Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
Grantová podpora
T32 EB009035
NIBIB NIH HHS - United States
PubMed
35812837
PubMed Central
PMC9207599
DOI
10.1039/d2ma00341d
PII: d2ma00341d
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Carbon nanotubes (CNTs) with attractive physicochemical characteristics such as high surface area, mechanical strength, functionality, and electrical/thermal conductivity have been widely studied in different fields of science. However, the preparation of these nanostructures on a large scale is either expensive or sometimes ecologically unfriendly. In this context, plenty of studies have been conducted to discover innovative methods to fabricate CNTs in an eco-friendly and inexpensive manner. CNTs have been synthesized using various natural hydrocarbon precursors, including plant extracts (e.g., tea-tree extract), essential oils (e.g., eucalyptus and sunflower oil), biodiesel, milk, honey, and eggs, among others. Additionally, agricultural bio-wastes have been widely studied for synthesizing CNTs. Researchers should embrace the usage of natural and renewable precursors as well as greener methods to produce various types of CNTs in large quantities with the advantages of cost-effectiveness and environmentally benign features. In addition, multifunctionalized CNTs with improved biocompatibility and targeting features are promising candidates for cancer theranostic applications owing to their attractive optical, chemical, thermal, and electrical properties. This perspective discusses the recent developments in eco-friendly synthesis of CNTs using green chemistry-based techniques, natural renewable resources, and sustainable catalysts, with emphasis on important challenges and future perspectives and highlighting techniques for the functionalization or modification of CNTs. Significant and promising cancer theranostic applications as well as their biocompatibility and cytotoxicity issues are also discussed.
Department of Medicine Stanford University School of Medicine Stanford CA 94305 USA
Non communicable Diseases Research Center Bam University of Medical Sciences Bam Iran
Stanford Cardiovascular Institute Stanford University School of Medicine CA 94305 USA
Zobrazit více v PubMed
Chen Z. Zhang A. Wang X. Zhu J. Fan Y. Yu H. Yang Z. J. Nanomater. 2017:2017. doi: 10.1155/2017/3418932. DOI
Mostafavi E., Soltantabar P. and Webster T. J., Biomaterials in translational medicine, Elsevier, 2019, pp. 191–212
Iravani S. Green Chem. 2011;13:2638–2650. doi: 10.1039/C1GC15386B. DOI
Vivekanandhan S. Schreiber M. Muthuramkumar S. Misra M. Mohanty A. K. J. Appl. Polym. Sci. 2017;134:1–15. doi: 10.1002/app.44255. DOI
Iravani S. Varma R. S. Green Chem. 2020;22:2643–2661. doi: 10.1039/D0GC00885K. DOI
Iravani S. Varma R. S. Green Chem. 2020;22:612–636. doi: 10.1039/C9GC02835H. DOI
Iravani S. Varma R. S. Environ. Chem. Lett. 2020;18:703–727. doi: 10.1007/s10311-020-00984-0. PubMed DOI PMC
Zarghami Dehaghani M. Yousefi F. Sajadi S. M. Tajammal Munir M. Abida O. Habibzadeh S. Mashhadzadeh A. H. Rabiee N. Mostafavi E. Saeb M. R. Molecules. 2021;26:4920. doi: 10.3390/molecules26164920. PubMed DOI PMC
Zare H. Ahmadi S. Ghasemi A. Ghanbari M. Rabiee N. Bagherzadeh M. Karimi M. Webster T. J. Hamblin M. R. Mostafavi E. Int. J. Nanomed. 2021;16:1681–1706. doi: 10.2147/IJN.S299448. PubMed DOI PMC
Saliev T. J. Carbon Res. 2019;5:1–22.
