The vision of point-of-care PCR tests for the COVID-19 pandemic and beyond

. 2020 Sep ; 130 () : 115984. [epub] 20200720

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32834243
Odkazy

PubMed 32834243
PubMed Central PMC7369599
DOI 10.1016/j.trac.2020.115984
PII: S0165-9936(20)30213-2
Knihovny.cz E-zdroje

Infectious diseases, such as the most recent case of coronavirus disease 2019, have brought the prospect of point-of-care (POC) diagnostic tests into the spotlight. A rapid, accurate, low-cost, and easy-to-use test in the field could stop epidemics before they develop into full-blown pandemics. Unfortunately, despite all the advances, it still does not exist. Here, we critically review the limited number of prototypes demonstrated to date that is based on a polymerase chain reaction (PCR) and has come close to fulfill this vision. We summarize the requirements for the POC-PCR tests and then go on to discuss the PCR product-detection methods, the integration of their functional components, the potential applications, and other practical issues related to the implementation of lab-on-a-chip technologies. We conclude our review with a discussion of the latest findings on nucleic acid-based diagnosis.

Zobrazit více v PubMed

Cui J., Li F., Shi Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17:181. doi: 10.1038/s41579-018-0118-9. PubMed DOI PMC

Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020 doi: 10.1016/S0140-6736(20)30251-8. PubMed DOI PMC

W.H.O. 7 July 2020. Coronavirus Disease (COVID-19) Situation Report-169.https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200707-covid-19-sitrep-169.pdf?sfvrsn=c6c69c88_2

Chen L., Liu W., Zhang Q., Xu K., Ye G., Wu W., Sun Z., Liu F., Wu K., Zhong B. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak, Emerg. Microb. Infect. 2020;9:313. doi: 10.1080/22221751.2020.1725399. PubMed DOI PMC

Webster R.G., Bean W.J., Gorman O.T., Chambers T.M., Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol. Mol. Biol. Rev. 1992;56:152. https://doi.org/10146-0749/92/010152-28. PubMed PMC

Fan Y., Zhao K., Shi Z.-L., Zhou P. Bat coronaviruses in China. Viruses. 2019;11:210. doi: 10.3390/v11030210. PubMed DOI PMC

Al-Tawfiq J.A. Asymptomatic coronavirus infection: MERS-CoV and SARS-CoV-2 (COVID-19) Travel med. Infect. Dis. 2020 doi: 10.1016/j.tmaid.2020.101608. PubMed DOI PMC

Jiang S., Du L., Shi Z. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies, Emerg. Microb. Infect. 2020;9:275. doi: 10.1080/22221751.2020.1723441. PubMed DOI PMC

Oh M.-d., Park W.B., Choe P.G., Choi S.-J., Kim J.-I., Chae J., Park S.S., Kim E.-C., Oh H.S., Kim E.J. Viral load kinetics of MERS coronavirus infection. N. Engl. J. Med. 2016;375:1303. doi: 10.1056/NEJMc1511695. PubMed DOI

Schlappi T.S., McCalla S.E., Schoepp N.G., Ismagilov R.F. Flow-through capture and in situ amplification can enable rapid detection of a few single molecules of nucleic acids from several milliliters of solution. Anal. Chem. 2016;88:7647. doi: 10.1021/acs.analchem.6b01485. PubMed DOI

Pipper J., Inoue M., Ng L.F.P., Neuzil P., Zhang Y., Novak L. Catching bird flu in a droplet. Nat. Med. 2007;13:1259. doi: 10.1038/nm1634. PubMed DOI PMC

Pipper J., Zhang Y., Neuzil P., Hsieh T.-M. Clockwork PCR including sample preparation. Angew. Chem. Int. Ed. 2008;47:3900. doi: 10.1002/anie.200705016. PubMed DOI

Yeh Y.-T., Gulino K., Zhang Y., Sabestien A., Chou T.-W., Zhou B., Lin Z., Albert I., Lu H., Swaminathan V. A rapid and label-free platform for virus capture and identification from clinical samples. Proc. Natl. Acad. Sci. U. S. A. 2020;117:895. doi: 10.1073/pnas.1910113117. PubMed DOI PMC

