Commensal Bacteria Impact on Intestinal Toll-like Receptor Signaling in Salmonella-Challenged Gnotobiotic Piglets
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
21-15621S
Czech Science Foundation
PubMed
38003758
PubMed Central
PMC10675043
DOI
10.3390/pathogens12111293
PII: pathogens12111293
Knihovny.cz E-resources
- Keywords
- Bifidobacterium, Lactobacillus, Salmonella Typhimurium, Toll-like receptor, cytokines, gnotobiotic minipig, lipopolysaccharide,
- Publication type
- Journal Article MeSH
Gnotobiotic (GN) animals with simple and defined microbiota can help to elucidate host-pathogen interferences. Hysterectomy-derived germ-free (GF) minipigs were associated at 4 and 24 h post-hysterectomy with porcine commensal mucinolytic Bifidobacterium boum RP36 (RP36) strain or non-mucinolytic strain RP37 (RP37) or at 4 h post-hysterectomy with Lactobacillus amylovorus (LA). One-week-old GN minipigs were infected with Salmonella Typhimurium LT2 strain (LT2). We monitored histological changes in the ileum, mRNA expression of Toll-like receptors (TLRs) 2, 4, and 9 and their related molecules lipopolysaccharide-binding protein (LBP), coreceptors MD-2 and CD14, adaptor proteins MyD88 and TRIF, and receptor for advanced glycation end products (RAGE) in the ileum and colon. LT2 significantly induced expression of TLR2, TLR4, MyD88, LBP, MD-2, and CD14 in the ileum and TLR4, MyD88, TRIF, LBP, and CD14 in the colon. The LT2 infection also significantly increased plasmatic levels of inflammatory markers interleukin (IL)-6 and IL-12/23p40. The previous colonization with RP37 alleviated damage of the ileum caused by the Salmonella infection, and RP37 and LA downregulated plasmatic levels of IL-6. A defined oligo-microbiota composed of bacterial species with selected properties should probably be more effective in downregulating inflammatory response than single bacteria.
Department of Research Food Research Institute Prague 102 00 Prague Czech Republic
Institute of Animal Physiology and Genetics Czech Academy of Sciences 142 20 Prague Czech Republic
See more in PubMed
Medzhitov R. The Spectrum of Inflammatory Responses. Science. 2021;374:1070–1075. doi: 10.1126/science.abi5200. PubMed DOI
Janeway C.A., Jr. Approaching the Asymptote? Evolution and Revolution in Immunology. Pt 1Cold Spring Harb. Symp. Quant. Biol. 1989;54:1–13. doi: 10.1101/SQB.1989.054.01.003. PubMed DOI
Takeuchi O., Akira S. Pattern Recognition Receptors and Inflammation. Cell. 2010;140:805–820. doi: 10.1016/j.cell.2010.01.022. PubMed DOI
Chen G.Y., Nuñez G. Sterile Inflammation: Sensing and Reacting to Damage. Nat. Rev. Immunol. 2010;10:826–837. doi: 10.1038/nri2873. PubMed DOI PMC
Gong T., Liu L., Jiang W., Zhou R. DAMP-Sensing Receptors in Sterile Inflammation and Inflammatory Diseases. Nat. Rev. Immunol. 2020;20:95–112. doi: 10.1038/s41577-019-0215-7. PubMed DOI
Kono H., Rock K.L. How Dying Cells Alert the Immune System to Danger. Nat. Rev. Immunol. 2008;8:279–289. doi: 10.1038/nri2215. PubMed DOI PMC
Kawai T., Akira S. Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity. Immunity. 2011;34:637–650. doi: 10.1016/j.immuni.2011.05.006. PubMed DOI
Kawai T., Akira S. The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-like Receptors. Nat. Immunol. 2010;11:373–384. doi: 10.1038/ni.1863. PubMed DOI