Shoukat R. Imran Khan M. Microsyst. Technol. 2022;28:885–901. doi: 10.1007/s00542-022-05263-2. DOI
Rathinavel S. Priyadharshini K. Panda D. Mater. Sci. Eng., B. 2021;268:115095. doi: 10.1016/j.mseb.2021.115095. DOI
Dizaji B. F. Khoshbakht S. Farboudi A. Azarbaijan M. H. Irani M. Life Sci. 2020;257:118059. doi: 10.1016/j.lfs.2020.118059. PubMed DOI
Utreja P. Jain S. Tiwary A. K. Curr. Drug Delivery. 2010;7:152–161. doi: 10.2174/156720110791011783. PubMed DOI
Singh R. Torti S. V. Adv. Drug Delivery Rev. 2013;65:2045–2060. doi: 10.1016/j.addr.2013.08.001. PubMed DOI PMC
Marchesan S. Kostarelos K. Bianco A. Prato M. Mater. Today. 2015;18:12–19. doi: 10.1016/j.mattod.2014.07.009. DOI
Sheikhpour M. Naghinejad M. Kasaeian A. Lohrasbi A. Shahraeini S. S. Zomorodbakhsh S. Int. J. Nanomed. 2020;15:7063–7078. doi: 10.2147/IJN.S263238. PubMed DOI PMC
Chen D. Dougherty C. A. Zhu K. Hong H. J. Controlled Release. 2015;210:230–245. doi: 10.1016/j.jconrel.2015.04.021. PubMed DOI
Kostarelos K. Lacerda L. Pastorin G. Wu W. Wieckowski S. Luangsivilay J. Godefroy S. Pantarotto D. Briand J.-P. Muller S. Prato M. Bianco A. Nat. Nanotechnol. 2007;2:108–113. doi: 10.1038/nnano.2006.209. PubMed DOI
Sanginario A. Miccoli B. Demarchi D. Biosensors. 2017;7:9. doi: 10.3390/bios7010009. PubMed DOI PMC
Kościk I. Jankowski D. Jagusiak A. J. Carbon Res. 2022;8:1–16.
Deshmukh M. A. Jeon J. Y. Ha T. J. Biosens. Bioelectron. 2020;150:111919. doi: 10.1016/j.bios.2019.111919. PubMed DOI
Tang L. Xiao Q. Mei Y. He S. Zhang Z. Wang R. Wang W. J. Nanobiotechnol. 2021;19:423. doi: 10.1186/s12951-021-01174-y. PubMed DOI PMC
Hossen S. Hossain M. K. Basher M. K. Mia M. N.-H. Rahman M. T. Uddin M. J. J. Adv. Res. 2019;15:1–18. doi: 10.1016/j.jare.2018.06.005. PubMed DOI PMC
Liao Z. Wong S. W. Yeo H. L. Zhao Y. NanoImpact. 2020;20:100253. doi: 10.1016/j.impact.2020.100253. DOI
Niyogi S. Hamon M. A. Hu H. Zhao B. Bhowmik P. Sen R. Itkis M. E. Haddon R. C. Acc. Chem. Res. 2002;35:1105–1113. doi: 10.1021/ar010155r. PubMed DOI
Jamalipour Soufi G. Iravani P. Hekmatnia A. Mostafavi E. Khatami M. Iravani S. Comments Inorg. Chem. 2021 doi: 10.1080/02603594.2021.1990890. DOI
Jamalipour Soufi G. Iravani S. Green Chem. 2020;22:2662–2687. doi: 10.1039/D0GC00734J. DOI
Negri V. Pacheco-Torres J. Calle D. López-Larrubia P. Top. Curr. Chem. 2020;378:15. doi: 10.1007/s41061-019-0278-8. PubMed DOI
Chen Z. Zhang A. Wang X. Zhu J. Fan Y. Yu H. Yang Z. J. Nanomater. 2017;2017:1–13.
Simon J. Flahaut E. Golzio M. Materials. 2019;12:624. doi: 10.3390/ma12040624. PubMed DOI PMC
Suriani A. B. Azira A. A. Nik S. F. Md Nor R. Rusop M. Mater. Lett. 2009;63:2704–2706. doi: 10.1016/j.matlet.2009.09.048. DOI
Deng L. Xu Q. Wu H. Proc. Environ. Sci. 2016;31:662–667. doi: 10.1016/j.proenv.2016.02.122. DOI
Chufa B. M. Ananda Murthy H. C. Gonfa B. A. Anshebo T. Y. Green Chem. Lett. Rev. 2021;14:640–657.
