The vision of point-of-care PCR tests for the COVID-19 pandemic and beyond
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32834243
PubMed Central
PMC7369599
DOI
10.1016/j.trac.2020.115984
PII: S0165-9936(20)30213-2
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19 diagnoses, Future of PCR, Microfluidics, Miniaturization, Point of care, Polymerase chain reaction,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Infectious diseases, such as the most recent case of coronavirus disease 2019, have brought the prospect of point-of-care (POC) diagnostic tests into the spotlight. A rapid, accurate, low-cost, and easy-to-use test in the field could stop epidemics before they develop into full-blown pandemics. Unfortunately, despite all the advances, it still does not exist. Here, we critically review the limited number of prototypes demonstrated to date that is based on a polymerase chain reaction (PCR) and has come close to fulfill this vision. We summarize the requirements for the POC-PCR tests and then go on to discuss the PCR product-detection methods, the integration of their functional components, the potential applications, and other practical issues related to the implementation of lab-on-a-chip technologies. We conclude our review with a discussion of the latest findings on nucleic acid-based diagnosis.
Zobrazit více v PubMed
Cui J., Li F., Shi Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17:181. doi: 10.1038/s41579-018-0118-9. PubMed DOI PMC
Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020 doi: 10.1016/S0140-6736(20)30251-8. PubMed DOI PMC
W.H.O. 7 July 2020. Coronavirus Disease (COVID-19) Situation Report-169.https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200707-covid-19-sitrep-169.pdf?sfvrsn=c6c69c88_2
Chen L., Liu W., Zhang Q., Xu K., Ye G., Wu W., Sun Z., Liu F., Wu K., Zhong B. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak, Emerg. Microb. Infect. 2020;9:313. doi: 10.1080/22221751.2020.1725399. PubMed DOI PMC
Webster R.G., Bean W.J., Gorman O.T., Chambers T.M., Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol. Mol. Biol. Rev. 1992;56:152. https://doi.org/10146-0749/92/010152-28. PubMed PMC
Fan Y., Zhao K., Shi Z.-L., Zhou P. Bat coronaviruses in China. Viruses. 2019;11:210. doi: 10.3390/v11030210. PubMed DOI PMC
Al-Tawfiq J.A. Asymptomatic coronavirus infection: MERS-CoV and SARS-CoV-2 (COVID-19) Travel med. Infect. Dis. 2020 doi: 10.1016/j.tmaid.2020.101608. PubMed DOI PMC
Jiang S., Du L., Shi Z. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies, Emerg. Microb. Infect. 2020;9:275. doi: 10.1080/22221751.2020.1723441. PubMed DOI PMC
Oh M.-d., Park W.B., Choe P.G., Choi S.-J., Kim J.-I., Chae J., Park S.S., Kim E.-C., Oh H.S., Kim E.J. Viral load kinetics of MERS coronavirus infection. N. Engl. J. Med. 2016;375:1303. doi: 10.1056/NEJMc1511695. PubMed DOI
Schlappi T.S., McCalla S.E., Schoepp N.G., Ismagilov R.F. Flow-through capture and in situ amplification can enable rapid detection of a few single molecules of nucleic acids from several milliliters of solution. Anal. Chem. 2016;88:7647. doi: 10.1021/acs.analchem.6b01485. PubMed DOI
Pipper J., Inoue M., Ng L.F.P., Neuzil P., Zhang Y., Novak L. Catching bird flu in a droplet. Nat. Med. 2007;13:1259. doi: 10.1038/nm1634. PubMed DOI PMC