Akira S., Uematsu S., Takeuchi O. Pathogen Recognition and Innate Immunity. Cell. 2006;124:783–801. doi: 10.1016/j.cell.2006.02.015. PubMed DOI
Kono H., Onda A., Yanagida T. Molecular Determinants of Sterile Inflammation. Curr. Opin. Immunol. 2014;26:147–156. doi: 10.1016/j.coi.2013.12.004. PubMed DOI
Paudel Y.N., Angelopoulou E., Piperi C., Balasubramaniam V.R.M.T., Othman I., Shaikh M.F. Enlightening the Role of High Mobility Group Box 1 (HMGB1) in Inflammation: Updates on Receptor Signalling. Eur. J. Pharmacol. 2019;858:172487. doi: 10.1016/j.ejphar.2019.172487. PubMed DOI
Newton K., Dixit V.M. Signaling in Innate Immunity and Inflammation. Cold Spring Harb. Perspect. Biol. 2012;4:a006049. doi: 10.1101/cshperspect.a006049. PubMed DOI PMC
Cavaillon J.-M., Giamarellos-Bourboulis E.J. Immunosuppression Is Inappropriately Qualifying the Immune Status of Septic and SIRS Patients. Shock. 2019;52:307–317. doi: 10.1097/SHK.0000000000001266. PubMed DOI
Rock K.L., Latz E., Ontiveros F., Kono H. The Sterile Inflammatory Response. Annu. Rev. Immunol. 2010;28:321–342. doi: 10.1146/annurev-immunol-030409-101311. PubMed DOI PMC
Caroff M., Karibian D., Cavaillon J.M., Haeffner-Cavaillon N. Structural and Functional Analyses of Bacterial Lipopolysaccharides. Microbes Infect. 2002;4:915–926. doi: 10.1016/S1286-4579(02)01612-X. PubMed DOI
Kagan J.C. Lipopolysaccharide Detection across the Kingdoms of Life. Trends Immunol. 2017;38:696–704. doi: 10.1016/j.it.2017.05.001. PubMed DOI PMC
Dong Y., Glaser K., Speer C.P. Late-Onset Sepsis Caused by Gram-Negative Bacteria in Very Low Birth Weight Infants: A Systematic Review. Expert Rev. Anti. Infect. Ther. 2019;17:177–188. doi: 10.1080/14787210.2019.1568871. PubMed DOI
Karki R., Kanneganti T.-D. The “Cytokine Storm”: Molecular Mechanisms and Therapeutic Prospects. Trends Immunol. 2021;42:681–705. doi: 10.1016/j.it.2021.06.001. PubMed DOI PMC
Meizlish M.L., Franklin R.A., Zhou X., Medzhitov R. Tissue Homeostasis and Inflammation. Annu. Rev. Immunol. 2021;39:557–581. doi: 10.1146/annurev-immunol-061020-053734. PubMed DOI
Tamburini S., Shen N., Wu H.C., Clemente J.C. The Microbiome in Early Life: Implications for Health Outcomes. Nat. Med. 2016;22:713–722. doi: 10.1038/nm.4142. PubMed DOI
Healy D.B., Ryan C.A., Ross R.P., Stanton C., Dempsey E.M. Clinical Implications of Preterm Infant Gut Microbiome Development. Nat. Microbiol. 2022;7:22–33. doi: 10.1038/s41564-021-01025-4. PubMed DOI
Milani C., Duranti S., Bottacini F., Casey E., Turroni F., Mahony J., Belzer C., Delgado Palacio S., Arboleya Montes S., Mancabelli L., et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev. 2017;81:e00036-17. doi: 10.1128/MMBR.00036-17. PubMed DOI PMC
Xiao Y., Zhai Q., Zhang H., Chen W., Hill C. Gut Colonization Mechanisms of Lactobacillus and Bifidobacterium: An Argument for Personalized Designs. Annu. Rev. Food Sci. Technol. 2021;12:213–233. doi: 10.1146/annurev-food-061120-014739. PubMed DOI
Kwoji I.D., Aiyegoro O.A., Okpeku M., Adeleke M.A. Multi-Strain Probiotics: Synergy among Isolates Enhances Biological Activities. Biology. 2021;10:322. doi: 10.3390/biology10040322. PubMed DOI PMC
