Impact of the Lipopolysaccharide Chemotype of Salmonella Enterica Serovar Typhimurium on Virulence in Gnotobiotic Piglets

. 2019 Sep 13 ; 11 (9) : . [epub] 20190913

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31540295

Salmonella Typhimurium is an enteric pathogen that causes acute and chronic infections in humans and animals. One-week-old germ-free piglets were orally colonized/infected with the Salmonella Typhimurium LT2 strain or its isogenic rough ΔrfaL, ΔrfaG or ΔrfaC mutants with exactly defined lipopolysaccharide (LPS) defects. After 24 h, the piglets were euthanized and the colonization of the small intestine, translocations into the mesenteric lymph nodes, liver, spleen, lungs, and bacteremia, along with changes in the ileum histology, and transcription levels of the tight junction proteins claudin-1, claudin-2, and occludin were all assessed. Additionally, transcription levels of IL-8, TNF-α, and IL-10 in the terminal ileum, and their local and systemic protein levels were evaluated. Wild-type Salmonella Typhimurium showed the highest translocation, histopathological changes, upregulation of claudins and downregulation of occludin, transcription of the cytokines, intestinal IL-8 and TNF-α levels, and systemic TNF-α and IL-10 levels. Depending on the extent of the incompleteness of the LPS, the levels of the respective elements decreased, or no changes were observed at all in the piglets colonized/infected with Δrfa mutants. Intestinal IL-10 and systemic IL-8 levels were not detected in any piglet groups. This study provided foundational data on the gnotobiotic piglet response to colonization/infection with the exactly defined rough Salmonella Typhimurium LT2 isogenic mutants.

Zobrazit více v PubMed

Hurley D., McCusker M.P., Fanning S., Martins M. Salmonella-host interactions—Modulation of the host innate immune system. Front. Immunol. 2014;5:481. doi: 10.3389/fimmu.2014.00481. PubMed DOI PMC

Haraga A., Ohlson M.B., Miller S.I. Salmonellae interplay with host cells. Nat. Rev. Microbiol. 2008;6:53–66. doi: 10.1038/nrmicro1788. PubMed DOI

Robarge M.E., Ramos-Vara J.A. Pathology in practice. Enteric salmonellosis. J. Am. Vet. Med. Assoc. 2014;245:643–645. doi: 10.2460/javma.245.6.643. PubMed DOI

Keestra-Gounder A.M., Tsolis R.M., Bäumler A.J. Now you see me, now you don’t: The interaction of Salmonella with innate immune receptors. Nat. Rev. Microbiol. 2015;13:206–216. doi: 10.1038/nrmicro3428. PubMed DOI

Santos R.L., Tsolis R.M., Bäumler A.J., Adams L.G. Pathogenesis of Salmonella-induced enteritis. Braz. J. Med. Biol. Res. 2003;36:3–12. doi: 10.1590/S0100-879X2003000100002. PubMed DOI

Nikaido H. Prevention of drug access to bacterial targets: Permeability barriers and active efflux. Science. 1994;264:382–388. doi: 10.1126/science.8153625. PubMed DOI

Raetz C.R., Whitfield C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 2002;71:635–700. doi: 10.1146/annurev.biochem.71.110601.135414. PubMed DOI PMC

Beveridge T.J. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 1999;181:4725–4733. PubMed PMC

Mikolajczyk A., Zlotkowska D. Subclinical lipopolysaccharide from Salmonella Enteritidis induces dysregulation of bioactive substances from selected brain sections and glands of neuroendocrine axes. Toxins. 2019;11:91. doi: 10.3390/toxins11020091. PubMed DOI PMC

Wang H., Ma S. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am. J. Emerg. Med. 2008;26:711–715. doi: 10.1016/j.ajem.2007.10.031. PubMed DOI

Caroff M., Karibian D. Structure of bacterial lipopolysaccharides. Carbohydr. Res. 2003;338:2431–2447. doi: 10.1016/j.carres.2003.07.010. PubMed DOI

Kong Q., Yang J., Liu Q., Alamuri P., Roland K.L., Curtiss R., III Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar Typhimurium. Infect. Immun. 2011;79:4227–4239. doi: 10.1128/IAI.05398-11. PubMed DOI PMC