Pipper J., Zhang Y., Neuzil P., Hsieh T.-M. Clockwork PCR including sample preparation. Angew. Chem. Int. Ed. 2008;47:3900. doi: 10.1002/anie.200705016. PubMed DOI
Yeh Y.-T., Gulino K., Zhang Y., Sabestien A., Chou T.-W., Zhou B., Lin Z., Albert I., Lu H., Swaminathan V. A rapid and label-free platform for virus capture and identification from clinical samples. Proc. Natl. Acad. Sci. U. S. A. 2020;117:895. doi: 10.1073/pnas.1910113117. PubMed DOI PMC
Li Y., Wang R. Aptasensors for detection of avian influenza virus H5N1. Biosensors Biodetection. 2017;379 doi: 10.1007/978-1-4939-6911-1_25. PubMed DOI
W.H.O. The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
Caygill R.L., Blair G.E., Millner P.A. A review on viral biosensors to detect human pathogens. Anal. Chim. Acta. 2010;681:8. doi: 10.1016/j.aca.2010.09.038. PubMed DOI
Huang H.-S., Tsai C.-L., Chang J., Hsu T.-C., Lin S., Lee C.-C. Multiplex PCR system for the rapid diagnosis of respiratory virus infection: systematic review and meta-analysis. Clin. Microbiol. Infect. 2018;24:1055. doi: 10.1016/j.cmi.2017.11.018. PubMed DOI PMC
Zhu H., Fohlerová Z., Pekárek J., Basova E., Neužil P. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens. Bioelectron. 2020;153:112041. doi: 10.1016/j.bios.2020.112041. PubMed DOI PMC
Zhu H., Podesva P., Liu X., Zhang H., Teply T., Xu Y., Chang H., Qian A., Lei Y., Li Y., Niculescu A., Iliescu C., Neuzil P. IoT PCR for pandemic disease detection and its spread monitoring. Sensor. Actuator. B Chem. 2020;303:127098. doi: 10.1016/j.snb.2019.127098. PubMed DOI PMC
Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. Specific enzymatic amplification of DNA invitro - the polymerase chain-reaction. Cold Spring Harbor Symp. Quant. Biol. 1986;51:263. doi: 10.1101/sqb.1986.051.01.032. PubMed DOI
Zhang H., Li H., Zhu H., Pekárek J., Podešva P., Chang H., Neužil P. Revealing the secrets of PCR. Sensor. Actuator. B Chem. 2019;298:126924. doi: 10.1016/j.snb.2019.126924. DOI
Higuchi R., Dollinger G., Walsh P.S., Griffith R. Simultaneous amplification and detection of specific DNA sequences. Bio Technol. 1992;10:413. doi: 10.1038/nbt0492-413. PubMed DOI
Higuchi R., Fockler C., Dollinger G., Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnol. 1993;11:1026. doi: 10.1038/nbt0993-1026. PubMed DOI
Hashimoto M., Barany F., Soper S.A. Polymerase chain reaction/ligase detection reaction/hybridization assays using flow-through microfluidic devices for the detection of low-abundant DNA point mutations. Biosens. Bioelectron. 2006;21:1915. doi: 10.1016/j.bios.2006.01.014. PubMed DOI
Deiman B., van Aarle P., Sillekens P. Characteristics and applications of nucleic acid sequence-based amplification (NASBA) Mol. Biotechnol. 2002;20:163. doi: 10.1385/MB:20:2:163. PubMed DOI
Goto M., Honda E., Ogura A., Nomoto A., Hanaki K.-I. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques. 2009;46:167. doi: 10.2144/000113072. PubMed DOI
Walker G.T., Fraiser M.S., Schram J.L., Little M.C., Nadeau J.G., Malinowski D.P. Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 1992;20:1691. doi: 10.1093/nar/20.7.1691. PubMed DOI PMC
Ali M.M., Li F., Zhang Z., Zhang K., Kang D.-K., Ankrum J.A., Le X.C., Zhao W. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 2014;43:3324. doi: 10.1039/C3CS60439J. PubMed DOI