Yunes R.A., Poluektova E.U., Vasileva E.V., Odorskaya M.V., Marsova M.V., Kovalev G.I., Danilenko V.N. A Multi-Strain Potential Probiotic Formulation of GABA-Producing Lactobacillus plantarum 90sk and Bifidobacterium adolescentis 150 with Antidepressant Effects. Probiotics Antimicrob. Proteins. 2020;12:973–979. doi: 10.1007/s12602-019-09601-1. PubMed DOI
Ducarmon Q.R., Zwittink R.D., Hornung B.V.H., van Schaik W., Young V.B., Kuijper E.J. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol. Mol. Biol. Rev. 2019;83:e00007-19. doi: 10.1128/MMBR.00007-19. PubMed DOI PMC
Herzog M.K.-M., Cazzaniga M., Peters A., Shayya N., Beldi L., Hapfelmeier S., Heimesaat M.M., Bereswill S., Frankel G., Gahan C.G.M., et al. Mouse Models for Bacterial Enteropathogen Infections: Insights into the Role of Colonization Resistance. Gut Microbes. 2023;15:2172667. doi: 10.1080/19490976.2023.2172667. PubMed DOI PMC
Besser J.M. Salmonella Epidemiology: A Whirlwind of Change. Food Microbiol. 2018;71:55–59. doi: 10.1016/j.fm.2017.08.018. PubMed DOI
Hurley D., McCusker M.P., Fanning S., Martins M. Salmonella-Host Interactions—Modulation of the Host Innate Immune System. Front. Immunol. 2014;5:481. doi: 10.3389/fimmu.2014.00481. PubMed DOI PMC
Heredia N., García S. Animals as Sources of Food-Borne Pathogens: A Review. Anim. Nutr. 2018;4:250–255. doi: 10.1016/j.aninu.2018.04.006. PubMed DOI PMC
Coburn B., Grassl G.A., Finlay B.B. Salmonella, the Host and Disease: A Brief Review. Immunol. Cell Biol. 2007;85:112–118. doi: 10.1038/sj.icb.7100007. PubMed DOI
Ménard S., Lacroix-Lamandé S., Ehrhardt K., Yan J., Grassl G.A., Wiedemann A. Cross-Talk Between the Intestinal Epithelium and Salmonella Typhimurium. Front. Microbiol. 2022;13:906238. doi: 10.3389/fmicb.2022.906238. PubMed DOI PMC
Gordon M.A. Salmonella Infections in Immunocompromised Adults. J. Infect. 2008;56:413–422. doi: 10.1016/j.jinf.2008.03.012. PubMed DOI
Wen S.C., Best E., Nourse C. Non-Typhoidal Salmonella Infections in Children: Review of Literature and Recommendations for Management. J. Paediatr. Child Health. 2017;53:936–941. doi: 10.1111/jpc.13585. PubMed DOI
Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC
Xiao L., Estellé J., Kiilerich P., Ramayo-Caldas Y., Xia Z., Feng Q., Liang S., Pedersen A.Ø., Kjeldsen N.J., Liu C., et al. A Reference Gene Catalogue of the Pig Gut Microbiome. Nat. Microbiol. 2016;1:16161. doi: 10.1038/nmicrobiol.2016.161. PubMed DOI
Lunney J.K., Van Goor A., Walker K.E., Hailstock T., Franklin J., Dai C. Importance of the Pig as a Human Biomedical Model. Sci. Transl. Med. 2021;13:eabd5758. doi: 10.1126/scitranslmed.abd5758. PubMed DOI
Burrin D., Sangild P.T., Stoll B., Thymann T., Buddington R., Marini J., Olutoye O., Shulman R.J. Translational Advances in Pediatric Nutrition and Gastroenterology: New Insights from Pig Models. Annu. Rev. Anim. Biosci. 2020;8:321–354. doi: 10.1146/annurev-animal-020518-115142. PubMed DOI
Zhang Q., Widmer G., Tzipori S. A Pig Model of the Human Gastrointestinal Tract. Gut Microbes. 2013;4:193–200. doi: 10.4161/gmic.23867. PubMed DOI PMC
Pabst R. The Pig as a Model for Immunology Research. Cell Tissue Res. 2020;380:287–304. doi: 10.1007/s00441-020-03206-9. PubMed DOI PMC
Rothkötter H.J., Sowa E., Pabst R. The Pig as a Model of Developmental Immunology. Hum. Exp. Toxicol. 2002;21:533–536. doi: 10.1191/0960327102ht293oa. PubMed DOI