Li Y., Wang R. Aptasensors for detection of avian influenza virus H5N1. Biosensors Biodetection. 2017;379 doi: 10.1007/978-1-4939-6911-1_25. PubMed DOI

W.H.O. The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

Caygill R.L., Blair G.E., Millner P.A. A review on viral biosensors to detect human pathogens. Anal. Chim. Acta. 2010;681:8. doi: 10.1016/j.aca.2010.09.038. PubMed DOI

Huang H.-S., Tsai C.-L., Chang J., Hsu T.-C., Lin S., Lee C.-C. Multiplex PCR system for the rapid diagnosis of respiratory virus infection: systematic review and meta-analysis. Clin. Microbiol. Infect. 2018;24:1055. doi: 10.1016/j.cmi.2017.11.018. PubMed DOI PMC

Zhu H., Fohlerová Z., Pekárek J., Basova E., Neužil P. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens. Bioelectron. 2020;153:112041. doi: 10.1016/j.bios.2020.112041. PubMed DOI PMC

Zhu H., Podesva P., Liu X., Zhang H., Teply T., Xu Y., Chang H., Qian A., Lei Y., Li Y., Niculescu A., Iliescu C., Neuzil P. IoT PCR for pandemic disease detection and its spread monitoring. Sensor. Actuator. B Chem. 2020;303:127098. doi: 10.1016/j.snb.2019.127098. PubMed DOI PMC

Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. Specific enzymatic amplification of DNA invitro - the polymerase chain-reaction. Cold Spring Harbor Symp. Quant. Biol. 1986;51:263. doi: 10.1101/sqb.1986.051.01.032. PubMed DOI

Zhang H., Li H., Zhu H., Pekárek J., Podešva P., Chang H., Neužil P. Revealing the secrets of PCR. Sensor. Actuator. B Chem. 2019;298:126924. doi: 10.1016/j.snb.2019.126924. DOI

Higuchi R., Dollinger G., Walsh P.S., Griffith R. Simultaneous amplification and detection of specific DNA sequences. Bio Technol. 1992;10:413. doi: 10.1038/nbt0492-413. PubMed DOI

Higuchi R., Fockler C., Dollinger G., Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnol. 1993;11:1026. doi: 10.1038/nbt0993-1026. PubMed DOI

Hashimoto M., Barany F., Soper S.A. Polymerase chain reaction/ligase detection reaction/hybridization assays using flow-through microfluidic devices for the detection of low-abundant DNA point mutations. Biosens. Bioelectron. 2006;21:1915. doi: 10.1016/j.bios.2006.01.014. PubMed DOI

Deiman B., van Aarle P., Sillekens P. Characteristics and applications of nucleic acid sequence-based amplification (NASBA) Mol. Biotechnol. 2002;20:163. doi: 10.1385/MB:20:2:163. PubMed DOI

Goto M., Honda E., Ogura A., Nomoto A., Hanaki K.-I. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques. 2009;46:167. doi: 10.2144/000113072. PubMed DOI

Walker G.T., Fraiser M.S., Schram J.L., Little M.C., Nadeau J.G., Malinowski D.P. Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 1992;20:1691. doi: 10.1093/nar/20.7.1691. PubMed DOI PMC

Ali M.M., Li F., Zhang Z., Zhang K., Kang D.-K., Ankrum J.A., Le X.C., Zhao W. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 2014;43:3324. doi: 10.1039/C3CS60439J. PubMed DOI

Tan E., Erwin B., Dames S., Ferguson T., Buechel M., Irvine B., Voelkerding K., Niemz A. Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities. Biochemistry. 2008;47:9987. doi: 10.1021/bi800746p. PubMed DOI PMC

Lutz S., Weber P., Focke M., Faltin B., Hoffmann J., Müller C., Mark D., Roth G., Munday P., Armes N. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA) Lab Chip. 2010;10:887. doi: 10.1039/B921140C. PubMed DOI