Tan E., Erwin B., Dames S., Ferguson T., Buechel M., Irvine B., Voelkerding K., Niemz A. Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities. Biochemistry. 2008;47:9987. doi: 10.1021/bi800746p. PubMed DOI PMC
Lutz S., Weber P., Focke M., Faltin B., Hoffmann J., Müller C., Mark D., Roth G., Munday P., Armes N. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA) Lab Chip. 2010;10:887. doi: 10.1039/B921140C. PubMed DOI
Jiang Y., Li B., Milligan J.N., Bhadra S., Ellington A.D. Real-time detection of isothermal amplification reactions with thermostable catalytic hairpin assembly. J. Am. Chem. Soc. 2013;135:7430. doi: 10.1021/ja4023978. PubMed DOI PMC
Manz A., Graber N., Widmer H.M. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensor. Actuator. B Chem. 1990;1:244. doi: 10.1016/0925-4005(90)80209-I. DOI
Harrison D.J., Fluri K., Seiler K., Fan Z., Effenhauser C.S., Manz A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science. 1993;261:895. doi: 10.1126/science.261.5123.895. PubMed DOI
Kopp M.U., De Mello A.J., Manz A. Chemical amplification: continuous-flow PCR on a chip. Science. 1998;280:1046. doi: 10.1126/science.280.5366.1046. PubMed DOI
Woolley A.T., Hadley D., Landre P., deMello A.J., Mathies R.A., Northrup M.A. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal. Chem. 1996;68:4081. doi: 10.1021/ac960718q. PubMed DOI
Belgrader P., Young S., Yuan B., Primeau M., Christel L.A., Pourahmadi F., Northrup M.A. A battery-powered notebook thermal cycler for rapid multiplex real-time PCR analysis. Anal. Chem. 2001;73:286. doi: 10.1021/ac000905v. PubMed DOI
Potrich C., Lunelli L., Forti S., Vozzi D., Pasquardini L., Vanzetti L., Panciatichi C., Anderle M., Pederzolli C. Effect of materials for micro-electro-mechanical systems on PCR yield. Eur. Biophys. J. 2010;39:979. doi: 10.1007/s00249-009-0466-5. PubMed DOI
Haeberle S., Mark D., von Stetten F., Zengerle R. Springer; 2012. Microfluidic Platforms for Lab-On-A-Chip Applications; p. 853. DOI
Gates B. Responding to Covid-19—a once-in-a-century pandemic? N. Engl. J. Med. 2020 doi: 10.1056/NEJMp2003762. PubMed DOI
Neuzil P., Zhang C., Pipper J., Oh S., Zhuo L. Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes. Nucleic Acids Res. 2006;34:e77. doi: 10.1093/nar/gkl416. PubMed DOI PMC
Farrar J.S., Wittwer C.T. Extreme PCR: efficient and specific DNA amplification in 15–60 seconds. Clin. Chem. 2015;61:145. doi: 10.1373/clinchem.2014.228304. PubMed DOI
Myrick J.T., Pryor R.J., Palais R.A., Ison S.J., Sanford L., Dwight Z.L., Huuskonen J.J., Sundberg S.O., Wittwer C.T. Integrated extreme real-time PCR and high-speed melting analysis in 52 to 87 seconds. Clin. Chem. 2020;65:263. doi: 10.1373/clinchem.2018.296608. PubMed DOI
Christensen T.B., Bang D.D., Wolff A. Multiplex polymerase chain reaction (PCR) on a SU-8 chip. Microelectron. Eng. 2008;85:1278. doi: 10.1016/j.mee.2008.01.066. DOI
Wittwer C.T., Fillmore G.C., Hillyard D.R. Automated polymerase chain reaction in capillary tubes with hot air. Nucleic Acids Res. 1989;17:4353. doi: 10.1093/nar/17.11.4353. PubMed DOI PMC
Liu W., Zhang M., Liu X., Sharma A., Ding X. A Point-of-Need infrared mediated PCR platform with compatible lateral flow strip for HPV detection. Biosens. Bioelectron. 2017;96:213. doi: 10.1016/j.bios.2017.04.047. PubMed DOI