Meurens F., Summerfield A., Nauwynck H., Saif L., Gerdts V. The Pig: A Model for Human Infectious Diseases. Trends Microbiol. 2012;20:50–57. doi: 10.1016/j.tim.2011.11.002. PubMed DOI PMC
Roberts R.M., Green J.A., Schulz L.C. The Evolution of the Placenta. Reproduction. 2016;152:R179–R189. doi: 10.1530/REP-16-0325. PubMed DOI PMC
Bigler N.A., Bruckmaier R.M., Gross J.J. Implications of Placentation Type on Species-Specific Colostrum Properties in Mammals. J. Anim. Sci. 2022;100:skac287. doi: 10.1093/jas/skac287. PubMed DOI PMC
Salmon H., Berri M., Gerdts V., Meurens F. Humoral and Cellular Factors of Maternal Immunity in Swine. Dev. Comp. Immunol. 2009;33:384–393. doi: 10.1016/j.dci.2008.07.007. PubMed DOI
Fricke W.F., Ravel J. Microbiome or No Microbiome: Are We Looking at the Prenatal Environment through the Right Lens? Microbiome. 2021;9:9. doi: 10.1186/s40168-020-00947-1. PubMed DOI PMC
Kennedy K.M., de Goffau M.C., Perez-Muñoz M.E., Arrieta M.-C., Bäckhed F., Bork P., Braun T., Bushman F.D., Dore J., de Vos W.M., et al. Questioning the Fetal Microbiome Illustrates Pitfalls of Low-Biomass Microbial Studies. Nature. 2023;613:639–649. doi: 10.1038/s41586-022-05546-8. PubMed DOI PMC
Perez-Muñoz M.E., Arrieta M.-C., Ramer-Tait A.E., Walter J. A Critical Assessment of the “Sterile Womb” and “in Utero Colonization” Hypotheses: Implications for Research on the Pioneer Infant Microbiome. Microbiome. 2017;5:48. doi: 10.1186/s40168-017-0268-4. PubMed DOI PMC
Miniats O.P., Jol D. Gnotobiotic Pigs-Derivation and Rearing. Can. J. Comp. Med. 1978;42:428–437. PubMed PMC
Taylor D.M. The Use of Laminar Flow for Obtaining Germ-Free Mice. Lab. Anim. 1975;9:337–343. doi: 10.1258/002367775780957214. PubMed DOI
Ruff W.E., Greiling T.M., Kriegel M.A. Host-Microbiota Interactions in Immune-Mediated Diseases. Nat. Rev. Microbiol. 2020;18:521–538. doi: 10.1038/s41579-020-0367-2. PubMed DOI
Splichal I., Rychlik I., Splichalova I., Karasova D., Splichalova A. Toll-like Receptor 4 Signaling in the Ileum and Colon of Gnotobiotic Piglets Infected with Salmonella Typhimurium or Its Isogenic ∆rfa Mutants. Toxins. 2020;12:545. doi: 10.3390/toxins12090545. PubMed DOI PMC
Clarke R.C., Gyles C.L. Virulence of Wild and Mutant Strains of Salmonella Typhimurium in Ligated Intestinal Segments of Calves, Pigs, and Rabbits. Am. J. Vet. Res. 1987;48:504–510. PubMed
Thaiss C.A., Zmora N., Levy M., Elinav E. The Microbiome and Innate Immunity. Nature. 2016;535:65–74. doi: 10.1038/nature18847. PubMed DOI
Splichalova A., Slavikova V., Splichalova Z., Splichal I. Preterm Life in Sterile Conditions: A Study on Preterm, Germ-Free Piglets. Front. Immunol. 2018;9:220. doi: 10.3389/fimmu.2018.00220. PubMed DOI PMC
Pechar R., Killer J., Mekadim C., Geigerová M., Rada V. Classification of Culturable Bifidobacterial Population from Colonic Samples of Wild Pigs (Sus Scrofa) Based on Three Molecular Genetic Methods. Curr. Microbiol. 2017;74:1324–1331. doi: 10.1007/s00284-017-1320-0. PubMed DOI
Splichalova A., Pechar R., Killer J., Splichalova Z., Bunesova V.N., Vlkova E., Salmonova H.S., Splichal I. Colonization of Germ-Free Piglets with Mucinolytic and Non-Mucinolytic Bifidobacterium boum Strains Isolated from the Intestine of Wild Boar and Their Interference with Salmonella Typhimurium. Microorganisms. 2020;8:2002. doi: 10.3390/microorganisms8122002. PubMed DOI PMC
