PCR Multiplexing Based on a Single Fluorescent Channel Using Dynamic Melting Curve Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33251461
PubMed Central
PMC7689941
DOI
10.1021/acsomega.0c04766
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Since its invention in 1986, the polymerase chain reaction (PCR), has become a well-established method for the detection and amplification of deoxyribonucleic acid (DNA) with a specific sequence. Incorporating fluorescent probes, known as TaqMan probes, or DNA intercalating dyes, such as SYBR Green, into the PCR mixture allows real-time monitoring of the reaction progress and extraction of quantitative information. Previously reported real-time PCR product detection using intercalating dyes required melting curve analysis (MCA) to be performed following thermal cycling. Here, we propose a technique to perform dynamic MCA during each thermal cycle, based on a continuous fluorescence monitoring method, providing qualitative and quantitative sample information. We applied the proposed method in multiplexing detection of hepatitis B virus DNA and complementary DNA of human immunodeficiency virus as well as glyceraldehyde 3-phosphate dehydrogenase in different concentration ratios. We extracted the DNA melting curve and its derivative from each PCR cycle during the transition from the elongation to the denaturation temperature with a set heating rate of 0.8 K·s-1and then used the data to construct individual PCR amplification curves for each gene to determine the initial concentration of DNA in the sample. Our proposed method allows researchers to look inside the PCR in each thermal cycle, determining the PCR product specificity in real time instead of waiting until the end of the PCR. Additionally, the slow transition rate from elongation to denaturation provides a dynamic multiplexing assay, allowing the detection of at least three genes in real time.
Zobrazit více v PubMed
Rockstroh J. K. Influence of viral hepatitis on HIV infection. J. Hepatol. 2006, 44, S25–S27. 10.1016/j.jhep.2005.11.007. PubMed DOI
Barbosa J. R.; Colares J. K. B.; Flores G. L.; Cortes V. F.; Miguel J. C.; Portilho M. M.; Marques V. A.; Potsch D. V.; Brandão-Mello C. E.; Amendola-Pires M.; Pilotto J. H.; Lima D. M.; Lampe E.; Villar L. M. Performance of rapid diagnostic tests for detection of hepatitis B and C markers in HIV infected patients. J. Virol. Methods 2017, 248, 244–249. 10.1016/j.jviromet.2017.08.001. PubMed DOI
Kourtis A. P.; Bulterys M.; Hu D. J.; Jamieson D. J. HIV-HBV coinfection - a global challenge. N. Engl. J. Med. 2012, 366, 1749–1752. 10.1056/NEJMp1201796. PubMed DOI PMC
Frentz D.; Wensing A. M. J.; Albert J.; Paraskevis D.; Abecasis A. B.; Hamouda O.; Jørgensen L. B.; Kücherer C.; Struck D.; Schmit J.-C.; Åsjö B.; Balotta C.; Beshkov D.; Camacho R. J.; Clotet B.; Coughlan S.; De Wit S.; Griskevicius A.; Grossman Z.; Horban A.; Kolupajeva T.; Korn K.; Kostrikis L. G.; Liitsola K.; Linka M.; Nielsen C.; Otelea D.; Paredes R.; Poljak M.; Puchhammer-Stöckl E.; Sönnerborg A.; Stanekova D.; Stanojevic M.; Vandamme A.-M.; Boucher C. A. B.; Van de Vijver D. A. M. C.; Programme S. Limited cross-border infections in patients newly diagnosed with HIV in Europe. Retrovirology 2013, 10, 3610.1186/1742-4690-10-36. PubMed DOI PMC
Akmatov M. K.; Mikolajczyk R. T.; Krumkamp R.; Wörmann T.; Chu J. J.; Paetzelt G.; Reintjes R.; Pessler F.; Krämer A. Availability of indicators of migration in the surveillance of HIV, tuberculosis and hepatitis B in the European Union – a short note. J. Public Health 2012, 20, 483–486. 10.1007/s10389-011-0488-1. DOI
Schlagenhauf P.; Santos-O’Connor F.; Parola P. The practice of travel medicine in Europe. Clin. Microbiol. Infect. 2010, 16, 203–208. 10.1111/j.1469-0691.2009.03133.x. PubMed DOI