Zou Z.-Q., Chen X., Jin Q.-H., Yang M.-S., Zhao J.-L. A novel miniaturized PCR multi-reactor array fabricated using flip-chip bonding techniques. J. Micromech. Microeng. 2005;15:1476. doi: 10.1088/0960-1317/15/8/014. DOI
Neuzil P., Pipper J., Hsieh T.M. Disposable real-time microPCR device: lab-on-a-chip at a low cost. Mol. Biosyst. 2006;2:292. doi: 10.1039/b605957k. PubMed DOI
Yoon D.S., Lee Y.-S., Lee Y., Cho H.J., Sung S.W., Oh K.W., Cha J., Lim G. Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction chip. J. Micromech. Microeng. 2002;12:813. doi: 10.1088/0960-1317/12/6/312. DOI
Moschou D., Vourdas N., Kokkoris G., Papadakis G., Parthenios J., Chatzandroulis S., Tserepi A. All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification. Sensor. Actuator. B Chem. 2014;199:470. doi: 10.1016/j.snb.2014.04.007. DOI
Li H., Zhang H., Xu Y., Tureckova A., Zahradník P., Chang H., Neuzil P. Versatile digital polymerase chain reaction chip design, fabrication, and image processing. Sensor. Actuator. B Chem. 2019;283:677. doi: 10.1016/j.snb.2018.12.072. DOI
Petrucci G., Caputo D., Lovecchio N., Costantini F., Legnini I., Bozzoni I., Nascetti A., De Cesare G. Multifunctional system-on-glass for lab-on-chip applications. Biosens. Bioelectron. 2017;93:315. doi: 10.1016/j.bios.2016.08.060. PubMed DOI
Cui F., Chen W., Wu X., Guo Z., Liu W., Zhang W., Chen W. Design and experiment of a PDMS-based PCR chip with reusable heater of optimized electrode. Microsyst. Technol. 2017;23:3069. doi: 10.1007/s00542-016-3064-3. DOI
Yang J., Liu Y., Rauch C.B., Stevens R.L., Liu R.H., Lenigk R., Grodzinski P. High sensitivity PCR assay in plastic micro reactors. Lab. Chip. 2002;2:179. doi: 10.1039/B208405H. PubMed DOI
Liu K., Xiang J., Ai Z., Zhang S., Fang Y., Chen T., Zhou Q., Li S., Wang S., Zhang N. PMMA microfluidic chip fabrication using laser ablation and low temperature bonding with OCA film and LOCA. Microsyst. Technol. 2017;23:1937. doi: 10.1007/s00542-016-2924-1. DOI
Mata A., Fleischman A.J., Roy S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices. 2005;7:281. doi: 10.1007/s10544-005-6070-2. PubMed DOI
van Midwoud P.M., Janse A., Merema M.T., Groothuis G.M.M., Verpoorte E. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal. Chem. 2012;84:3938. doi: 10.1021/ac300771z. PubMed DOI
Kodzius R., Xiao K., Wu J., Yi X., Gong X., Foulds I.G., Wen W. Inhibitory effect of common microfluidic materials on PCR outcome. Sensor. Actuator. B Chem. 2012;161:349. doi: 10.1016/j.snb.2011.10.044. DOI
Qin K., Lv X., Xing Q., Li R., Deng Y. A BSA coated NOA81 PCR chip for gene amplification. Anal. Methods. 2016;8:2584. doi: 10.1039/C5AY03233D. DOI
Crabtree H.J., Lauzon J., Morrissey Y.C., Taylor B.J., Liang T., Johnstone R.W., Stickel A.J., Manage D.P., Atrazhev A., Backhouse C.J. Inhibition of on-chip PCR using PDMS–glass hybrid microfluidic chips. Microfluid. Nanofluid. 2012;13:383. doi: 10.1007/s10404-012-0968-9. DOI
Trung N.B., Saito M., Takabayashi H., Viet P.H., Tamiya E., Takamura Y. Multi-chamber PCR chip with simple liquid introduction utilizing the gas permeability of polydimethylsiloxane. Sensor. Actuator. B Chem. 2010;149:284. doi: 10.1016/j.snb.2010.06.013. DOI
Tachibana H., Saito M., Shibuya S., Tsuji K., Miyagawa N., Yamanaka K., Tamiya E. On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform. Biosens. Bioelectron. 2015;74:725. doi: 10.1016/j.bios.2015.07.009. PubMed DOI
