Single Fluorescence Channel-based Multiplex Detection of Avian Influenza Virus by Quantitative PCR with Intercalating Dye

. 2015 Jun 19 ; 5 () : 11479. [epub] 20150619

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26088868

Since its invention in 1985 the polymerase chain reaction (PCR) has become a well-established method for amplification and detection of segments of double-stranded DNA. Incorporation of fluorogenic probe or DNA intercalating dyes (such as SYBR Green) into the PCR mixture allowed real-time reaction monitoring and extraction of quantitative information (qPCR). Probes with different excitation spectra enable multiplex qPCR of several DNA segments using multi-channel optical detection systems. Here we show multiplex qPCR using an economical EvaGreen-based system with single optical channel detection. Previously reported non quantitative multiplex real-time PCR techniques based on intercalating dyes were conducted once the PCR is completed by performing melting curve analysis (MCA). The technique presented in this paper is both qualitative and quantitative as it provides information about the presence of multiple DNA strands as well as the number of starting copies in the tested sample. Besides important internal control, multiplex qPCR also allows detecting concentrations of more than one DNA strand within the same sample. Detection of the avian influenza virus H7N9 by PCR is a well established method. Multiplex qPCR greatly enhances its specificity as it is capable of distinguishing both haemagglutinin (HA) and neuraminidase (NA) genes as well as their ratio.

Erratum v

PubMed

Zobrazit více v PubMed

Saiki R. K. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985). PubMed

Saiki R. K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988). PubMed

Higuchi R., Fockler C., Dollinger G. & Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y) 11, 1026–1030 (1993). PubMed

Lee L. G., Connell C. R. & Bloch W. Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic acids research 21, 3761–3766 (1993). PubMed PMC

Kubista M. et al. The real-time polymerase chain reaction. Molecular aspects of medicine 27, 95–125, 10.1016/j.mam.2005.12.007 (2006). PubMed DOI

Cheng J., Shoffner M. A., Mitchelson K. R., Kricka L. J. & Wilding P. Analysis of ligase chain reaction products amplified in a silicon-glass chip using capillary electrophoresis. Journal of chromatography. A 732, 151–158 (1996). PubMed

Huang Q. et al. Multicolor combinatorial probe coding for real-time PCR. PloS one 6, e16033, 10.1371/journal.pone.0016033 (2011). PubMed DOI PMC

Fixman M. & Freire J. J. Theory of DNA melting curves. Biopolymers 16, 2693–2704, 10.1002/bip.1977.360161209 (1977). PubMed DOI

Andersson A. et al. Paired multiplex reverse-transcriptase polymerase chain reaction (PMRT-PCR) analysis as a rapid and accurate diagnostic tool for the detection of MLL fusion genes in hematologic malignancies. Leukemia 15, 1293–1300 (2001). PubMed

Gubala A. J. Multiplex real-time PCR detection of Vibrio cholerae. Journal of microbiological methods 65, 278–293, 10.1016/j.mimet.2005.07.017 (2006). PubMed DOI

Wittwer C. T., Herrmann M. G., Moss A. A. & Rasmussen R. P. Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques 22, 130–131, 134-138 (1997). PubMed

Ririe K. M., Rasmussen R. P. & Wittwer C. T. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analytical biochemistry 245, 154–160, 10.1006/abio.1996.9916 (1997). PubMed DOI

Neuzil P., Pipper J. & Hsieh T. M. Disposable real-time microPCR device: lab-on-a-chip at a low cost. Molecular bioSystems 2, 292–298, 10.1039/b605957k (2006). PubMed DOI

Neuzil P., Karasek K., Sun W.-X. & Manz A. Nanoliter-sized Overheated Reactor. Applied Physics Letters 106, 024104, 10.1063/1.4905851 (2015). DOI

Corman, V. M. E. M., Landt O., Bleicker T., Brünink S., Eschbach-Bludau M., Matrosovich M., Becker S., Drosten C. Specific detection by real-time reverse-transcription reaction assays of a novel avian influenza A(H7N9) strain associated with human spillover infections in China. Euro Surveill. 18 (2013). PubMed

Mao F., Leung W.-Y. & Xin X. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnology 7, 76 (2007). PubMed PMC

Pasay C. et al. High-resolution melt analysis for the detection of a mutation associated with permethrin resistance in a population of scabies mites. Medical and Veterinary Entomology 22, 82–88, 10.1111/j.1365-2915.2008.00716.x (2008). PubMed DOI

Neuzil P., Cheng F., Soon J. B., Qian L. L. & Reboud J. Non-contact fluorescent bleaching-independent method for temperature measurement in microfluidic systems based on DNA melting curves. Lab on a chip 10, 2818–2821, 10.1039/c005243d (2010). PubMed DOI

Pipper J. et al. Catching bird flu in a droplet. Nat Med 13, 1259–1263, 10.1038/Nm1634 (2007). PubMed DOI PMC

Pipper J., Zhang Y., Neuzil P. & Hsieh T. M. Clockwork PCR including sample preparation. Angew Chem Int Ed Engl 47, 3900–3904, 10.1002/anie.200705016 (2008). PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Determination of Advantages and Limitations of qPCR Duplexing in a Single Fluorescent Channel

. 2021 Aug 31 ; 6 (34) : 22292-22300. [epub] 20210819

PCR Multiplexing Based on a Single Fluorescent Channel Using Dynamic Melting Curve Analysis

. 2020 Nov 24 ; 5 (46) : 30267-30273. [epub] 20201110

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...