Leyman B., Boyen F., Van P.A., Verbrugghe E., Haesebrouck F., Pasmans F. Salmonella Typhimurium LPS mutations for use in vaccines allowing differentiation of infected and vaccinated pigs. Vaccine. 2011;29:3679–3685. doi: 10.1016/j.vaccine.2011.03.004. PubMed DOI

Foster N., Lovell M.A., Marston K.L., Hulme S.D., Frost A.J., Bland P., Barrow P.A. Rapid protection of gnotobiotic pigs against experimental salmonellosis following induction of polymorphonuclear leukocytes by avirulent Salmonella enterica. Infect. Immun. 2003;71:2182–2191. doi: 10.1128/IAI.71.4.2182-2191.2003. PubMed DOI PMC

Splichal I., Trebichavsky I., Splichalova A., Barrow P.A. Protection of gnotobiotic pigs against Salmonella enterica serotype Typhimurium by rough mutant of the same serotype is accompanied by the change of local and systemic cytokine response. Vet. Immunol. Immunopathol. 2005;103:155–161. doi: 10.1016/j.vetimm.2004.09.001. PubMed DOI

Crhanova M., Malcova M., Mazgajova M., Karasova D., Sebkova A., Fucikova A., Bortlicek Z., Pilousova L., Kyrova K., Dekanova M., et al. LPS structure influences protein secretion in Salmonella enterica. Vet. Microbiol. 2011;152:131–137. doi: 10.1016/j.vetmic.2011.04.018. PubMed DOI

Karasova D., Sebkova A., Vrbas V., Havlickova H., Sisak F., Rychlik I. Comparative analysis of Salmonella enterica serovar Enteritidis mutants with a vaccine potential. Vaccine. 2009;27:5265–5270. doi: 10.1016/j.vaccine.2009.06.060. PubMed DOI

Matiasovic J., Stepanova H., Volf J., Kubala L., Ovesna P., Rychlik I., Faldyna M. Influence of the lipopolysaccharide structure of Salmonella enterica serovar Enteritidis on interactions with pig neutrophils. Vet. Microbiol. 2011;150:167–172. doi: 10.1016/j.vetmic.2011.01.007. PubMed DOI

Stepanova H., Volf J., Malcova M., Matiasovic J., Faldyna M., Rychlik I. Association of attenuated mutants of Salmonella enterica serovar Enteritidis with porcine peripheral blood leukocytes. FEMS Microbiol. Lett. 2011;321:37–42. doi: 10.1111/j.1574-6968.2011.02305.x. PubMed DOI

Lunney J.K. Advances in swine biomedical model genomics. Int. J. Biol. Sci. 2007;3:179–184. doi: 10.7150/ijbs.3.179. PubMed DOI PMC

Meurens F., Summerfield A., Nauwynck H., Saif L., Gerdts V. The pig: A model for human infectious diseases. Trends Microbiol. 2012;20:50–57. doi: 10.1016/j.tim.2011.11.002. PubMed DOI PMC

Goldfarb R.D., Dellinger R.P., Parrillo J.E. Porcine models of severe sepsis: Emphasis on porcine peritonitis. Shock. 2005;24(Suppl. S1):75–81. doi: 10.1097/01.shk.0000191337.01036.b7. PubMed DOI

Michie H.R. The value of animal models in the development of new drugs for the treatment of the sepsis syndrome. J. Antimicrob. Chemother. 1998;41(Suppl. S1):47–49. doi: 10.1093/jac/41.suppl_1.47. PubMed DOI

Stecher B., Hardt W.D. Mechanisms controlling pathogen colonization of the gut. Curr. Opin. Microbiol. 2011;14:82–91. doi: 10.1016/j.mib.2010.10.003. PubMed DOI

Tremaroli V., Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–249. doi: 10.1038/nature11552. PubMed DOI

Mooser C., de Agüero M.G., Ganal-Vonarburg S.C. Standardization in host-microbiota interaction studies: Challenges, gnotobiology as a tool, and perspective. Curr. Opin. Microbiol. 2018;44:50–60. doi: 10.1016/j.mib.2018.07.007. PubMed DOI