Kim S.C., Clark I.C., Shahi P., Abate A.R. Single-cell RT-PCR in microfluidic droplets with integrated chemical lysis. Anal. Chem. 2018;90:1273. doi: 10.1021/acs.analchem.7b04050. PubMed DOI PMC
Shao H., Chung J., Lee K., Balaj L., Min C., Carter B.S., Hochberg F.H., Breakefield X.O., Lee H., Weissleder R. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat. Commun. 2015;6:6999. doi: 10.1038/ncomms7999. PubMed DOI PMC
Ulrich M., Christensen D., Coyne S., Craw P., Henchal E., Sakai S., Swenson D., Tholath J., Tsai J., Weir A. Evaluation of the Cepheid GeneXpert® system for detecting Bacillus anthracis. J. Appl. Microbiol. 2006;100:1011. doi: 10.1111/j.1365-2672.2006.02810.x. PubMed DOI
Gilbert J.A., Long E.F., Brooks R.P., Friedland G.H., Moll A.P., Townsend J.P., Galvani A.P., Shenoi S.V. Integrating community-based interventions to reverse the convergent TB/HIV epidemics in rural South Africa. PloS One. 2015;10 doi: 10.1371/journal.pone.0126267. PubMed DOI PMC
Hui W.C., Yobas L., Samper V.D., Heng C.-K., Liw S., Ji H., Chen Y., Cong L., Li J., Lim T.M. Microfluidic systems for extracting nucleic acids for DNA and RNA analysis. Sensors Actuat. A-Phys. 2007;133:335. doi: 10.1016/j.sna.2006.06.031. DOI
Ji H.M., Samper V., Chen Y., Heng C.K., Lim T.M., Yobas L. Silicon-based microfilters for whole blood cell separation. Biomed. Microdevices. 2008;10:251. doi: 10.1007/s10544-007-9131-x. PubMed DOI
Yobas L., Ji H., Hui W.-C., Chen Y., Lim T.-M., Heng C.-K., Kwong D.-L. Nucleic acid extraction, amplification, and detection on Si-based microfluidic platforms. IEEE J. Solid State Circ. 2007;42:1803. doi: 10.1109/JSSC.2007.900232. DOI
Ha M.L., Lee N.Y. Miniaturized polymerase chain reaction device for rapid identification of genetically modified organisms. Food Contr. 2015;57:238. doi: 10.1016/j.foodcont.2015.04.014. DOI
Beyor N., Yi L., Seo T.S., Mathies R.A. Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip. Anal. Chem. 2009;81:3523. doi: 10.1021/ac900060r. PubMed DOI PMC
Wang J.-H., Chien L.-J., Hsieh T.-M., Luo C.-H., Chou W.-P., Chen P.-H., Chen P.-J., Lee D.-S., Lee G.-B. A miniaturized quantitative polymerase chain reaction system for DNA amplification and detection. Sensor. Actuator. B Chem. 2009;141:329. doi: 10.1016/j.snb.2009.06.034. DOI
Ahrberg C.D., Manz A., Neuzil P. Palm-sized device for point-of-care Ebola detection. Anal. Chem. 2016;88:4803. doi: 10.1021/acs.analchem.6b00278. PubMed DOI
Sun Y., Zhou X., Yu Y. A novel picoliter droplet array for parallel real-time polymerase chain reaction based on double-inkjet printing. Lab Chip. 2014;14:3603. doi: 10.1039/C4LC00598H. PubMed DOI
Hassibi A., Singh R., Manickam A., Sinha R., Kuimelis B., Bolouki S., Naraghi-Arani P., Johnson K., McDermott M., Wood N., Savalia P., Gamini N. A fully integrated CMOS fluorescence biochip for multiplex polymerase chain-reaction (PCR) processes. IEEE Int. Solid State Circ. Conf. (ISSCC) 2017;68 doi: 10.1109/ISSCC.2017.7870264. PubMed DOI PMC
Rival A., Jary D., Delattre C., Fouillet Y., Castellan G., Bellemin-Comte A., Gidrol X. An EWOD-based microfluidic chip for single-cell isolation, mRNA purification and subsequent multiplex qPCR. Lab. Chip. 2014;14:3739. doi: 10.1039/c4lc00592a. PubMed DOI
