Determination of Advantages and Limitations of qPCR Duplexing in a Single Fluorescent Channel
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34497918
PubMed Central
PMC8412922
DOI
10.1021/acsomega.1c02971
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Real-time (quantitative) polymerase chain reaction (qPCR) has been widely applied in molecular diagnostics due to its immense sensitivity and specificity. qPCR multiplexing, based either on fluorescent probes or intercalating dyes, greatly expanded PCR capability due to the concurrent amplification of several deoxyribonucleic acid sequences. However, probe-based multiplexing requires multiple fluorescent channels, while intercalating dye-based multiplexing needs primers to be designed for amplicons having different melting temperatures. Here, we report a single fluorescent channel-based qPCR duplexing method on a model containing the sequence of chromosomes 21 (Chr21) and 18 (Chr18). We combined nonspecific intercalating dye EvaGreen with a 6-carboxyfluorescein (FAM) probe specific to either Chr21 or Chr18. The copy number (cn) of the target linked to the FAM probe could be determined in the entire tested range from the denaturation curve, while the cn of the other one was determined from the difference between the denaturation and elongation curves. We recorded the amplitude of fluorescence at the end of denaturation and elongation steps, thus getting statistical data set to determine the limit of the proposed method in detail in terms of detectable concentration ratios of both targets. The proposed method eliminated the fluorescence overspilling that happened in probe-based qPCR multiplexing and determined the specificity of the PCR product via melting curve analysis. Additionally, we performed and verified our method using a commercial thermal cycler instead of a self-developed system, making it more generally applicable for researchers. This quantitative single-channel duplexing method is an economical substitute for a conventional rather expensive probe-based qPCR requiring different color probes and hardware capable of processing these fluorescent signals.
Zobrazit více v PubMed
Mullis K.; Faloona F.; Scharf S.; Saiki R.; Horn G.; Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol. 1986, 263–273. 10.1101/sqb.1986.051.01.032. PubMed DOI
Zhu H.; Zhang H.; Xu Y.; Laššáková S.; Korabečná M.; Neužil P. PCR past, present and future. BioTechniques 2020, 69, 317–325. 10.2144/btn-2020-0057. PubMed DOI PMC
Shu B.; Zhang C.; Xing D. Segmented continuous-flow multiplex polymerase chain reaction microfluidics for high-throughput and rapid foodborne pathogen detection. Anal. Chim. Acta 2014, 826, 51–60. 10.1016/j.aca.2014.04.017. PubMed DOI
Kubista M.; Andrade J. M.; Bengtsson M.; Forootan A.; Jonák J.; Lind K.; Sindelka R.; Sjöback R.; Sjögreen B.; Strömbom L.; Ståhlberg A.; Zoric N. The real-time polymerase chain reaction. Mol. Aspects Med. 2006, 27, 95–125. 10.1016/j.mam.2005.12.007. PubMed DOI
Vogelstein B.; Kinzler K. W. Digital PCR. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 9236–9241. 10.1073/pnas.96.16.9236. PubMed DOI PMC
Zhu H.; Fohlerová Z.; Pekárek J.; Basova E.; Neužil P. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens. Bioelectron. 2020, 153, 11204110.1016/j.bios.2020.112041. PubMed DOI PMC
Shoute L. C.; Loppnow G. R. Characterization of the binding interactions between EvaGreen dye and dsDNA. Phys. Chem. Chem. Phys. 2018, 20, 4772–4780. 10.1039/C7CP06058K. PubMed DOI