Ukai M. Kameya H. Nakamura H. Shimoyama Y. Spectrochim. Acta, Part A. 2008;69:1417–1422. doi: 10.1016/j.saa.2007.09.043. PubMed DOI
Zhang J. Tahmasebi A. Omoriyekomwan J. E. Yu J. J. Anal. Appl. Pyrolysis. 2018;130:142–148. doi: 10.1016/j.jaap.2018.01.016. DOI
Omoriyekomwan J. E. Tahmasebi A. Dou J. Wang R. Yu J. Fuel Process. Technol. 2021;214:106686. doi: 10.1016/j.fuproc.2020.106686. DOI
Liu Y. He J. Zhang N. Zhang W. Zhou Y. Huang K. J. Mater. Sci. 2021;56:12559–12583. doi: 10.1007/s10853-021-06128-1. DOI
Kumar R. Singh R. K. Singh D. P. Renewable Sustainable Energy Rev. 2016;58:976–1006. doi: 10.1016/j.rser.2015.12.120. DOI
Makgabutlane B. Nthunya L. N. Maubane-Nkadimeng M. S. Mhlanga S. D. J. Environ. Chem. Eng. 2021;9:104736. doi: 10.1016/j.jece.2020.104736. DOI
Burakova E. A. Dyachkova T. P. Rukhov A. V. Tugolukov E. N. Galunin E. V. Tkachev A. G. Basheer A. A. Ali I. J. Mol. Liq. 2018;253:340–346. doi: 10.1016/j.molliq.2018.01.062. DOI
Chen M. Chen C. Shi S. Chen C. Jpn. J. Appl. Phys. 2003;42:614–619. doi: 10.1143/JJAP.42.614. DOI
Lee J. Y. Lee B. S. Thin Solid Films. 2002;418:85–88. doi: 10.1016/S0040-6090(02)00788-5. DOI
Hirata A. Yoshioka N. Tribol. Int. 2004;37:893–898. doi: 10.1016/j.triboint.2004.07.005. DOI
Mubarak N. M. Sahu J. N. Abdullah E. C. Jayakumar N. S. Ganesan P. Res. Chem. Intermed. 2016;42:3257–3281. doi: 10.1007/s11164-015-2209-9. DOI
Menéndez J. A. Arenillas A. Fidalgo B. Fernández Y. Zubizarreta L. Calvo E. G. Bermúdez J. M. Fuel Process. Technol. 2010;91:1–8. doi: 10.1016/j.fuproc.2009.08.021. DOI
Guo S. Dai Q. Wang Z. Yao H. Composites, Part B. 2017;124:134–143. doi: 10.1016/j.compositesb.2017.05.033. DOI
Zhang J. Tahmasebi A. Omoriyekomwan J. E. Yu J. Diamond Relat. Mater. 2019;91:98–106. doi: 10.1016/j.diamond.2018.11.012. DOI
Shi K. Yan J. Lester E. Wu T. Ind. Eng. Chem. Res. 2014;53:15012–15019. doi: 10.1021/ie503076n. DOI
Wang Z. Ogata H. Morimoto S. Ortiz-Medina J. Fujishige M. Takeuchi K. Muramatsu H. Hayashi T. Terrones M. Hashimoto Y. Endo M. Carbon. 2015;94:479–484. doi: 10.1016/j.carbon.2015.07.037. DOI
Hildago-Oporto P. Navia R. Hunter R. Coronado G. Gonzalez M. E. J. Environ. Manag. 2019;244:83–91. doi: 10.1016/j.jenvman.2019.03.082. PubMed DOI
Debalina B. Reddy R. B. Vinu R. J. Anal. Appl. Pyrolysis. 2017;124:310–318. doi: 10.1016/j.jaap.2017.01.018. DOI
Omoriyekomwan J. E. Tahmasebi A. Zhang J. Yu J. Energy Convers. Manag. 2019;192:88–99. doi: 10.1016/j.enconman.2019.04.042. DOI
Li J. Dai J. Liu G. Zhang H. Gao Z. Fu J. He Y. Huang Y. Biomass Bioenergy. 2016;94:228–244. doi: 10.1016/j.biombioe.2016.09.010. DOI
Rossi A. S. Pereira M. S. dos Santos J. M. Petri Jr I. Ataíde C. H. Mater. Sci. Forum. 2017;899:528–533.
Ingole P. Ranveer A. Deshmukh S. Deshmukh K. Int. J. Adv. Technol. Eng. Sci. 2016;4:78–84.
