PCR Multiplexing Based on a Single Fluorescent Channel Using Dynamic Melting Curve Analysis

. 2020 Nov 24 ; 5 (46) : 30267-30273. [epub] 20201110

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33251461

Since its invention in 1986, the polymerase chain reaction (PCR), has become a well-established method for the detection and amplification of deoxyribonucleic acid (DNA) with a specific sequence. Incorporating fluorescent probes, known as TaqMan probes, or DNA intercalating dyes, such as SYBR Green, into the PCR mixture allows real-time monitoring of the reaction progress and extraction of quantitative information. Previously reported real-time PCR product detection using intercalating dyes required melting curve analysis (MCA) to be performed following thermal cycling. Here, we propose a technique to perform dynamic MCA during each thermal cycle, based on a continuous fluorescence monitoring method, providing qualitative and quantitative sample information. We applied the proposed method in multiplexing detection of hepatitis B virus DNA and complementary DNA of human immunodeficiency virus as well as glyceraldehyde 3-phosphate dehydrogenase in different concentration ratios. We extracted the DNA melting curve and its derivative from each PCR cycle during the transition from the elongation to the denaturation temperature with a set heating rate of 0.8 K·s-1and then used the data to construct individual PCR amplification curves for each gene to determine the initial concentration of DNA in the sample. Our proposed method allows researchers to look inside the PCR in each thermal cycle, determining the PCR product specificity in real time instead of waiting until the end of the PCR. Additionally, the slow transition rate from elongation to denaturation provides a dynamic multiplexing assay, allowing the detection of at least three genes in real time.

Zobrazit více v PubMed

Rockstroh J. K. Influence of viral hepatitis on HIV infection. J. Hepatol. 2006, 44, S25–S27. 10.1016/j.jhep.2005.11.007. PubMed DOI

Barbosa J. R.; Colares J. K. B.; Flores G. L.; Cortes V. F.; Miguel J. C.; Portilho M. M.; Marques V. A.; Potsch D. V.; Brandão-Mello C. E.; Amendola-Pires M.; Pilotto J. H.; Lima D. M.; Lampe E.; Villar L. M. Performance of rapid diagnostic tests for detection of hepatitis B and C markers in HIV infected patients. J. Virol. Methods 2017, 248, 244–249. 10.1016/j.jviromet.2017.08.001. PubMed DOI

Kourtis A. P.; Bulterys M.; Hu D. J.; Jamieson D. J. HIV-HBV coinfection - a global challenge. N. Engl. J. Med. 2012, 366, 1749–1752. 10.1056/NEJMp1201796. PubMed DOI PMC

Frentz D.; Wensing A. M. J.; Albert J.; Paraskevis D.; Abecasis A. B.; Hamouda O.; Jørgensen L. B.; Kücherer C.; Struck D.; Schmit J.-C.; Åsjö B.; Balotta C.; Beshkov D.; Camacho R. J.; Clotet B.; Coughlan S.; De Wit S.; Griskevicius A.; Grossman Z.; Horban A.; Kolupajeva T.; Korn K.; Kostrikis L. G.; Liitsola K.; Linka M.; Nielsen C.; Otelea D.; Paredes R.; Poljak M.; Puchhammer-Stöckl E.; Sönnerborg A.; Stanekova D.; Stanojevic M.; Vandamme A.-M.; Boucher C. A. B.; Van de Vijver D. A. M. C.; Programme S. Limited cross-border infections in patients newly diagnosed with HIV in Europe. Retrovirology 2013, 10, 3610.1186/1742-4690-10-36. PubMed DOI PMC

Akmatov M. K.; Mikolajczyk R. T.; Krumkamp R.; Wörmann T.; Chu J. J.; Paetzelt G.; Reintjes R.; Pessler F.; Krämer A. Availability of indicators of migration in the surveillance of HIV, tuberculosis and hepatitis B in the European Union – a short note. J. Public Health 2012, 20, 483–486. 10.1007/s10389-011-0488-1. DOI

Schlagenhauf P.; Santos-O’Connor F.; Parola P. The practice of travel medicine in Europe. Clin. Microbiol. Infect. 2010, 16, 203–208. 10.1111/j.1469-0691.2009.03133.x. PubMed DOI

Mullis K.; Faloona F.; Scharf S.; Saiki R.; Horn G.; Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol. 1986, 51, 263–273. 10.1101/SQB.1986.051.01.032. PubMed DOI

Weis J. H.; Tan S. S.; Martin B. K.; Wittwer C. T. Detection of rare mRNAs via quantitative RT-PCR. Trends Genet. 1992, 8, 263–264. 10.1016/0168-9525(92)90242-V. PubMed DOI

Zhu H.; Zhang H.; Xu Y.; Laššáková S.; Korabečná M.; Neužil P. PCR past, present and future. Biotechniques 2020, 69, 0057.10.2144/btn-2020-0057. PubMed DOI PMC