Mullis K.; Faloona F.; Scharf S.; Saiki R.; Horn G.; Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol. 1986, 51, 263–273. 10.1101/SQB.1986.051.01.032. PubMed DOI
Weis J. H.; Tan S. S.; Martin B. K.; Wittwer C. T. Detection of rare mRNAs via quantitative RT-PCR. Trends Genet. 1992, 8, 263–264. 10.1016/0168-9525(92)90242-V. PubMed DOI
Zhu H.; Zhang H.; Xu Y.; Laššáková S.; Korabečná M.; Neužil P. PCR past, present and future. Biotechniques 2020, 69, 0057.10.2144/btn-2020-0057. PubMed DOI PMC
Tang Y.-W.; Schmitz J. E.; Persing D. H.; Stratton C. W. Laboratory diagnosis of COVID-19: current issues and challenges. J. Clin. Microbiol. 2020, 58.10.1128/JCM.00512-20. PubMed DOI PMC
Wood G. S.; Rosnn M. T.; Andreas C. H.; Carol F. C.; Shaoyi L.; Rachaci O.; Hendrik V.; Marshall E. K.; Howard K.; Peter H.; Raymond L. B.; Jeffrey S. Detection of clonal T-Cell receptor γ gene rearrangements in early mycosis fungoides/sezary syndrome by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR/DGGE). J. Invest. Dermatol. 1994, 103, 34–41. 10.1111/1523-1747.ep12389114. PubMed DOI
Lagally E. T.; Emrich C. A.; Mathies R. A. Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis. Lab Chip 2001, 1, 102–107. 10.1039/b109031n. PubMed DOI
Navarro E.; Serrano-Heras G.; Castaño M. J.; Solera J. Real-time PCR detection chemistry. Clin. Chim. Acta 2015, 439, 231–250. 10.1016/j.cca.2014.10.017. PubMed DOI
Bassler H. A.; Flood S. J.; Livak K. J.; Marmaro J.; Knorr R.; Batt C. A. Use of a fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes. Appl. Environ. Microbiol. 1995, 61, 3724–3728. 10.1128/AEM.61.10.3724-3728.1995. PubMed DOI PMC
Wittwer C. T.; Rasmussen R. P.; Ririe K. M.. Rapid Polymerase Chain Reaction and Melting Analysis; Cambridge University Press: London, 2010; pp 48–69.
Robinson B. S.; Monis P. T.; Dobson P. J. Rapid, sensitive, and discriminating identification of Naegleria spp. by real-time PCR and melting-curve analysis. Appl. Environ. Microbiol. 2006, 72, 5857–5863. 10.1128/AEM.00113-06. PubMed DOI PMC
Zhou L.; Myers A. N.; Vandersteen J. G.; Wang L.; Wittwer C. T. Closed-tube genotyping with unlabeled oligonucleotide probes and a saturating DNA dye. Clin. Chem. 2004, 50, 1328–1335. 10.1373/clinchem.2004.034322. PubMed DOI
Reed G. H.; Wittwer C. T. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin. Chem. 2004, 50, 1748–1754. 10.1373/clinchem.2003.029751. PubMed DOI
Liew M.; Pryor R.; Palais R.; Meadows C.; Erali M.; Lyon E.; Wittwer C. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin. Chem. 2004, 50, 1156–1164. 10.1373/clinchem.2004.032136. PubMed DOI
Iwobi A.; Sebah D.; Kraemer I.; Losher C.; Fischer G.; Busch U.; Huber I. A multiplex real-time PCR method for the quantification of beef and pork fractions in minced meat. Food Chem. 2015, 169, 305–313. 10.1016/j.foodchem.2014.07.139. PubMed DOI
Ishige T.; Murata S.; Taniguchi T.; Miyabe A.; Kitamura K.; Kawasaki K.; Nishimura M.; Igari H.; Matsushita K. Highly sensitive detection of SARS-CoV-2 RNA by multiplex rRT-PCR for molecular diagnosis of COVID-19 by clinical laboratories. Clin. Chim. Acta 2020, 507, 139–142. 10.1016/j.cca.2020.04.023. PubMed DOI PMC
KrishnanNair Geetha D.; Sivaraman B.; Rammohan R.; Venkatapathy N.; Solai Ramatchandirane P. A SYBR Green based multiplex real-time PCR assay for rapid detection and differentiation of ocular bacterial pathogens. J. Microbiol. Methods 2020, 171, 10587510.1016/j.mimet.2020.105875. PubMed DOI
Ali M. E.; Razzak M. A.; Hamid S. B. A.; Rahman M. M.; Amin M. A.; Rashid N. R. A. Multiplex PCR assay for the detection of five meat species forbidden in Islamic foods. Food Chem. 2015, 177, 214–224. 10.1016/j.foodchem.2014.12.098. PubMed DOI