Haque A. K.-M. M. Oh G. S. Kim T. Kim J. Noh J. Huh S. Chung H. Jeong H. Mater. Res. Bull. 2016;73:247–255. doi: 10.1016/j.materresbull.2015.09.011. DOI
Zheng J. Bao R. Yi J. Yang P. Diamond Relat. Mater. 2016;68:93–101. doi: 10.1016/j.diamond.2016.06.006. DOI
Gomez V. Irusta S. Lawal O. B. Adams W. Hauge R. H. Dunnill C. W. Barron A. R. RSC Adv. 2016;6:11895–11902. doi: 10.1039/C5RA24854J. DOI
Ling Y. and Deokar A., in Carbon Nanotubes Applications on Electron Devices, ed. J. M. Marulanda, IntechOpen, UK (London), 2010, pp. 128–141
Economopoulos S. P. Karousis N. Rotas G. Pagona G. Tagmatarchis N. Curr. Org. Chem. 2011;15:1121–1132. doi: 10.2174/138527211795203031. DOI
Luo J. Liu Y. Wei H. Wang B. Wu K.-H. Zhang B. Su D. S. Green Chem. 2017;19:1052–1062. doi: 10.1039/C6GC02806C. DOI
Jung M. Hong S.-g. Moon J. Mater. Des. 2020;193:108813. doi: 10.1016/j.matdes.2020.108813. DOI
Cao X. T. Prakash Patil M. Phan Q. T. Le C. M.-Q. Ahn B.-H. Kim G.-D. Lim K. T. J. Ind. Eng. Chem. 2020;83:173–180. doi: 10.1016/j.jiec.2019.11.025. DOI
Mallakpour S. Abdolmaleki A. Azimi F. Ultrason. Sonochem. 2017;39:589–596. doi: 10.1016/j.ultsonch.2017.05.028. PubMed DOI
Le C. M.-Q. Cao X. T. Lim K. T. Ultrason. Sonochem. 2017;39:321–329. doi: 10.1016/j.ultsonch.2017.04.042. PubMed DOI
Li C. P. Teo B. K. Sun X. H. Wong N. B. Lee S. T. Chem. Mater. 2005:17.
Jeong S.-H. Ko J.-H. Park J.-B. Park W. J. Am. Chem. Soc. 2004;126:15982–15983. doi: 10.1021/ja0451867. PubMed DOI
Skrabalak S. E. Phys. Chem. Chem. Phys. 2009;11:4930–4942. doi: 10.1039/B823408F. PubMed DOI
Goswami A. D. Trivedi D. H. Jadhav N. L. Pinjari D. V. J. Environ. Chem. Eng. 2021;9:106118. doi: 10.1016/j.jece.2021.106118. DOI
Romanovicz V. Berns B. A. Carpenter S. D. Carpenter D. Int. J. Energy Power Eng. 2013;7:665–668.
Kumar M. Ando Y. J. Phys.: Conf. Ser. 2007;61:129. doi: 10.1088/1742-6596/61/1/129. DOI
Wani T. U. Mohi-Ud-Din R. Wani T. A. Mir R. H. Itoo A. M. Sheikh F. A. Khan N. A. Pottoo F. H. Curr. Pharm. Biotechnol. 2021;22:793–807. PubMed
Verma S. K. Das A. K. Gantait S. Kumar V. Gurel E. Sci. Total Environ. 2019;667:485–499. doi: 10.1016/j.scitotenv.2019.02.409. PubMed DOI
Endo M. Takeuchi K. Kim Y. A. Park K. C. Ichiki T. Hayashi T. Fukuyo T. Iinou S. Su D. S. Terrones M. Dresselhaus M. S. ChemSusChem. 2008;1:820–822. doi: 10.1002/cssc.200800150. PubMed DOI
Zhang Q. Zhao M.-Q. Huang J.-Q. Liu Y. Wang Y. Qian W.-Z. Wei F. Carbon. 2009;47:2600–2610. doi: 10.1016/j.carbon.2009.05.012. DOI
Zhang W.-D. Phang I. Y. Liu T. X. Adv. Mater. 2006;18:73–77. doi: 10.1002/adma.200501217. DOI
Kumar A. Kostikov Y. Zanatta M. Sorarù G. D. Orberger B. Nessim G. D. Mariotto G. Diamond Relat. Mater. 2019;97:107433. doi: 10.1016/j.diamond.2019.05.018. DOI
Malik S. Polyhedron. 2018;152:90–93. doi: 10.1016/j.poly.2018.06.033. DOI