Tang Y.-W.; Schmitz J. E.; Persing D. H.; Stratton C. W. Laboratory diagnosis of COVID-19: current issues and challenges. J. Clin. Microbiol. 2020, 58.10.1128/JCM.00512-20. PubMed DOI PMC

Wood G. S.; Rosnn M. T.; Andreas C. H.; Carol F. C.; Shaoyi L.; Rachaci O.; Hendrik V.; Marshall E. K.; Howard K.; Peter H.; Raymond L. B.; Jeffrey S. Detection of clonal T-Cell receptor γ gene rearrangements in early mycosis fungoides/sezary syndrome by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR/DGGE). J. Invest. Dermatol. 1994, 103, 34–41. 10.1111/1523-1747.ep12389114. PubMed DOI

Lagally E. T.; Emrich C. A.; Mathies R. A. Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis. Lab Chip 2001, 1, 102–107. 10.1039/b109031n. PubMed DOI

Navarro E.; Serrano-Heras G.; Castaño M. J.; Solera J. Real-time PCR detection chemistry. Clin. Chim. Acta 2015, 439, 231–250. 10.1016/j.cca.2014.10.017. PubMed DOI

Bassler H. A.; Flood S. J.; Livak K. J.; Marmaro J.; Knorr R.; Batt C. A. Use of a fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes. Appl. Environ. Microbiol. 1995, 61, 3724–3728. 10.1128/AEM.61.10.3724-3728.1995. PubMed DOI PMC

Wittwer C. T.; Rasmussen R. P.; Ririe K. M.. Rapid Polymerase Chain Reaction and Melting Analysis; Cambridge University Press: London, 2010; pp 48–69.

Robinson B. S.; Monis P. T.; Dobson P. J. Rapid, sensitive, and discriminating identification of Naegleria spp. by real-time PCR and melting-curve analysis. Appl. Environ. Microbiol. 2006, 72, 5857–5863. 10.1128/AEM.00113-06. PubMed DOI PMC

Zhou L.; Myers A. N.; Vandersteen J. G.; Wang L.; Wittwer C. T. Closed-tube genotyping with unlabeled oligonucleotide probes and a saturating DNA dye. Clin. Chem. 2004, 50, 1328–1335. 10.1373/clinchem.2004.034322. PubMed DOI

Reed G. H.; Wittwer C. T. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin. Chem. 2004, 50, 1748–1754. 10.1373/clinchem.2003.029751. PubMed DOI

Liew M.; Pryor R.; Palais R.; Meadows C.; Erali M.; Lyon E.; Wittwer C. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin. Chem. 2004, 50, 1156–1164. 10.1373/clinchem.2004.032136. PubMed DOI

Iwobi A.; Sebah D.; Kraemer I.; Losher C.; Fischer G.; Busch U.; Huber I. A multiplex real-time PCR method for the quantification of beef and pork fractions in minced meat. Food Chem. 2015, 169, 305–313. 10.1016/j.foodchem.2014.07.139. PubMed DOI

Ishige T.; Murata S.; Taniguchi T.; Miyabe A.; Kitamura K.; Kawasaki K.; Nishimura M.; Igari H.; Matsushita K. Highly sensitive detection of SARS-CoV-2 RNA by multiplex rRT-PCR for molecular diagnosis of COVID-19 by clinical laboratories. Clin. Chim. Acta 2020, 507, 139–142. 10.1016/j.cca.2020.04.023. PubMed DOI PMC

KrishnanNair Geetha D.; Sivaraman B.; Rammohan R.; Venkatapathy N.; Solai Ramatchandirane P. A SYBR Green based multiplex real-time PCR assay for rapid detection and differentiation of ocular bacterial pathogens. J. Microbiol. Methods 2020, 171, 10587510.1016/j.mimet.2020.105875. PubMed DOI

Ali M. E.; Razzak M. A.; Hamid S. B. A.; Rahman M. M.; Amin M. A.; Rashid N. R. A. Multiplex PCR assay for the detection of five meat species forbidden in Islamic foods. Food Chem. 2015, 177, 214–224. 10.1016/j.foodchem.2014.12.098. PubMed DOI

Suh S.-M.; Kim M.-J.; Kim H.-I.; Kim H.-J.; Kim H.-Y. A multiplex PCR assay combined with capillary electrophoresis for the simultaneous detection of tropomyosin allergens from oyster, mussel, abalone, and clam mollusk species. Food Chem. 2020, 317, 12645110.1016/j.foodchem.2020.126451. PubMed DOI

Ahrberg C. D.; Neužil P. Doubling throughput of a real-time PCR. Sci. Rep. 2015, 5, 1259510.1038/srep12595. PubMed DOI PMC