Neuzil P., Campos C.D.M., Wong C.C., Soon J.B.W., Reboud J., Manz A. From chip-in-a-lab to lab-on-a-chip: towards a single handheld electronic system for multiple application-specific lab-on-a-chip (ASLOC) Lab Chip. 2014;14:2168. doi: 10.1039/c4lc00310a. PubMed DOI
Liu R.H., Yang J., Lenigk R., Bonanno J., Grodzinski P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem. 2004;76:1824. doi: 10.1021/ac0353029. PubMed DOI
Easley C.J., Karlinsey J.M., Bienvenue J.M., Legendre L.A., Roper M.G., Feldman S.H., Hughes M.A., Hewlett E.L., Merkel T.J., Ferrance J.P. A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability. Proc. Natl. Acad. Sci. U. S. A. 2006;103:19272. doi: 10.1073/pnas.0604663103. PubMed DOI PMC
Novak L., Neuzil P., Pipper J., Zhang Y., Lee S. An integrated fluorescence detection system for lab-on-a-chip applications. Lab Chip. 2007;7:27. doi: 10.1039/b611745g. PubMed DOI
Neuzil P., Novak L., Pipper J., Lee S., Ng L.F.P., Zhang C. Rapid detection of viral RNA by a pocket-size real-time PCR system. Lab Chip. 2010;10:2632. doi: 10.1039/c004921b. PubMed DOI
Ahrberg C.D., Ilic B.R., Manz A., Neuzil P. Handheld real-time PCR device. Lab Chip. 2016;16:586. doi: 10.1039/c5lc01415h. PubMed DOI PMC
Reed M.R., Coty W.A. Springer; 2009. eSensor® A Microarray Technology Based on Electrochemical Detection of Nucleic Acids and its Application to Cystic Fibrosis Carrier Screening; p. 247. DOI
Xu G., Hsieh T.-M., Lee D.Y., Ali E.M., Xie H., Looi X.L., Koay E.S.-C., Li M.-H., Ying J.Y. A self-contained all-in-one cartridge for sample preparation and real-time PCR in rapid influenza diagnosis. Lab Chip. 2010;10:3103. doi: 10.1039/C005265E. PubMed DOI
Stumpf F., Schwemmer F., Hutzenlaub T., Baumann D., Strohmeier O., Dingemanns G., Simons G., Sager C., Plobner L., Von Stetten F. LabDisk with complete reagent prestorage for sample-to-answer nucleic acid based detection of respiratory pathogens verified with influenza A H3N2 virus. Lab Chip. 2016;16:199. doi: 10.1039/C5LC00871A. PubMed DOI
Shin D.J., Trick A.Y., Hsieh Y.-H., Thomas D.L., Wang T.-H. Sample-to-answer droplet magnetofluidic platform for point-of-care hepatitis C viral load quantitation. Sci. Rep. 2018;8:1. doi: 10.1038/s41598-018-28124-3. PubMed DOI PMC
Liu P., Li X., Greenspoon S.A., Scherer J.R., Mathies R.A. Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification. Lab Chip. 2011;11:1041. doi: 10.1039/C0LC00533A. PubMed DOI
Echeverry D.F., Deason N.A., Davidson J., Makuru V., Xiao H., Niedbalski J., Kern M., Russell T.L., Burkot T.R., Collins F.H. Human malaria diagnosis using a single-step direct-PCR based on the Plasmodium cytochrome oxidase III gene. Malar. J. 2016;15:128. doi: 10.1186/s12936-016-1185-x. PubMed DOI PMC
To K.K.-W., Tsang O.T.-Y., Yip C.C.-Y., Chan K.-H., Wu T.-C., Chan J.M.-C., Leung W.-S., Chik T.S.-H., Choi C.Y.-C., Kandamby D.H. Consistent detection of 2019 novel coronavirus in saliva. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa149. PubMed DOI PMC
Yonekawa T., Watanabe H., Hosaka N., Semba S., Shoji A., Sato M., Hamasaki M., Yuki S., Sano S., Segawa Y. Fully automated molecular diagnostic system “simprova” for simultaneous testing of multiple items. Sci. Rep. 2020;10:1. doi: 10.1038/s41598-020-62109-5. PubMed DOI PMC