Salmon H., Berri M., Gerdts V., Meurens F. Humoral and cellular factors of maternal immunity in swine. Dev. Comp. Immunol. 2009;33:384–393. doi: 10.1016/j.dci.2008.07.007. PubMed DOI

Splichalova A., Slavikova V., Splichalova Z., Splichal I. Preterm life in sterile conditions: A study on preterm, germ-free piglets. Front. Immunol. 2018;9:220. doi: 10.3389/fimmu.2018.00220. PubMed DOI PMC

McClelland M., Sanderson K.E., Spieth J., Clifton S.W., Latreille P., Courtney L., Porwollik S., Ali J., Dante M., Du F., et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature. 2001;413:852–856. doi: 10.1038/35101614. PubMed DOI

Clarke R.C., Gyles C.L. Virulence of wild and mutant strains of Salmonella typhimurium in ligated intestinal segments of calves, pigs, and rabbits. Am. J. Vet. Res. 1987;48:504–510. PubMed

Trebichavsky I., Splichalova A., Rychlik I., Hojna H., Muneta Y., Mori Y., Splichal I. Attenuated aroA Salmonella enterica serovar Typhimurium does not induce inflammatory response and early protection of gnotobiotic pigs against parental virulent LT2 strain. Vaccine. 2006;24:4285–4289. doi: 10.1016/j.vaccine.2006.02.054. PubMed DOI

Barthel M., Hapfelmeier S., Quintanilla-Martinez L., Kremer M., Rohde M., Hogardt M., Pfeffer K., Russmann H., Hardt W.D. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 2003;71:2839–2858. doi: 10.1128/IAI.71.5.2839-2858.2003. PubMed DOI PMC

Dlabac V., Trebichavsky I., Rehakova Z., Hofmanova B., Splichal I., Cukrowska B. Pathogenicity and protective effect of rough mutants of Salmonella species in germ-free piglets. Infect. Immun. 1997;65:5238–5243. PubMed PMC

Galen J.E., Buskirk A.D., Tennant S.M., Pasetti M.F. Live Attenuated Human Salmonella Vaccine Candidates: Tracking the Pathogen in Natural Infection and Stimulation of Host Immunity. EcoSal Plus. 2016;7 doi: 10.1128/ecosalplus.ESP-0010-2016. PubMed DOI PMC

Zhang K., Griffiths G., Repnik U., Hornef M. Seeing is understanding: Salmonella’s way to penetrate the intestinal epithelium. Int. J. Med. Microbiol. 2018;308:97–106. doi: 10.1016/j.ijmm.2017.09.011. PubMed DOI

Gunzel D., Fromm M. Claudins and other tight junction proteins. Compr. Physiol. 2012;2:1819–1852. doi: 10.1002/cphy.c110045. PubMed DOI

Liu X., Xia B., He T., Li D., Su J.H., Guo L., Wang J.F., Zhu Y.H. Oral administration of a select mixture of Lactobacillus and Bacillus alleviates inflammation and maintains mucosal barrier integrity in the ileum of pigs challenged with Salmonella Infantis. Microorganisms. 2019;7:135. doi: 10.3390/microorganisms7050135. PubMed DOI PMC

Edelblum K.L., Shen L., Weber C.R., Marchiando A.M., Clay B.S., Wang Y., Prinz I., Malissen B., Sperling A.I., Turner J.R. Dynamic migration of gammadelta intraepithelial lymphocytes requires occludin. Proc. Natl. Acad. Sci. USA. 2012;109:7097–7102. doi: 10.1073/pnas.1112519109. PubMed DOI PMC

Kohler H., Sakaguchi T., Hurley B.P., Kase B.A., Reinecker H.C., McCormick B.A. Salmonella enterica serovar Typhimurium regulates intercellular junction proteins and facilitates transepithelial neutrophil and bacterial passage. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;293:G178–G187. doi: 10.1152/ajpgi.00535.2006. PubMed DOI

Loetscher Y., Wieser A., Lengefeld J., Kaiser P., Schubert S., Heikenwalder M., Hardt W.D., Stecher B. Salmonella transiently reside in luminal neutrophils in the inflamed gut. PLoS ONE. 2012;7:e34812. doi: 10.1371/journal.pone.0034812. PubMed DOI PMC