Jiang Y., Li B., Milligan J.N., Bhadra S., Ellington A.D. Real-time detection of isothermal amplification reactions with thermostable catalytic hairpin assembly. J. Am. Chem. Soc. 2013;135:7430. doi: 10.1021/ja4023978. PubMed DOI PMC

Manz A., Graber N., Widmer H.M. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensor. Actuator. B Chem. 1990;1:244. doi: 10.1016/0925-4005(90)80209-I. DOI

Harrison D.J., Fluri K., Seiler K., Fan Z., Effenhauser C.S., Manz A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science. 1993;261:895. doi: 10.1126/science.261.5123.895. PubMed DOI

Kopp M.U., De Mello A.J., Manz A. Chemical amplification: continuous-flow PCR on a chip. Science. 1998;280:1046. doi: 10.1126/science.280.5366.1046. PubMed DOI

Woolley A.T., Hadley D., Landre P., deMello A.J., Mathies R.A., Northrup M.A. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal. Chem. 1996;68:4081. doi: 10.1021/ac960718q. PubMed DOI

Belgrader P., Young S., Yuan B., Primeau M., Christel L.A., Pourahmadi F., Northrup M.A. A battery-powered notebook thermal cycler for rapid multiplex real-time PCR analysis. Anal. Chem. 2001;73:286. doi: 10.1021/ac000905v. PubMed DOI

Potrich C., Lunelli L., Forti S., Vozzi D., Pasquardini L., Vanzetti L., Panciatichi C., Anderle M., Pederzolli C. Effect of materials for micro-electro-mechanical systems on PCR yield. Eur. Biophys. J. 2010;39:979. doi: 10.1007/s00249-009-0466-5. PubMed DOI

Haeberle S., Mark D., von Stetten F., Zengerle R. Springer; 2012. Microfluidic Platforms for Lab-On-A-Chip Applications; p. 853. DOI

Gates B. Responding to Covid-19—a once-in-a-century pandemic? N. Engl. J. Med. 2020 doi: 10.1056/NEJMp2003762. PubMed DOI

Neuzil P., Zhang C., Pipper J., Oh S., Zhuo L. Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes. Nucleic Acids Res. 2006;34:e77. doi: 10.1093/nar/gkl416. PubMed DOI PMC

Farrar J.S., Wittwer C.T. Extreme PCR: efficient and specific DNA amplification in 15–60 seconds. Clin. Chem. 2015;61:145. doi: 10.1373/clinchem.2014.228304. PubMed DOI

Myrick J.T., Pryor R.J., Palais R.A., Ison S.J., Sanford L., Dwight Z.L., Huuskonen J.J., Sundberg S.O., Wittwer C.T. Integrated extreme real-time PCR and high-speed melting analysis in 52 to 87 seconds. Clin. Chem. 2020;65:263. doi: 10.1373/clinchem.2018.296608. PubMed DOI

Christensen T.B., Bang D.D., Wolff A. Multiplex polymerase chain reaction (PCR) on a SU-8 chip. Microelectron. Eng. 2008;85:1278. doi: 10.1016/j.mee.2008.01.066. DOI

Wittwer C.T., Fillmore G.C., Hillyard D.R. Automated polymerase chain reaction in capillary tubes with hot air. Nucleic Acids Res. 1989;17:4353. doi: 10.1093/nar/17.11.4353. PubMed DOI PMC

Liu W., Zhang M., Liu X., Sharma A., Ding X. A Point-of-Need infrared mediated PCR platform with compatible lateral flow strip for HPV detection. Biosens. Bioelectron. 2017;96:213. doi: 10.1016/j.bios.2017.04.047. PubMed DOI

Zou Z.-Q., Chen X., Jin Q.-H., Yang M.-S., Zhao J.-L. A novel miniaturized PCR multi-reactor array fabricated using flip-chip bonding techniques. J. Micromech. Microeng. 2005;15:1476. doi: 10.1088/0960-1317/15/8/014. DOI

Neuzil P., Pipper J., Hsieh T.M. Disposable real-time microPCR device: lab-on-a-chip at a low cost. Mol. Biosyst. 2006;2:292. doi: 10.1039/b605957k. PubMed DOI