Konstantinov S.R., Poznanski E., Fuentes S., Akkermans A.D.L., Smidt H., de Vos W.M. Lactobacillus sobrius Sp. Nov., Abundant in the Intestine of Weaning Piglets. Int. J. Syst. Evol. Microbiol. 2006;56:29–32. doi: 10.1099/ijs.0.63508-0. PubMed DOI
Trebichavsky I., Dlabac V., Rehakova Z., Zahradnickova M., Splichal I. Cellular Changes and Cytokine Expression in the Ilea of Gnotobiotic Piglets Resulting from Peroral Salmonella Typhimurium Challenge. Infect. Immun. 1997;65:5244–5249. doi: 10.1128/iai.65.12.5244-5249.1997. PubMed DOI PMC
McClelland M., Sanderson K.E., Spieth J., Clifton S.W., Latreille P., Courtney L., Porwollik S., Ali J., Dante M., Du F., et al. Complete Genome Sequence of Salmonella Enterica Serovar Typhimurium LT2. Nature. 2001;413:852–856. doi: 10.1038/35101614. PubMed DOI
Splichal I., Donovan S.M., Splichalova Z., Neuzil Bunesova V., Vlkova E., Jenistova V., Killer J., Svejstil R., Skrivanova E., Splichalova A. Colonization of Germ-Free Piglets with Commensal Lactobacillus amylovorus, Lactobacillus mucosae, and Probiotic E. Coli Nissle 1917 and Their Interference with Salmonella Typhimurium. Microorganisms. 2019;7:273. doi: 10.3390/microorganisms7080273. PubMed DOI PMC
Splichalova A., Jenistova V., Splichalova Z., Splichal I. Colonization of Preterm Gnotobiotic Piglets with Probiotic Lactobacillus rhamnosus GG and Its Interference with Salmonella Typhimurium. Clin. Exp. Immunol. 2019;195:381–394. doi: 10.1111/cei.13236. PubMed DOI PMC
Gal-Mor O. Persistent Infection and Long-Term Carriage of Typhoidal and Nontyphoidal Salmonellae. Clin. Microbiol. Rev. 2019;32:e00088-18. doi: 10.1128/CMR.00088-18. PubMed DOI PMC
Skrzypek T., Valverde Piedra J.L., Skrzypek H., Kazimierczak W., Biernat M., Zabielski R. Gradual Disappearance of Vacuolated Enterocytes in the Small Intestine of Neonatal Piglets. J. Physiol. Pharmacol. 2007;58((Suppl. S3)):87–95. PubMed
Zabielski R., Godlewski M.M., Guilloteau P. Control of Development of Gastrointestinal System in Neonates. J. Physiol. Pharmacol. 2008;59((Suppl. S1)):35–54. PubMed
Shirkey T.W., Siggers R.H., Goldade B.G., Marshall J.K., Drew M.D., Laarveld B., Van Kessel A.G. Effects of Commensal Bacteria on Intestinal Morphology and Expression of Proinflammatory Cytokines in the Gnotobiotic Pig. Exp. Biol. Med. 2006;231:1333–1345. doi: 10.1177/153537020623100807. PubMed DOI
Zhang K., Griffiths G., Repnik U., Hornef M. Seeing Is Understanding: Salmonella’s Way to Penetrate the Intestinal Epithelium. Int. J. Med. Microbiol. 2018;308:97–106. doi: 10.1016/j.ijmm.2017.09.011. PubMed DOI
Keestra-Gounder A.M., Tsolis R.M., Bäumler A.J. Now You See Me, Now You Don’t: The Interaction of Salmonella with Innate Immune Receptors. Nat. Rev. Microbiol. 2015;13:206–216. doi: 10.1038/nrmicro3428. PubMed DOI
Trebichavsky I., Splichal I., Rada V., Splichalova A. Modulation of Natural Immunity in the Gut by Escherichia Coli Strain Nissle 1917. Nutr. Rev. 2010;68:459–464. doi: 10.1111/j.1753-4887.2010.00305.x. PubMed DOI
Jakava-Viljanen M., Murros A., Palva A., Björkroth K.J. Lactobacillus sobrius Konstantinov et al. 2006 Is a Later Synonym of Lactobacillus amylovorus Nakamura 1981. Int. J. Syst. Evol. Microbiol. 2008;58:910–913. doi: 10.1099/ijs.0.65432-0. PubMed DOI