Gubala A. J. Multiplex real-time PCR detection of Vibrio cholerae. J. Microbiol. Methods 2006, 65, 278–293. 10.1016/j.mimet.2005.07.017. PubMed DOI

Harris E.; Roberts T. G.; Smith L.; Selle J.; Kramer L. D.; Valle S.; Sandoval E.; Balmaseda A. Typing of dengue viruses in clinical specimens and mosquitoes by single-tube multiplex reverse transcriptase PCR. J. Clin. Microbiol. 1998, 36, 2634–2639. 10.1128/JCM.36.9.2634-2639.1998. PubMed DOI PMC

Wittwer C. T.; Herrmann M. G.; Moss A. A.; Rasmussen R. P. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 1997, 22, 130–138. 10.2144/97221bi01. PubMed DOI

Ahrberg C. D.; Manz A.; Neužil P. Single fluorescence channel-based multiplex detection of avian influenza virus by quantitative PCR with intercalating dye. Sci. Rep. 2015, 5, 1147910.1038/srep11479. PubMed DOI PMC

Velez D. O.; Mack H.; Jupe J.; Hawker S.; Kulkarni N.; Hedayatnia B.; Zhang Y.; Lawrence S.; Fraley S. I. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling. Sci. Rep. 2017, 7, 4232610.1038/srep42326. PubMed DOI PMC

Moniri A.; Rodriguez-Manzano J.; Malpartida-Cardenas K.; Yu L.-S.; Didelot X.; Holmes A.; Georgiou P. Framework for dna quantification and outlier detection using multidimensional standard curves. Anal. Chem. 2019, 91, 7426–7434. 10.1021/acs.analchem.9b01466. PubMed DOI PMC

Rodriguez-Manzano J.; Moniri A.; Malpartida-Cardenas K.; Dronavalli J.; Davies F.; Holmes A.; Georgiou P. Simultaneous single-channel multiplexing and quantification of carbapenem-resistant genes using multidimensional standard curves. Anal. Chem. 2019, 91, 2013–2020. 10.1021/acs.analchem.8b04412. PubMed DOI PMC

Zhang H.; Li H.; Zhu H.; Pekárek J.; Podešva P.; Chang H.; Neužil P. Revealing the secrets of PCR. Sens. Actuators, B 2019, 298, 12692410.1016/j.snb.2019.126924. DOI

Markoulatos P.; Siafakas N.; Moncany M. Multiplex polymerase chain reaction: a practical approach. J. Clin. Lab. Anal. 2002, 16, 47–51. 10.1002/jcla.2058. PubMed DOI PMC

Zhu H.; Podesva P.; Liu X.; Zhang H.; Teply T.; Xu Y.; Chang H.; Qian A.; Lei Y.; Li Y.; Niculescu A.; Iliescu C.; Neuzil P. IoT PCR for pandemic disease detection and its spread monitoring. Sens. Actuators, B 2020, 303, 12709810.1016/j.snb.2019.127098. PubMed DOI PMC

Neuzil P.; Pipper J.; Hsieh T. M. Disposable real-time microPCR device: lab-on-a-chip at a low cost. Mol. BioSyst. 2006, 2, 292–298. 10.1039/b605957k. PubMed DOI

Mori R.; Wang Q.; Danenberg K. D.; Pinski J. K.; Danenberg P. V. Both β-actin and GAPDH are useful reference genes for normalization of quantitative RT-PCR in human FFPE tissue samples of prostate cancer. Prostate 2008, 68, 1555–1560. 10.1002/pros.20815. PubMed DOI

Zhu H.; Li H.; Zhang H.; Fohlerova Z.; Ni S.; Klempa J.; Gablech I.; Hubalek J.; Chang H.; Yobas L.; et al. Heat transfer time determination based on DNA melting curve analysis. Microfluid. Nanofluid. 2020, 24, 710.1007/s10404-019-2308-9. DOI

Neužil P.; Sun W.; Karásek T.; Manz A. Nanoliter-sized overheated reactor. Appl. Phys. Lett. 2015, 106, 02410410.1063/1.4905851. DOI

Fohlerova Z.; Zhu H.; Hubalek J.; Ni S.; Yobas L.; Podesva P.; Otahal A.; Neuzil P. Rapid characterization of biomolecules’ thermal stability in a segmented flow-through optofluidic microsystem. Sci. Rep. 2020, 10, 692510.1038/s41598-020-63620-5. PubMed DOI PMC

Neuzil P.; Cheng F.; Soon J. B. W.; Qian L. L.; Reboud J. Non-contact fluorescent bleaching-independent method for temperature measurement in microfluidic systems based on DNA melting curves. Lab Chip 2010, 10, 2818–2821. 10.1039/c005243d. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Temperature non-uniformity detection on dPCR chips and temperature sensor calibration

. 2022 Jan 12 ; 12 (4) : 2375-2382. [epub] 20220117

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace