10.1063/1.4905851. DOI

Neuzil P. Cheng F. Soon J. B. W. Qian L. L. Reboud J. Lab Chip. 2010;10:2818–2821. doi: 10.1039/C005243D. PubMed DOI

Zhang H. Gaňová M. Yan Z. Chang H. Neužil P. ACS Omega. 2020;5:30267–30273. doi: 10.1021/acsomega.0c04766. PubMed DOI PMC

Ni S. Zhu H. Neuzil P. Yobas L. J. Microelectromech. Syst. 2020;29:1103–1105.

Balram K. C. Westly D. A. Davanco M. Grutter K. E. Li Q. Michels T. Ray C. H. Yu L. Kasica R. J. Wallin C. B. J. Res. Natl. Inst. Stand. Technol. 2016;121:464–476. doi: 10.6028/jres.121.024. PubMed DOI PMC

Gerdes L. Iwobi A. Busch U. Pecoraro S. Biomol. Detect. Quantif. 2016;7:9–20. doi: 10.1016/j.bdq.2015.12.003. PubMed DOI PMC

Tan C. Chen X. Wang F. Wang D. Cao Z. Zhu X. Lu C. Yang W. Gao N. Gao H. Guo Y. Zhu L. Analyst. 2019;144:2239–2247. doi: 10.1039/C8AN02018C. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...