Tükel C., Nishimori J.H., Wilson R.P., Winter M.G., Keestra A.M., van Putten J.P.M., Bäumler A.J. Toll-like Receptors 1 and 2 Cooperatively Mediate Immune Responses to Curli, a Common Amyloid from Enterobacterial Biofilms. Cell. Microbiol. 2010;12:1495–1505. doi: 10.1111/j.1462-5822.2010.01485.x. PubMed DOI PMC
Rapsinski G.J., Wynosky-Dolfi M.A., Oppong G.O., Tursi S.A., Wilson R.P., Brodsky I.E., Tükel Ç. Toll-like Receptor 2 and NLRP3 Cooperate to Recognize a Functional Bacterial Amyloid, Curli. Infect. Immun. 2015;83:693–701. doi: 10.1128/IAI.02370-14. PubMed DOI PMC
Capurso L. Thirty Years of Lactobacillus rhamnosus GG: A Review. J. Clin. Gastroenterol. 2019;53((Suppl. S1)):S1–S41. doi: 10.1097/MCG.0000000000001170. PubMed DOI
Splichal I., Donovan S.M., Kindlova Z., Stranak Z., Neuzil Bunesova V., Sinkora M., Polakova K., Valaskova B., Splichalova A. Release of HMGB1 and Toll-like Receptors 2, 4, and 9 Signaling Are Modulated by Bifidobacterium animalis Subsp. Lactis BB-12 and Salmonella Typhimurium in a Gnotobiotic Piglet Model of Preterm Infants. Int. J. Mol. Sci. 2023;24:2329. doi: 10.3390/ijms24032329. PubMed DOI PMC
Jensen K., Al-Nakeeb K., Koza A., Zeidan A.A. Updated Genome Sequence for the Probiotic Bacterium Bifidobacterium animalis Subsp. Lactis BB-12. Microbiol. Resour. Announc. 2021;10:e0007821. doi: 10.1128/MRA.00078-21. PubMed DOI PMC
Splichal I., Donovan S.M., Jenistova V., Splichalova I., Salmonova H., Vlkova E., Neuzil Bunesova V., Sinkora M., Killer J., Skrivanova E., et al. High Mobility Group Box 1 and TLR4 Signaling Pathway in Gnotobiotic Piglets Colonized/Infected with L. Amylovorus, L. Mucosae, E. Coli Nissle 1917 and S. Typhimurium. Int. J. Mol. Sci. 2019;20:6294. doi: 10.3390/ijms20246294. PubMed DOI PMC
Henker J., Laass M., Blokhin B.M., Bolbot Y.K., Maydannik V.G., Elze M., Wolff C., Schulze J. The Probiotic Escherichia Coli Strain Nissle 1917 (EcN) Stops Acute Diarrhoea in Infants and Toddlers. Eur. J. Pediatr. 2007;166:311–318. doi: 10.1007/s00431-007-0419-x. PubMed DOI PMC
Henker J., Laass M.W., Blokhin B.M., Maydannik V.G., Bolbot Y.K., Elze M., Wolff C., Schreiner A., Schulze J. Probiotic Escherichia Coli Nissle 1917 versus Placebo for Treating Diarrhea of Greater than 4 Days Duration in Infants and Toddlers. Pediatr. Infect. Dis. J. 2008;27:494–499. doi: 10.1097/INF.0b013e318169034c. PubMed DOI
Splichalova A., Trebichavsky I., Rada V., Vlkova E., Sonnenborn U., Splichal I. Interference of Bifidobacterium choerinum or Escherichia Coli Nissle 1917 with Salmonella Typhimurium in Gnotobiotic Piglets Correlates with Cytokine Patterns in Blood and Intestine. Clin. Exp. Immunol. 2011;163:242–249. doi: 10.1111/j.1365-2249.2010.04283.x. PubMed DOI PMC
Grozdanov L., Zähringer U., Blum-Oehler G., Brade L., Henne A., Knirel Y.A., Schombel U., Schulze J., Sonnenborn U., Gottschalk G., et al. A Single Nucleotide Exchange in the Wzy Gene Is Responsible for the Semirough O6 Lipopolysaccharide Phenotype and Serum Sensitivity of Escherichia Coli Strain Nissle 1917. J. Bacteriol. 2002;184:5912–5925. doi: 10.1128/JB.184.21.5912-5925.2002. PubMed DOI PMC