Splichalova A., Jenistova V., Splichalova Z., Splichal I. Colonization of preterm gnotobiotic piglets with probiotic Lactobacillus rhamnosus GG and its interference with Salmonella Typhimurium. Clin. Exp. Immunol. 2019;195:381–394. doi: 10.1111/cei.13236. PubMed DOI PMC

Eichner M., Protze J., Piontek A., Krause G., Piontek J. Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin. Pflugers Arch. 2017;469:77–90. doi: 10.1007/s00424-016-1902-x. PubMed DOI

Splichal I., Splichalova A. Experimental enteric bacterial infections in pigs. J. Infect. Dis. 2018;218:504–505. doi: 10.1093/infdis/jiy185. PubMed DOI

Baggiolini M., Walz A., Kunkel S.L. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J. Clin. Investig. 1989;84:1045–1049. doi: 10.1172/JCI114265. PubMed DOI PMC

Sedger L.M., McDermott M.F. TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants—past, present and future. Cytokine Growth Factor Rev. 2014;25:453–472. doi: 10.1016/j.cytogfr.2014.07.016. PubMed DOI

Penaloza H.F., Schultz B.M., Nieto P.A., Salazar G.A., Suazo I., Gonzalez P.A., Riedel C.A., Alvarez-Lobos M.M., Kalergis A.M., Bueno S.M. Opposing roles of IL-10 in acute bacterial infection. Cytokine Growth Factor Rev. 2016;32:17–30. doi: 10.1016/j.cytogfr.2016.07.003. PubMed DOI

Jeong K.I., Zhang Q., Nunnari J., Tzipori S. A piglet model of acute gastroenteritis induced by Shigella dysenteriae Type 1. J. Infect. Dis. 2010;201:903–911. doi: 10.1086/650995. PubMed DOI PMC

Splichalova A., Splichal I. Local and systemic occurrences of HMGB1 in gnotobiotic piglets infected with E. coli O55 are related to bacterial translocation and inflammatory cytokines. Cytokine. 2012;60:597–600. doi: 10.1016/j.cyto.2012.07.026. PubMed DOI

Collado-Romero M., Arce C., Ramirez-Boo M., Carvajal A., Garrido J.J. Quantitative analysis of the immune response upon Salmonella typhimurium infection along the porcine intestinal gut. Vet. Res. 2010;41:23. doi: 10.1051/vetres/2009072. PubMed DOI PMC

Knetter S.M., Bearson S.M., Huang T.H., Kurkiewicz D., Schroyen M., Nettleton D., Berman D., Cohen V., Lunney J.K., Ramer-Tait A.E., et al. Salmonella enterica serovar Typhimurium-infected pigs with different shedding levels exhibit distinct clinical, peripheral cytokine and transcriptomic immune response phenotypes. Innate Immun. 2015;21:227–241. doi: 10.1177/1753425914525812. PubMed DOI

Splichalova A., Splichal I., Chmelarova P., Trebichavsky I. Alarmin HMGB1 is released in the small intestine of gnotobiotic piglets infected with enteric pathogens and its level in plasma reflects severity of sepsis. J. Clin. Immunol. 2011;31:488–497. doi: 10.1007/s10875-010-9505-3. PubMed DOI

Ng P.C., Li K., Wong R.P., Chui K., Wong E., Li G., Fok T.F. Proinflammatory and anti-inflammatory cytokine responses in preterm infants with systemic infections. Arch. Dis. Child. Fetal Neonatal Ed. 2003;88:F209–F213. doi: 10.1136/fn.88.3.F209. PubMed DOI PMC

Gogos C.A., Drosou E., Bassaris H.P., Skoutelis A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: A marker for prognosis and future therapeutic options. J. Infect. Dis. 2000;181:176–180. doi: 10.1086/315214. PubMed DOI

Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI

Splichal I., Muneta Y., Mori Y., Takahashi E. Development and application of a pig IL-8 ELISA detection system. J. Immunoass. Immunochem. 2003;24:219–232. doi: 10.1081/IAS-120020086. PubMed DOI

Datsenko K.A., Wanner B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 2000;97:6640–6645. doi: 10.1073/pnas.120163297. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...