Suh S.-M.; Kim M.-J.; Kim H.-I.; Kim H.-J.; Kim H.-Y. A multiplex PCR assay combined with capillary electrophoresis for the simultaneous detection of tropomyosin allergens from oyster, mussel, abalone, and clam mollusk species. Food Chem. 2020, 317, 12645110.1016/j.foodchem.2020.126451. PubMed DOI
Ahrberg C. D.; Neužil P. Doubling throughput of a real-time PCR. Sci. Rep. 2015, 5, 1259510.1038/srep12595. PubMed DOI PMC
Gubala A. J. Multiplex real-time PCR detection of Vibrio cholerae. J. Microbiol. Methods 2006, 65, 278–293. 10.1016/j.mimet.2005.07.017. PubMed DOI
Harris E.; Roberts T. G.; Smith L.; Selle J.; Kramer L. D.; Valle S.; Sandoval E.; Balmaseda A. Typing of dengue viruses in clinical specimens and mosquitoes by single-tube multiplex reverse transcriptase PCR. J. Clin. Microbiol. 1998, 36, 2634–2639. 10.1128/JCM.36.9.2634-2639.1998. PubMed DOI PMC
Wittwer C. T.; Herrmann M. G.; Moss A. A.; Rasmussen R. P. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 1997, 22, 130–138. 10.2144/97221bi01. PubMed DOI
Ahrberg C. D.; Manz A.; Neužil P. Single fluorescence channel-based multiplex detection of avian influenza virus by quantitative PCR with intercalating dye. Sci. Rep. 2015, 5, 1147910.1038/srep11479. PubMed DOI PMC
Velez D. O.; Mack H.; Jupe J.; Hawker S.; Kulkarni N.; Hedayatnia B.; Zhang Y.; Lawrence S.; Fraley S. I. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling. Sci. Rep. 2017, 7, 4232610.1038/srep42326. PubMed DOI PMC
Moniri A.; Rodriguez-Manzano J.; Malpartida-Cardenas K.; Yu L.-S.; Didelot X.; Holmes A.; Georgiou P. Framework for dna quantification and outlier detection using multidimensional standard curves. Anal. Chem. 2019, 91, 7426–7434. 10.1021/acs.analchem.9b01466. PubMed DOI PMC
Rodriguez-Manzano J.; Moniri A.; Malpartida-Cardenas K.; Dronavalli J.; Davies F.; Holmes A.; Georgiou P. Simultaneous single-channel multiplexing and quantification of carbapenem-resistant genes using multidimensional standard curves. Anal. Chem. 2019, 91, 2013–2020. 10.1021/acs.analchem.8b04412. PubMed DOI PMC
Zhang H.; Li H.; Zhu H.; Pekárek J.; Podešva P.; Chang H.; Neužil P. Revealing the secrets of PCR. Sens. Actuators, B 2019, 298, 12692410.1016/j.snb.2019.126924. DOI
Markoulatos P.; Siafakas N.; Moncany M. Multiplex polymerase chain reaction: a practical approach. J. Clin. Lab. Anal. 2002, 16, 47–51. 10.1002/jcla.2058. PubMed DOI PMC
Zhu H.; Podesva P.; Liu X.; Zhang H.; Teply T.; Xu Y.; Chang H.; Qian A.; Lei Y.; Li Y.; Niculescu A.; Iliescu C.; Neuzil P. IoT PCR for pandemic disease detection and its spread monitoring. Sens. Actuators, B 2020, 303, 12709810.1016/j.snb.2019.127098. PubMed DOI PMC
Neuzil P.; Pipper J.; Hsieh T. M. Disposable real-time microPCR device: lab-on-a-chip at a low cost. Mol. BioSyst. 2006, 2, 292–298. 10.1039/b605957k. PubMed DOI
Mori R.; Wang Q.; Danenberg K. D.; Pinski J. K.; Danenberg P. V. Both β-actin and GAPDH are useful reference genes for normalization of quantitative RT-PCR in human FFPE tissue samples of prostate cancer. Prostate 2008, 68, 1555–1560. 10.1002/pros.20815. PubMed DOI
Zhu H.; Li H.; Zhang H.; Fohlerova Z.; Ni S.; Klempa J.; Gablech I.; Hubalek J.; Chang H.; Yobas L.; et al. Heat transfer time determination based on DNA melting curve analysis. Microfluid. Nanofluid. 2020, 24, 710.1007/s10404-019-2308-9. DOI
Neužil P.; Sun W.; Karásek T.; Manz A. Nanoliter-sized overheated reactor. Appl. Phys. Lett. 2015, 106, 02410410.1063/1.4905851. DOI
Fohlerova Z.; Zhu H.; Hubalek J.; Ni S.; Yobas L.; Podesva P.; Otahal A.; Neuzil P. Rapid characterization of biomolecules’ thermal stability in a segmented flow-through optofluidic microsystem. Sci. Rep. 2020, 10, 692510.1038/s41598-020-63620-5. PubMed DOI PMC
Neuzil P.; Cheng F.; Soon J. B. W.; Qian L. L.; Reboud J. Non-contact fluorescent bleaching-independent method for temperature measurement in microfluidic systems based on DNA melting curves. Lab Chip 2010, 10, 2818–2821. 10.1039/c005243d. PubMed DOI