Foster N., Lovell M.A., Marston K.L., Hulme S.D., Frost A.J., Bland P., Barrow P.A. Rapid Protection of Gnotobiotic Pigs against Experimental Salmonellosis Following Induction of Polymorphonuclear Leukocytes by Avirulent Salmonella Enterica. Infect. Immun. 2003;71:2182–2191. doi: 10.1128/IAI.71.4.2182-2191.2003. PubMed DOI PMC
Foster N., Hulme S., Lovell M., Reed K., Barrow P. Stimulation of Gp91 Phagocytic Oxidase and Reactive Oxygen Species in Neutrophils by an Avirulent Salmonella Enterica Serovar Infantis Strain Protects Gnotobiotic Piglets from Lethal Challenge with Serovar Typhimurium Strain F98 without Inducing Intestinal Pathology. Infect. Immun. 2005;73:4539–4547. doi: 10.1128/IAI.73.8.4539-4547.2005. PubMed DOI PMC
Splichal I., Trebichavsky I., Splichalova A., Barrow P.A. Protection of Gnotobiotic Pigs against Salmonella Enterica Serotype Typhimurium by Rough Mutant of the Same Serotype Is Accompanied by the Change of Local and Systemic Cytokine Response. Vet. Immunol. Immunopathol. 2005;103:155–161. doi: 10.1016/j.vetimm.2004.09.001. PubMed DOI
Splichalova A., Splichalova Z., Karasova D., Rychlik I., Trevisi P., Sinkora M., Splichal I. Impact of the Lipopolysaccharide Chemotype of Salmonella Enterica Serovar Typhimurium on Virulence in Gnotobiotic Piglets. Toxins. 2019;11:534. doi: 10.3390/toxins11090534. PubMed DOI PMC
Splichalova A., Splichal I., Chmelarova P., Trebichavsky I. Alarmin HMGB1 Is Released in the Small Intestine of Gnotobiotic Piglets Infected with Enteric Pathogens and Its Level in Plasma Reflects Severity of Sepsis. J. Clin. Immunol. 2011;31:488–497. doi: 10.1007/s10875-010-9505-3. PubMed DOI
Yang H., Wang H., Andersson U. Targeting Inflammation Driven by HMGB1. Front. Immunol. 2020;11:484. doi: 10.3389/fimmu.2020.00484. PubMed DOI PMC
Andersson U., Yang H. HMGB1 Is a Critical Molecule in the Pathogenesis of Gram-Negative Sepsis. J. Intensive Med. 2022;2:156–166. doi: 10.1016/j.jointm.2022.02.001. PubMed DOI PMC
Burkey T.E., Skjolaas K.A., Dritz S.S., Minton J.E. Expression of Toll-like Receptors, Interleukin 8, Macrophage Migration Inhibitory Factor, and Osteopontin in Tissues from Pigs Challenged with Salmonella Enterica Serovar Typhimurium or Serovar Choleraesuis. Vet. Immunol. Immunopathol. 2007;115:309–319. doi: 10.1016/j.vetimm.2006.11.012. PubMed DOI
Dong H., Zhang Y., Huang Y., Deng H. Pathophysiology of RAGE in Inflammatory Diseases. Front. Immunol. 2022;13:931473. doi: 10.3389/fimmu.2022.931473. PubMed DOI PMC
O’Hara A.M., Shanahan F. The Gut Flora as a Forgotten Organ. EMBO Rep. 2006;7:688–693. doi: 10.1038/sj.embor.7400731. PubMed DOI PMC
Sender R., Fuchs S., Milo R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell. 2016;164:337–340. doi: 10.1016/j.cell.2016.01.013. PubMed DOI
Bescucci D.M., Moote P.E., Ortega Polo R., Uwiera R.R.E., Inglis G.D. Salmonella Enterica Serovar Typhimurium Temporally Modulates the Enteric Microbiota and Host Responses To Overcome Colonization Resistance in Swine. Appl. Environ. Microbiol. 2020;86:e01569-20. doi: 10.1128/AEM.01569-20. PubMed DOI PMC
Finamore A., Roselli M., Imbinto A., Seeboth J., Oswald I.P., Mengheri E. Lactobacillus amylovorus Inhibits the TLR4 Inflammatory Signaling Triggered by Enterotoxigenic Escherichia Coli via Modulation of the Negative Regulators and Involvement of TLR2 in Intestinal Caco-2 Cells and Pig Explants. PLoS ONE. 2014;9:e94891. doi: 10.1371/journal.pone.0094891. PubMed DOI PMC