Melchers W.J., Kuijpers J., Sickler J.J., Rahamat-Langendoen J. Lab-in-a-tube: real-time molecular point-of-care diagnostics for influenza A and B using the cobas® Liat® system. J. Med. Virol. 2017;89:1382. doi: 10.1002/jmv.24796. PubMed DOI
Kanwar N., Michael J., Doran K., Montgomery E., Selvarangan R. Comparison of the ID Now influenza A & B 2, Cobas influenza A/B, and Xpert Xpress Flu point-of-care nucleic acid amplification tests for influenza A/B virus detection in children. J. Clin. Microbiol. 2020;58 doi: 10.1128/JCM.01611-19. PubMed DOI PMC
Yang H., Chen Z., Cao X., Li Z., Stavrakis S., Choo J., deMello A.J., Howes P.D., He N. A sample-in-digital-answer-out system for rapid detection and quantitation of infectious pathogens in bodily fluids. Anal. Bioanal. Chem. 2018;410:7019. doi: 10.1007/s00216-018-1335-9. PubMed DOI
Gadsby N.J., Russell C.D., McHugh M.P., Mark H., Conway Morris A., Laurenson I.F., Hill A.T., Templeton K.E. Comprehensive molecular testing for respiratory pathogens in community-acquired pneumonia. Clin. Infect. Dis. 2016;62:817. doi: 10.1093/cid/civ1214. PubMed DOI PMC
Drosten C., Günther S., Preiser W., Van Der Werf S., Brodt H.-R., Becker S., Rabenau H., Panning M., Kolesnikova L., Fouchier R.A. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1967. doi: 10.1056/NEJMoa030747. PubMed DOI
Peiris J., Lai S., Poon L., Guan Y., Yam L., Lim W., Nicholls J., Yee W., Yan W., Cheung M. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:1319. doi: 10.1016/S0140-6736(03)13077-2. PubMed DOI PMC
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Nash M., Ramapuram J., Kaiya R., Huddart S., Pai M., Baliga S. Use of the GeneXpert tuberculosis system for HIV viral load testing in India. Lancet Glob. Health. 2017;5:e754. doi: 10.1016/S2214-109X(17)30247-4. PubMed DOI
Malvy D., McElroy A.K., de Clerck H., Günther S., van Griensven J. Ebola virus disease. Lancet. 2019;393:936. doi: 10.1016/s0140-6736(18)33132-5. PubMed DOI
Organization W.H. Norms and standards: assessing new medical products in health emergencies: the EUAL procedures. WHO Drug Inf. 2015;29:305.
Semper A.E., Broadhurst M.J., Richards J., Foster G.M., Simpson A.J., Logue C.H., Kelly J.D., Miller A., Brooks T.J., Murray M., Pollock N.R. Performance of the GeneXpert Ebola assay for diagnosis of Ebola virus disease in Sierra Leone: a field evaluation study. PLoS Med. 2016;13 doi: 10.1371/journal.pmed.1001980. PubMed DOI PMC
Gay-Andrieu F., Magassouba N., Picot V., Phillips C.L., Peyrefitte C.N., Dacosta B., Dore A., Kourouma F., Ligeon-Ligeonnet V., Gauby C., Longuet C., Scullion M., Faye O., Machuron J.L., Miller M. Clinical evaluation of the BioFire FilmArray((R)) BioThreat-E test for the diagnosis of Ebola virus disease in Guinea. J. Clin. Virol. 2017;92:20. doi: 10.1016/j.jcv.2017.04.015. PubMed DOI
Sheridan C. Fast, portable tests come online to curb coronavirus pandemic. Nat. Biotechnol. 2020 doi: 10.1038/d41587-020-00010-2. PubMed DOI
Loeffelholz M.J., Tang Y.-W. Laboratory diagnosis of emerging human coronavirus infections—the state of the art. Emerg. Microb. Infect. 2020;9:747. doi: 10.1080/22221751.2020.1745095. PubMed DOI PMC
U.S.F.D. Administration . Approved kits and tests for SARS; 2020. Emergency Use Authorizations.
Determination of Advantages and Limitations of qPCR Duplexing in a Single Fluorescent Channel