Tripathi N. Pavelyev V. Islam S. S. Appl. Nanosci. 2017;7:557–566. doi: 10.1007/s13204-017-0598-3. DOI
Janas D. Sustainability. 2020;12:4115. doi: 10.3390/su12104115. DOI
Qu J. Luo C. Cong Q. Yuan X. J. Mater. Cycles Waste Manag. 2014;16:162–166. doi: 10.1007/s10163-013-0156-3. DOI
Paul S. Samdarshi S. K. New Carbon Mater. 2011;26:85–88. doi: 10.1016/S1872-5805(11)60068-1. DOI
Abdel Hamid Z. Abdul Azim A. Abdel Mouez F. Abdel Rehim S. S. J. Anal. Appl. Pyrolysis. 2017;126:218–229. doi: 10.1016/j.jaap.2017.06.005. DOI
Patel D. K. Kim H.-B. Dutta S. D. Ganguly K. Lim K.-T. Materials. 2020;13:1679. doi: 10.3390/ma13071679. PubMed DOI PMC
Ghosh P. Afre R. A. Soga T. Jimbo T. Mater. Lett. 2007;61:3768–3770. doi: 10.1016/j.matlet.2006.12.030. DOI
Zhu J. Jia J. Kwong F. L. Leung Ng D. H. Tjong S. C. Biomass Bioenergy. 2012;36:12–19. doi: 10.1016/j.biombioe.2011.08.023. DOI
Lotfy V. F. Fathy N. A. Basta A. H. J. Environ. Chem. Eng. 2018;6:6263–6274. doi: 10.1016/j.jece.2018.09.055. DOI
Awasthi K. Kumar R. Tiwari R. S. Srivastava O. N. J. Exp. Nanosci. 2010;5:498–508. doi: 10.1080/17458081003664159. DOI
Kumar R. Singh R. K. Tiwari R. S. Mater. Des. 2016;94:166–175. doi: 10.1016/j.matdes.2016.01.025. DOI
Kumar R. Tiwari R. S. Srivastava O. N. Nanoscale Res. Lett. 2011;6:92. doi: 10.1186/1556-276X-6-92. PubMed DOI PMC
Augustine S. Singh J. Srivastava M. Sharma M. Das A. Malhotra B. D. Biomater. Sci. 2017;5:901–952. doi: 10.1039/C7BM00008A. PubMed DOI
Derakhshi M. Daemi S. Shahini P. Habibzadeh A. Mostafavi E. Ashkarran A. A. J. Funct. Biomater. 2022;13:27. doi: 10.3390/jfb13010027. PubMed DOI PMC
Ashrafizadeh M. Saebfar H. Gholami M. H. Hushmandi K. Zabolian A. Bikarannejad P. Hashemi M. Daneshi S. Mirzaei S. Sharifi E. Kumar A. P. Khan H. Sheikh Hossein H. H. Vosough M. Rabiee N. Thakur V. K. Makvandi P. Mishra Y. K. Tay F. R. Wang Y. Zarrabi A. Orive G. Mostafavi E. Expert Opin. Drug Delivery. 2022;19:355–382. doi: 10.1080/17425247.2022.2041598. PubMed DOI
Vasilescu A. Hayat A. Gáspár S. Marty J.-L. Electroanalysis. 2018;30:2–19. doi: 10.1002/elan.201700578. DOI
Saleem J. Wang L. Chen C. Adv. Healthcare Mater. 2018;7:1800525. doi: 10.1002/adhm.201800525. PubMed DOI
Park K. ACS Nano. 2013;7:7442–7447. doi: 10.1021/nn404501g. PubMed DOI PMC
Poland C. A. Duffin R. Kinloch I. Maynard A. Wallace W. A. Seaton A. Stone V. Brown S. MacNee W. Donaldson K. Nat. Nanotechnol. 2008;3:423–428. doi: 10.1038/nnano.2008.111. PubMed DOI
Grosse Y. Loomis D. Guyton K. Z. Lauby-Secretan B. Ghissassi F. E. Bouvard V. Benbrahim-Tallaa L. Guha N. Scoccianti C. Mattock H. Straif K. Lancet Oncol. 2014;15:1427–1428. doi: 10.1016/S1470-2045(14)71109-X. PubMed DOI
Chen D. Dougherty C. A. Zhu K. Hong H. J. Controlled Release. 2015;210:230–245. doi: 10.1016/j.jconrel.2015.04.021. PubMed DOI