Pierrakos C., Velissaris D., Bisdorff M., Marshall J.C., Vincent J.-L. Biomarkers of Sepsis: Time for a Reappraisal. Crit. Care. 2020;24:287. doi: 10.1186/s13054-020-02993-5. PubMed DOI PMC
Cavaillon J.-M., Singer M., Skirecki T. Sepsis Therapies: Learning from 30 Years of Failure of Translational Research to Propose New Leads. EMBO Mol. Med. 2020;12:e10128. doi: 10.15252/emmm.201810128. PubMed DOI PMC
Iwasaki A., Medzhitov R. Control of Adaptive Immunity by the Innate Immune System. Nat. Immunol. 2015;16:343–353. doi: 10.1038/ni.3123. PubMed DOI PMC
Tanaka T., Narazaki M., Kishimoto T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014;6:a016295. doi: 10.1101/cshperspect.a016295. PubMed DOI PMC
Song J., Park D.W., Moon S., Cho H.-J., Park J.H., Seok H., Choi W.S. Diagnostic and Prognostic Value of Interleukin-6, Pentraxin 3, and Procalcitonin Levels among Sepsis and Septic Shock Patients: A Prospective Controlled Study According to the Sepsis-3 Definitions. BMC Infect. Dis. 2019;19:968. doi: 10.1186/s12879-019-4618-7. PubMed DOI PMC
Huang F.-C. The Interleukins Orchestrate Mucosal Immune Responses to Salmonella Infection in the Intestine. Cells. 2021;10:3492. doi: 10.3390/cells10123492. PubMed DOI PMC
Splichalova A., Splichal I. Local and Systemic Occurrences of HMGB1 in Gnotobiotic Piglets Infected with E. Coli O55 Are Related to Bacterial Translocation and Inflammatory Cytokines. Cytokine. 2012;60:597–600. doi: 10.1016/j.cyto.2012.07.026. PubMed DOI
Linden S.K., Sutton P., Karlsson N.G., Korolik V., McGuckin M.A. Mucins in the Mucosal Barrier to Infection. Mucosal Immunol. 2008;1:183–197. doi: 10.1038/mi.2008.5. PubMed DOI PMC
MacLennan C., Fieschi C., Lammas D.A., Picard C., Dorman S.E., Sanal O., MacLennan J.M., Holland S.M., Ottenhoff T.H.M., Casanova J.-L., et al. Interleukin (IL)-12 and IL-23 Are Key Cytokines for Immunity against Salmonella in Humans. J. Infect. Dis. 2004;190:1755–1757. doi: 10.1086/425021. PubMed DOI
Awoniyi M., Miller S.I., Wilson C.B., Hajjar A.M., Smith K.D. Homeostatic Regulation of Salmonella-Induced Mucosal Inflammation and Injury by IL-23. PLoS ONE. 2012;7:e37311. doi: 10.1371/journal.pone.0037311. PubMed DOI PMC
Vignali D.A.A., Kuchroo V.K. IL-12 Family Cytokines: Immunological Playmakers. Nat. Immunol. 2012;13:722–728. doi: 10.1038/ni.2366. PubMed DOI PMC
Stecher B. Establishing Causality in Salmonella-Microbiota-Host Interaction: The Use of Gnotobiotic Mouse Models and Synthetic Microbial Communities. Int. J. Med. Microbiol. 2021;311:151484. doi: 10.1016/j.ijmm.2021.151484. PubMed DOI
Brugiroux S., Berry D., Ring D., Barnich N., Daims H., Stecher B. Specific Localization and Quantification of the Oligo-Mouse-Microbiota (OMM12) by Fluorescence In Situ Hybridization (FISH) Curr. Protoc. 2022;2:e548. doi: 10.1002/cpz1.548. PubMed DOI
Horvathova K., Modrackova N., Splichal I., Splichalova A., Amin A., Ingribelli E., Killer J., Doskocil I., Pechar R., Kodesova T., et al. Defined Pig Microbiota with a Potential Protective Effect against Infection with Salmonella Typhimurium. Microorganisms. 2023;11:1007. doi: 10.3390/microorganisms11041007. PubMed DOI PMC