Lehmusvuori A.; Karhunen U.; Tapio A.-H.; Lamminmäki U.; Soukka T. High-performance closed-tube PCR based on switchable luminescence probes. Anal. Chim. Acta 2012, 731, 88–92. 10.1016/j.aca.2012.04.027. PubMed DOI
Zimmermann B.; Holzgreve W.; Wenzel F.; Hahn S. Novel real-time quantitative PCR test for trisomy 21. Clin. Chem. 2002, 48, 362–363. 10.1093/clinchem/48.2.362. PubMed DOI
Farzan V. M.; Kvach M. V.; Aparin I. O.; Kireev D. E.; Prikazchikova T. A.; Ustinov A. V.; Shmanai V. V.; Shipulin G. A.; Korshun V. A.; Zatsepin T. S. Novel homo Yin-Yang probes improve sensitivity in RT-qPCR detection of low copy HIV RNA. Talanta 2019, 194, 226–232. 10.1016/j.talanta.2018.10.043. PubMed DOI
Chamberlain J. S.; Gibbs R. A.; Rainer J. E.; Nguyen P. N.; Thomas C. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 1988, 16, 11141–11156. 10.1093/nar/16.23.11141. PubMed DOI PMC
Gaňová M.; Zhang H.; Zhu H.; Korabečná M.; Neužil P. Multiplexed digital polymerase chain reaction as a powerful diagnostic tool. Biosens. Bioelectron. 2021, 181, 11315510.1016/j.bios.2021.113155. PubMed DOI
DuVall J. A.; Le Roux D.; Thompson B. L.; Birch C.; Nelson D. A.; Li J.; Mills D. L.; Tsuei A.-c.; Ensenberger M. G.; Sprecher C.; Storts D. R.; Root B. E.; Landers J. P. Rapid multiplex DNA amplification on an inexpensive microdevice for human identification via short tandem repeat analysis. Anal. Chim. Acta 2017, 980, 41–49. 10.1016/j.aca.2017.04.051. PubMed DOI
Li Y.; Li Y.; Zheng B.; Qu L.; Li C. Determination of foodborne pathogenic bacteria by multiplex PCR-microchip capillary electrophoresis with genetic algorithm-support vector regression optimization. Anal. Chim. Acta 2009, 643, 100–107. 10.1016/j.aca.2009.04.006. PubMed DOI
Arnold L.; Alexiadis V.; watanaskul T.; Zarrabi V.; Poole J.; Singh V. Clinical validation of qPCR Target Selector assays using highly specific switch-blockers for rare mutation detection. J. Clin. Pathol. 2020, 73, 648–655. 10.1136/jclinpath-2019-206381. PubMed DOI
Emaus M. N.; Anderson J. L. Allelic discrimination between circulating tumor DNA fragments enabled by a multiplex-qPCR assay containing DNA-enriched magnetic ionic liquids. Anal. Chim. Acta 2020, 1124, 184–193. 10.1016/j.aca.2020.04.078. PubMed DOI
Muenchhoff M.; Mairhofer H.; Nitschko H.; Grzimek-Koschewa N.; Hoffmann D.; Berger A.; Rabenau H.; Widera M.; Ackermann N.; Konrad R.; et al. Multicentre comparison of quantitative PCR-based assays to detect SARS-CoV-2, Germany, March 2020. Eurosurveillance 2020, 25, 200105710.2807/1560-7917.ES.2020.25.24.2001057. PubMed DOI PMC
Cottenet G.; Blancpain C.; Sonnard V.; Chuah P. F. Two FAST multiplex real-time PCR reactions to assess the presence of genetically modified organisms in food. Food Chem. 2019, 274, 760–765. 10.1016/j.foodchem.2018.09.050. PubMed DOI
Pazourkova E.; Zednikova I.; Korabecna M.; Kralova J.; Pisacka M.; Novotna M.; Calda P.; Horinek A.. Optimization of diagnostic strategy for non-invasive cell-free foetal RHD determination from maternal plasma Vox Sang. 2021, 13099.10.1111/vox.13099 PubMed DOI
Suwannakhon N.; Pangeson T.; Seeratanachot T.; Mahingsa K.; Pingyod A.; Bumrungpakdee W.; Sanguansermsri T. Noninvasive prenatal screening test for compound heterozygous beta thalassemia using an amplification refractory mutation system real-time polymerase chain reaction technique. Hematol. Rep. 2019, 11, 812410.4081/hr.2019.8124. PubMed DOI PMC
