Single Fluorescence Channel-based Multiplex Detection of Avian Influenza Virus by Quantitative PCR with Intercalating Dye
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26088868
PubMed Central
PMC5155576
DOI
10.1038/srep11479
PII: srep11479
Knihovny.cz E-zdroje
- MeSH
- fluorescenční barviva * MeSH
- kvantitativní polymerázová řetězová reakce * MeSH
- multiplexová polymerázová řetězová reakce přístrojové vybavení metody MeSH
- ptačí chřipka u ptáků diagnóza virologie MeSH
- ptáci MeSH
- virus chřipky A klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluorescenční barviva * MeSH
Since its invention in 1985 the polymerase chain reaction (PCR) has become a well-established method for amplification and detection of segments of double-stranded DNA. Incorporation of fluorogenic probe or DNA intercalating dyes (such as SYBR Green) into the PCR mixture allowed real-time reaction monitoring and extraction of quantitative information (qPCR). Probes with different excitation spectra enable multiplex qPCR of several DNA segments using multi-channel optical detection systems. Here we show multiplex qPCR using an economical EvaGreen-based system with single optical channel detection. Previously reported non quantitative multiplex real-time PCR techniques based on intercalating dyes were conducted once the PCR is completed by performing melting curve analysis (MCA). The technique presented in this paper is both qualitative and quantitative as it provides information about the presence of multiple DNA strands as well as the number of starting copies in the tested sample. Besides important internal control, multiplex qPCR also allows detecting concentrations of more than one DNA strand within the same sample. Detection of the avian influenza virus H7N9 by PCR is a well established method. Multiplex qPCR greatly enhances its specificity as it is capable of distinguishing both haemagglutinin (HA) and neuraminidase (NA) genes as well as their ratio.
Zobrazit více v PubMed
Saiki R. K. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985). PubMed
Saiki R. K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988). PubMed
Higuchi R., Fockler C., Dollinger G. & Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y) 11, 1026–1030 (1993). PubMed
Lee L. G., Connell C. R. & Bloch W. Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic acids research 21, 3761–3766 (1993). PubMed PMC
Kubista M. et al. The real-time polymerase chain reaction. Molecular aspects of medicine 27, 95–125, 10.1016/j.mam.2005.12.007 (2006). PubMed DOI
Cheng J., Shoffner M. A., Mitchelson K. R., Kricka L. J. & Wilding P. Analysis of ligase chain reaction products amplified in a silicon-glass chip using capillary electrophoresis. Journal of chromatography. A 732, 151–158 (1996). PubMed
Huang Q. et al. Multicolor combinatorial probe coding for real-time PCR. PloS one 6, e16033, 10.1371/journal.pone.0016033 (2011). PubMed DOI PMC
Fixman M. & Freire J. J. Theory of DNA melting curves. Biopolymers 16, 2693–2704, 10.1002/bip.1977.360161209 (1977). PubMed DOI
Andersson A. et al. Paired multiplex reverse-transcriptase polymerase chain reaction (PMRT-PCR) analysis as a rapid and accurate diagnostic tool for the detection of MLL fusion genes in hematologic malignancies. Leukemia 15, 1293–1300 (2001). PubMed
Gubala A. J. Multiplex real-time PCR detection of Vibrio cholerae. Journal of microbiological methods 65, 278–293, 10.1016/j.mimet.2005.07.017 (2006). PubMed DOI
Wittwer C. T., Herrmann M. G., Moss A. A. & Rasmussen R. P. Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques 22, 130–131, 134-138 (1997). PubMed
Ririe K. M., Rasmussen R. P. & Wittwer C. T. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analytical biochemistry 245, 154–160, 10.1006/abio.1996.9916 (1997). PubMed DOI
Neuzil P., Pipper J. & Hsieh T. M. Disposable real-time microPCR device: lab-on-a-chip at a low cost. Molecular bioSystems 2, 292–298, 10.1039/b605957k (2006). PubMed DOI
Neuzil P., Karasek K., Sun W.-X. & Manz A. Nanoliter-sized Overheated Reactor. Applied Physics Letters 106, 024104, 10.1063/1.4905851 (2015). DOI
Corman, V. M. E. M., Landt O., Bleicker T., Brünink S., Eschbach-Bludau M., Matrosovich M., Becker S., Drosten C. Specific detection by real-time reverse-transcription reaction assays of a novel avian influenza A(H7N9) strain associated with human spillover infections in China. Euro Surveill. 18 (2013). PubMed
Mao F., Leung W.-Y. & Xin X. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnology 7, 76 (2007). PubMed PMC
Pasay C. et al. High-resolution melt analysis for the detection of a mutation associated with permethrin resistance in a population of scabies mites. Medical and Veterinary Entomology 22, 82–88, 10.1111/j.1365-2915.2008.00716.x (2008). PubMed DOI
Neuzil P., Cheng F., Soon J. B., Qian L. L. & Reboud J. Non-contact fluorescent bleaching-independent method for temperature measurement in microfluidic systems based on DNA melting curves. Lab on a chip 10, 2818–2821, 10.1039/c005243d (2010). PubMed DOI
Pipper J. et al. Catching bird flu in a droplet. Nat Med 13, 1259–1263, 10.1038/Nm1634 (2007). PubMed DOI PMC
Pipper J., Zhang Y., Neuzil P. & Hsieh T. M. Clockwork PCR including sample preparation. Angew Chem Int Ed Engl 47, 3900–3904, 10.1002/anie.200705016 (2008). PubMed DOI