Tonelli F. M. Goulart V. A. Gomes K. N. Ladeira M. S. Santos A. K. Lorençon E. Ladeira L. O. Resende R. R. Nanomedicine. 2015;10:2423–2450. doi: 10.2217/nnm.15.65. PubMed DOI
Bhattacharya K. Mukherjee S. P. Gallud A. Burkert S. C. Bistarelli S. Bellucci S. Bottini M. Star A. Fadeel B. Nanomedicine. 2016;12:333–351. doi: 10.1016/j.nano.2015.11.011. PubMed DOI PMC
Ravi Kiran A. V.-V. V. Kusuma Kumari G. Krishnamurthy P. T. J. Drug Delivery Sci. Technol. 2020;59:101892. doi: 10.1016/j.jddst.2020.101892. DOI
Raj S. Khurana S. Choudhari R. Kesari K. K. Kamal M. A. Garg N. Ruokolainen J. Das B. C. Kumar D. Semin. Cancer Biol. 2021;69:166–177. doi: 10.1016/j.semcancer.2019.11.002. PubMed DOI
Carrion C. C. Nasrollahzadeh M. Sajjadi M. Jaleh B. Jamalipour Soufi G. Iravani S. Int. J. Biol. Macromol. 2021;178:193–228. doi: 10.1016/j.ijbiomac.2021.02.123. PubMed DOI
Nasrollahzadeh M. Sajjadi M. Iravani S. Varma R. S. Nanomaterials. 2020;10:1784. doi: 10.3390/nano10091784. doi: 10.3390/nano10091784. PubMed DOI PMC
Nasrollahzadeh M. Sajjadi M. Iravani S. Varma R. S. Chemosphere. 2021;263:128005. doi: 10.1016/j.chemosphere.2020.128005. PubMed DOI PMC
Iravani S. Varma R. S. Mater. Adv. 2021;2:2906–2917. doi: 10.1039/D1MA00189B. DOI
Iravani S. Varma R. S. ACS Biomater. Sci. Eng. 2021;7:1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI
Badea N. Craciun M. M. Dragomir A. S. Balas M. Dinischiotu A. Nistor C. Gavan C. Ionita D. Mater. Chem. Phys. 2020;241:122435. doi: 10.1016/j.matchemphys.2019.122435. DOI
El-Shahawy A. A.-G. Elnagar N. Zohery M. Abd Elhafeez M. S. El-Dek S. I. Int. J. Polym. Mater. Polym. Biomater. 2021 doi: 10.1080/00914037.2021.1925277. DOI
Aoki K. Saito N. Nanomaterials. 2020;10:264. doi: 10.3390/nano10020264. PubMed DOI PMC
Saleemi M. A. Kong Y. L. Yong P. V.-C. Wong E. H. J. Drug Delivery Sci. Technol. 2020;59:101855. doi: 10.1016/j.jddst.2020.101855. DOI
Eskandari M. Hosseini S. H. Adeli M. Pourjavadi A. Iran. Polym. J. 2014;23:387–403. doi: 10.1007/s13726-014-0228-9. DOI
Zhang Y. Bai Y. Yan B. Drug Discovery Today. 2010;15:428–435. doi: 10.1016/j.drudis.2010.04.005. PubMed DOI PMC
Berber M. R. Elkhenany H. Hafez I. H. El-Badawy A. Essawy M. El-Badri N. Nanomedicine. 2020;15:793–808. doi: 10.2217/nnm-2019-0445. doi: 10.2217/nnm-2019-0445. PubMed DOI
Singhai N. J. Maheshwari R. Ramteke S. Colloids Interface Sci. Commun. 2020;35:100235. doi: 10.1016/j.colcom.2020.100235. DOI
Gu Y.-J. Cheng J. Jin J. Cheng S. H. Wong W.-T. Int. J. Nanomed. 2011;6:2889–2898. PubMed PMC
Wang Y. Wang C. Jia Y. Cheng X. Lin Q. Zhu M. Lu Y. Ding L. Weng Z. Wu K. PLoS One. 2014;9:e104209. doi: 10.1371/journal.pone.0104209. PubMed DOI PMC
Koh B. Park S. B. Yoon E. Yoo H. M. Lee D. Heo J. N. Ahn S. J. Pharm. Sci. 2019;108:3704–3712. doi: 10.1016/j.xphs.2019.07.011. PubMed DOI