Huggett J. F.; The dMIQE Group; Whale A. S.; et al. The digital MIQE guidelines update: minimum information for publication of quantitative digital PCR experiments for 2020. Clin. Chem. 2020, 66, 1012–1029. 10.1093/clinchem/hvaa125. PubMed DOI
Bustin S. A.; Benes V.; Garson J. A.; Hellemans J.; Huggett J.; Kubista M.; Mueller R.; Nolan T.; Pfaffl M. W.; Shipley G. L.; et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. 10.1373/clinchem.2008.112797. PubMed DOI
Livak K. J.; Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2– ΔΔCT method. Methods 2001, 25, 402–408. 10.1006/meth.2001.1262. PubMed DOI
Gubala A. J. Multiplex real-time PCR detection of Vibrio cholerae. J. Microbiol. Methods 2006, 65, 278–293. 10.1016/j.mimet.2005.07.017. PubMed DOI
Waggoner J. J.; Abeynayake J.; Sahoo M. K.; Gresh L.; Tellez Y.; Gonzalez K.; Ballesteros G.; Pierro A. M.; Gaibani P.; Guo F. P.; et al. Single-reaction, multiplex, real-time rt-PCR for the detection, quantitation, and serotyping of dengue viruses. PLoS Neglected Trop. Dis. 2013, 7, e211610.1371/journal.pntd.0002116. PubMed DOI PMC
Zhang H.; Li H.; Zhu H.; Pekárek J.; Podešva P.; Chang H.; Neužil P. Revealing the secrets of PCR. Sens. Actuators, B 2019, 298, 12692410.1016/j.snb.2019.126924. DOI
Ahrberg C. D.; Manz A.; Neuzil P. Single fluorescence channel-based multiplex detection of avian influenza virus by quantitative PCR with intercalating dye. Sci. Rep. 2015, 5, 1147910.1038/srep11479. PubMed DOI PMC
Zhu H.; Zhang H.; Ni S.; Korabečná M.; Yobas L.; Neuzil P. The vision of point-of-care PCR tests for the COVID-19 pandemic and beyond. TrAC, Trends Anal. Chem. 2020, 130, 11598410.1016/j.trac.2020.115984. PubMed DOI PMC
Ahrberg C. D.; Neužil P. Doubling throughput of a real-time PCR. Sci. Rep. 2015, 5, 1259510.1038/srep12595. PubMed DOI PMC
Rodriguez-Manzano J.; Moniri A.; Malpartida-Cardenas K.; Dronavalli J.; Davies F.; Holmes A.; Georgiou P. Simultaneous single-channel multiplexing and quantification of carbapenem-resistant genes using multidimensional standard curves. Anal. Chem. 2019, 91, 2013–2020. 10.1021/acs.analchem.8b04412. PubMed DOI PMC
Moniri A.; Rodriguez-Manzano J.; Malpartida-Cardenas K.; Yu L.-S.; Didelot X.; Holmes A.; Georgiou P. Framework for DNA quantification and outlier detection using multidimensional standard curves. Anal. Chem. 2019, 91, 7426–7434. 10.1021/acs.analchem.9b01466. PubMed DOI PMC
Moniri A.; Miglietta L.; Malpartida-Cardenas K.; Pennisi I.; Cacho-Soblechero M.; Moser N.; Holmes A.; Georgiou P.; Rodriguez-Manzano J. Amplification curve analysis: data-driven multiplexing using real-time digital PCR. Anal. Chem. 2020, 92, 13134–13143. 10.1021/acs.analchem.0c02253. PubMed DOI
Wang C.; Gao D.; Vaglenov A.; Kaltenboeck B. One-step real-time duplex reverse transcription PCRs simultaneously quantify analyte and housekeeping gene mRNAs. Biotechniques 2004, 36, 508–519. 10.2144/04363RN06. PubMed DOI
Tan C.; Chen X.; Wang F.; Wang D.; Cao Z.; Zhu X.; Lu C.; Yang W.; Gao N.; Gao H. J. A.; et al. A multiplex droplet digital PCR assay for non-invasive prenatal testing of fetal aneuploidies. Analyst 2019, 144, 2239–2247. 10.1039/C8AN02018C. PubMed DOI
Liu W.; Saint D. A. Validation of a quantitative method for real time PCR kinetics. Biochem. Biophys. Res. Commun. 2002, 294, 347–353. 10.1016/S0006-291X(02)00478-3. PubMed DOI
Rutledge R. Sigmoidal curve-fitting redefines quantitative real-time PCR with the prospective of developing automated high-throughput applications. Nucleic Acids Res. 2004, 32, e17810.1093/nar/gnh177. PubMed DOI PMC
An integrated microfluidic platform for nucleic acid testing