Yoon D.S., Lee Y.-S., Lee Y., Cho H.J., Sung S.W., Oh K.W., Cha J., Lim G. Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction chip. J. Micromech. Microeng. 2002;12:813. doi: 10.1088/0960-1317/12/6/312. DOI

Moschou D., Vourdas N., Kokkoris G., Papadakis G., Parthenios J., Chatzandroulis S., Tserepi A. All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification. Sensor. Actuator. B Chem. 2014;199:470. doi: 10.1016/j.snb.2014.04.007. DOI

Li H., Zhang H., Xu Y., Tureckova A., Zahradník P., Chang H., Neuzil P. Versatile digital polymerase chain reaction chip design, fabrication, and image processing. Sensor. Actuator. B Chem. 2019;283:677. doi: 10.1016/j.snb.2018.12.072. DOI

Petrucci G., Caputo D., Lovecchio N., Costantini F., Legnini I., Bozzoni I., Nascetti A., De Cesare G. Multifunctional system-on-glass for lab-on-chip applications. Biosens. Bioelectron. 2017;93:315. doi: 10.1016/j.bios.2016.08.060. PubMed DOI

Cui F., Chen W., Wu X., Guo Z., Liu W., Zhang W., Chen W. Design and experiment of a PDMS-based PCR chip with reusable heater of optimized electrode. Microsyst. Technol. 2017;23:3069. doi: 10.1007/s00542-016-3064-3. DOI

Yang J., Liu Y., Rauch C.B., Stevens R.L., Liu R.H., Lenigk R., Grodzinski P. High sensitivity PCR assay in plastic micro reactors. Lab. Chip. 2002;2:179. doi: 10.1039/B208405H. PubMed DOI

Liu K., Xiang J., Ai Z., Zhang S., Fang Y., Chen T., Zhou Q., Li S., Wang S., Zhang N. PMMA microfluidic chip fabrication using laser ablation and low temperature bonding with OCA film and LOCA. Microsyst. Technol. 2017;23:1937. doi: 10.1007/s00542-016-2924-1. DOI

Mata A., Fleischman A.J., Roy S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices. 2005;7:281. doi: 10.1007/s10544-005-6070-2. PubMed DOI

van Midwoud P.M., Janse A., Merema M.T., Groothuis G.M.M., Verpoorte E. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal. Chem. 2012;84:3938. doi: 10.1021/ac300771z. PubMed DOI

Kodzius R., Xiao K., Wu J., Yi X., Gong X., Foulds I.G., Wen W. Inhibitory effect of common microfluidic materials on PCR outcome. Sensor. Actuator. B Chem. 2012;161:349. doi: 10.1016/j.snb.2011.10.044. DOI

Qin K., Lv X., Xing Q., Li R., Deng Y. A BSA coated NOA81 PCR chip for gene amplification. Anal. Methods. 2016;8:2584. doi: 10.1039/C5AY03233D. DOI

Crabtree H.J., Lauzon J., Morrissey Y.C., Taylor B.J., Liang T., Johnstone R.W., Stickel A.J., Manage D.P., Atrazhev A., Backhouse C.J. Inhibition of on-chip PCR using PDMS–glass hybrid microfluidic chips. Microfluid. Nanofluid. 2012;13:383. doi: 10.1007/s10404-012-0968-9. DOI

Trung N.B., Saito M., Takabayashi H., Viet P.H., Tamiya E., Takamura Y. Multi-chamber PCR chip with simple liquid introduction utilizing the gas permeability of polydimethylsiloxane. Sensor. Actuator. B Chem. 2010;149:284. doi: 10.1016/j.snb.2010.06.013. DOI

Tachibana H., Saito M., Shibuya S., Tsuji K., Miyagawa N., Yamanaka K., Tamiya E. On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform. Biosens. Bioelectron. 2015;74:725. doi: 10.1016/j.bios.2015.07.009. PubMed DOI

Kim S.C., Clark I.C., Shahi P., Abate A.R. Single-cell RT-PCR in microfluidic droplets with integrated chemical lysis. Anal. Chem. 2018;90:1273. doi: 10.1021/acs.analchem.7b04050. PubMed DOI PMC

Shao H., Chung J., Lee K., Balaj L., Min C., Carter B.S., Hochberg F.H., Breakefield X.O., Lee H., Weissleder R. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat. Commun. 2015;6:6999. doi: 10.1038/ncomms7999. PubMed DOI PMC

Ulrich M., Christensen D., Coyne S., Craw P., Henchal E., Sakai S., Swenson D., Tholath J., Tsai J., Weir A. Evaluation of the Cepheid GeneXpert® system for detecting Bacillus anthracis. J. Appl. Microbiol. 2006;100:1011. doi: 10.1111/j.1365-2672.2006.02810.x. PubMed DOI

Gilbert J.A., Long E.F., Brooks R.P., Friedland G.H., Moll A.P., Townsend J.P., Galvani A.P., Shenoi S.V. Integrating community-based interventions to reverse the convergent TB/HIV epidemics in rural South Africa. PloS One. 2015;10 doi: 10.1371/journal.pone.0126267. PubMed DOI PMC

Hui W.C., Yobas L., Samper V.D., Heng C.-K., Liw S., Ji H., Chen Y., Cong L., Li J., Lim T.M. Microfluidic systems for extracting nucleic acids for DNA and RNA analysis. Sensors Actuat. A-Phys. 2007;133:335. doi: 10.1016/j.sna.2006.06.031. DOI

Ji H.M., Samper V., Chen Y., Heng C.K., Lim T.M., Yobas L. Silicon-based microfilters for whole blood cell separation. Biomed. Microdevices. 2008;10:251. doi: 10.1007/s10544-007-9131-x. PubMed DOI

Yobas L., Ji H., Hui W.-C., Chen Y., Lim T.-M., Heng C.-K., Kwong D.-L. Nucleic acid extraction, amplification, and detection on Si-based microfluidic platforms. IEEE J. Solid State Circ. 2007;42:1803. doi: 10.1109/JSSC.2007.900232. DOI

Ha M.L., Lee N.Y. Miniaturized polymerase chain reaction device for rapid identification of genetically modified organisms. Food Contr. 2015;57:238. doi: 10.1016/j.foodcont.2015.04.014. DOI

Beyor N., Yi L., Seo T.S., Mathies R.A. Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip. Anal. Chem. 2009;81:3523. doi: 10.1021/ac900060r. PubMed DOI PMC

Wang J.-H., Chien L.-J., Hsieh T.-M., Luo C.-H., Chou W.-P., Chen P.-H., Chen P.-J., Lee D.-S., Lee G.-B. A miniaturized quantitative polymerase chain reaction system for DNA amplification and detection. Sensor. Actuator. B Chem. 2009;141:329. doi: 10.1016/j.snb.2009.06.034. DOI

Ahrberg C.D., Manz A., Neuzil P. Palm-sized device for point-of-care Ebola detection. Anal. Chem. 2016;88:4803. doi: 10.1021/acs.analchem.6b00278. PubMed DOI

Sun Y., Zhou X., Yu Y. A novel picoliter droplet array for parallel real-time polymerase chain reaction based on double-inkjet printing. Lab Chip. 2014;14:3603. doi: 10.1039/C4LC00598H. PubMed DOI

Hassibi A., Singh R., Manickam A., Sinha R., Kuimelis B., Bolouki S., Naraghi-Arani P., Johnson K., McDermott M., Wood N., Savalia P., Gamini N. A fully integrated CMOS fluorescence biochip for multiplex polymerase chain-reaction (PCR) processes. IEEE Int. Solid State Circ. Conf. (ISSCC) 2017;68 doi: 10.1109/ISSCC.2017.7870264. PubMed DOI PMC

Rival A., Jary D., Delattre C., Fouillet Y., Castellan G., Bellemin-Comte A., Gidrol X. An EWOD-based microfluidic chip for single-cell isolation, mRNA purification and subsequent multiplex qPCR. Lab. Chip. 2014;14:3739. doi: 10.1039/c4lc00592a. PubMed DOI

Neuzil P., Campos C.D.M., Wong C.C., Soon J.B.W., Reboud J., Manz A. From chip-in-a-lab to lab-on-a-chip: towards a single handheld electronic system for multiple application-specific lab-on-a-chip (ASLOC) Lab Chip. 2014;14:2168. doi: 10.1039/c4lc00310a. PubMed DOI

Liu R.H., Yang J., Lenigk R., Bonanno J., Grodzinski P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem. 2004;76:1824. doi: 10.1021/ac0353029. PubMed DOI

Easley C.J., Karlinsey J.M., Bienvenue J.M., Legendre L.A., Roper M.G., Feldman S.H., Hughes M.A., Hewlett E.L., Merkel T.J., Ferrance J.P. A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability. Proc. Natl. Acad. Sci. U. S. A. 2006;103:19272. doi: 10.1073/pnas.0604663103. PubMed DOI PMC

Novak L., Neuzil P., Pipper J., Zhang Y., Lee S. An integrated fluorescence detection system for lab-on-a-chip applications. Lab Chip. 2007;7:27. doi: 10.1039/b611745g. PubMed DOI

Neuzil P., Novak L., Pipper J., Lee S., Ng L.F.P., Zhang C. Rapid detection of viral RNA by a pocket-size real-time PCR system. Lab Chip. 2010;10:2632. doi: 10.1039/c004921b. PubMed DOI

Ahrberg C.D., Ilic B.R., Manz A., Neuzil P. Handheld real-time PCR device. Lab Chip. 2016;16:586. doi: 10.1039/c5lc01415h. PubMed DOI PMC

Reed M.R., Coty W.A. Springer; 2009. eSensor® A Microarray Technology Based on Electrochemical Detection of Nucleic Acids and its Application to Cystic Fibrosis Carrier Screening; p. 247. DOI

Xu G., Hsieh T.-M., Lee D.Y., Ali E.M., Xie H., Looi X.L., Koay E.S.-C., Li M.-H., Ying J.Y. A self-contained all-in-one cartridge for sample preparation and real-time PCR in rapid influenza diagnosis. Lab Chip. 2010;10:3103. doi: 10.1039/C005265E. PubMed DOI

Stumpf F., Schwemmer F., Hutzenlaub T., Baumann D., Strohmeier O., Dingemanns G., Simons G., Sager C., Plobner L., Von Stetten F. LabDisk with complete reagent prestorage for sample-to-answer nucleic acid based detection of respiratory pathogens verified with influenza A H3N2 virus. Lab Chip. 2016;16:199. doi: 10.1039/C5LC00871A. PubMed DOI

Shin D.J., Trick A.Y., Hsieh Y.-H., Thomas D.L., Wang T.-H. Sample-to-answer droplet magnetofluidic platform for point-of-care hepatitis C viral load quantitation. Sci. Rep. 2018;8:1. doi: 10.1038/s41598-018-28124-3. PubMed DOI PMC

Liu P., Li X., Greenspoon S.A., Scherer J.R., Mathies R.A. Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification. Lab Chip. 2011;11:1041. doi: 10.1039/C0LC00533A. PubMed DOI

Echeverry D.F., Deason N.A., Davidson J., Makuru V., Xiao H., Niedbalski J., Kern M., Russell T.L., Burkot T.R., Collins F.H. Human malaria diagnosis using a single-step direct-PCR based on the Plasmodium cytochrome oxidase III gene. Malar. J. 2016;15:128. doi: 10.1186/s12936-016-1185-x. PubMed DOI PMC

To K.K.-W., Tsang O.T.-Y., Yip C.C.-Y., Chan K.-H., Wu T.-C., Chan J.M.-C., Leung W.-S., Chik T.S.-H., Choi C.Y.-C., Kandamby D.H. Consistent detection of 2019 novel coronavirus in saliva. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa149. PubMed DOI PMC

Yonekawa T., Watanabe H., Hosaka N., Semba S., Shoji A., Sato M., Hamasaki M., Yuki S., Sano S., Segawa Y. Fully automated molecular diagnostic system “simprova” for simultaneous testing of multiple items. Sci. Rep. 2020;10:1. doi: 10.1038/s41598-020-62109-5. PubMed DOI PMC

Melchers W.J., Kuijpers J., Sickler J.J., Rahamat-Langendoen J. Lab-in-a-tube: real-time molecular point-of-care diagnostics for influenza A and B using the cobas® Liat® system. J. Med. Virol. 2017;89:1382. doi: 10.1002/jmv.24796. PubMed DOI

Kanwar N., Michael J., Doran K., Montgomery E., Selvarangan R. Comparison of the ID Now influenza A & B 2, Cobas influenza A/B, and Xpert Xpress Flu point-of-care nucleic acid amplification tests for influenza A/B virus detection in children. J. Clin. Microbiol. 2020;58 doi: 10.1128/JCM.01611-19. PubMed DOI PMC

Yang H., Chen Z., Cao X., Li Z., Stavrakis S., Choo J., deMello A.J., Howes P.D., He N. A sample-in-digital-answer-out system for rapid detection and quantitation of infectious pathogens in bodily fluids. Anal. Bioanal. Chem. 2018;410:7019. doi: 10.1007/s00216-018-1335-9. PubMed DOI

Gadsby N.J., Russell C.D., McHugh M.P., Mark H., Conway Morris A., Laurenson I.F., Hill A.T., Templeton K.E. Comprehensive molecular testing for respiratory pathogens in community-acquired pneumonia. Clin. Infect. Dis. 2016;62:817. doi: 10.1093/cid/civ1214. PubMed DOI PMC

Drosten C., Günther S., Preiser W., Van Der Werf S., Brodt H.-R., Becker S., Rabenau H., Panning M., Kolesnikova L., Fouchier R.A. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1967. doi: 10.1056/NEJMoa030747. PubMed DOI

Peiris J., Lai S., Poon L., Guan Y., Yam L., Lim W., Nicholls J., Yee W., Yan W., Cheung M. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:1319. doi: 10.1016/S0140-6736(03)13077-2. PubMed DOI PMC

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Nash M., Ramapuram J., Kaiya R., Huddart S., Pai M., Baliga S. Use of the GeneXpert tuberculosis system for HIV viral load testing in India. Lancet Glob. Health. 2017;5:e754. doi: 10.1016/S2214-109X(17)30247-4. PubMed DOI

Malvy D., McElroy A.K., de Clerck H., Günther S., van Griensven J. Ebola virus disease. Lancet. 2019;393:936. doi: 10.1016/s0140-6736(18)33132-5. PubMed DOI

Organization W.H. Norms and standards: assessing new medical products in health emergencies: the EUAL procedures. WHO Drug Inf. 2015;29:305.

Semper A.E., Broadhurst M.J., Richards J., Foster G.M., Simpson A.J., Logue C.H., Kelly J.D., Miller A., Brooks T.J., Murray M., Pollock N.R. Performance of the GeneXpert Ebola assay for diagnosis of Ebola virus disease in Sierra Leone: a field evaluation study. PLoS Med. 2016;13 doi: 10.1371/journal.pmed.1001980. PubMed DOI PMC

Gay-Andrieu F., Magassouba N., Picot V., Phillips C.L., Peyrefitte C.N., Dacosta B., Dore A., Kourouma F., Ligeon-Ligeonnet V., Gauby C., Longuet C., Scullion M., Faye O., Machuron J.L., Miller M. Clinical evaluation of the BioFire FilmArray((R)) BioThreat-E test for the diagnosis of Ebola virus disease in Guinea. J. Clin. Virol. 2017;92:20. doi: 10.1016/j.jcv.2017.04.015. PubMed DOI

Sheridan C. Fast, portable tests come online to curb coronavirus pandemic. Nat. Biotechnol. 2020 doi: 10.1038/d41587-020-00010-2. PubMed DOI

Loeffelholz M.J., Tang Y.-W. Laboratory diagnosis of emerging human coronavirus infections—the state of the art. Emerg. Microb. Infect. 2020;9:747. doi: 10.1080/22221751.2020.1745095. PubMed DOI PMC

U.S.F.D. Administration . Approved kits and tests for SARS; 2020. Emergency Use Authorizations.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...