Li H. Zhang N. Hao Y. Wang Y. Jia S. Zhang H. Drug Delivery. 2019;26:1017–1026. doi: 10.1080/10717544.2019.1672829. PubMed DOI PMC
Bartholomeusz G. Cherukuri P. Kingston J. Cognet L. Lemos R. Leeuw T. K. Gumbiner-Russo L. Weisman R. B. Powis G. Nano Res. 2009;2:279–291. doi: 10.1007/s12274-009-9026-7. PubMed DOI PMC
Wang X. Ren J. Qu X. ChemMedChem. 2008;3:940–945. doi: 10.1002/cmdc.200700329. PubMed DOI
Karmakar A. Bratton S. M. Dervishi E. Ghosh A. Mahmood M. Xu Y. Mohammed Saeed L. Mustafa T. Casciano D. Radominska-Pandya A. Biris A. S. Int. J. Nanomed. 2011;6:1045–1055. PubMed PMC
Cirillo G. Vittorio O. Kunhardt D. Valli E. Farfalla A. Curcio M. Spizzirri U. G. Hampel S. Materials. 2019;12:2889. doi: 10.3390/ma12182889. PubMed DOI PMC
Prajapati S. K. Jain A. Shrivastava C. Jain A. K. Int. J. Biol. Macromol. 2019;123:691–703. doi: 10.1016/j.ijbiomac.2018.11.116. PubMed DOI
Salas-Treviño D. Saucedo-Cárdenas O. Loera-Arias M. D. Rodríguez-Rocha H. García-García A. Montes-de-Oca-Luna R. Piña-Mendoza E. I. Contreras-Torres F. F. García-Rivas G. Soto-Domínguez A. Nanomaterials. 2019;9:1572. doi: 10.3390/nano9111572. PubMed DOI PMC
Weng X. Wang M. Ge J. Yu S. Liu B. Zhong J. Kong J. Mol. BioSyst. 2009;5:1224–1231. doi: 10.1039/B906948H. PubMed DOI
Zhu Y. Sun Q. Liu Y. Ma T. Su L. Liu S. Shi X. Han D. Liang F. R. Soc. Open Sci. 2018;5:180159. doi: 10.1098/rsos.180159. PubMed DOI PMC
Zhang B. Wang H. Shen S. She X. Shi W. Chen J. Zhang Q. Hu Y. Pang Z. Jiang X. Biomaterials. 2016;79:46–55. doi: 10.1016/j.biomaterials.2015.11.061. PubMed DOI
Zhang P. Yi W. Hou J. Yoo S. Jin W. Yang Q. Int. J. Nanomed. 2018;13:3069. doi: 10.2147/IJN.S165232. PubMed DOI PMC
Yi W. Zhang P. Hou J. Chen W. Bai L. Yoo S. Khalid A. Hou X. Int. J. Biol. Macromol. 2018;120:1525–1532. doi: 10.1016/j.ijbiomac.2018.09.085. PubMed DOI
Zhang X. Chen J. Weng Z. Li Q. Zhao L. Yu N. Deng L. Xu W. Yang Y. Zhu Z. Huang H. Mol. Immunol. 2020;119:48–58. doi: 10.1016/j.molimm.2020.01.009. PubMed DOI
Ozgen P. S.-O. Atasoy S. Kurt B. Z. Durmus Z. Yigite G. Dag A. J. Mater. Chem. B. 2020;8:3123–3137. doi: 10.1039/C9TB02711D. PubMed DOI
Battigelli A. Wang J. T.-W. Russier J. Da Ros T. Kostarelos K. Al-Jamal K. T. Prato M. Bianco A. J.-S. Small. 2013;9:3610–3619. doi: 10.1002/smll.201300264. PubMed DOI
Singh P. Samorì C. Toma F. M. Bussy C. Nunes A. Al-Jamal K. T. Ménard-Moyon C. Prato M. Kostarelos K. Bianco A. J. Mater. Chem. 2011;21:4850–4860. doi: 10.1039/C0JM04064A. DOI
Hasnain M. S. and Nayak A. K., Carbon Nanotubes for Targeted Drug Delivery, Springer, 2019, pp. 1–910.1007/978-981-15-0910-0_1 DOI
Maleki R. Afrouzi H. H. Hosseini M. Toghraie D. Piranfar A. Rostami S. Comput. Methods Prog. Biomed. 2020;186:105210. doi: 10.1016/j.cmpb.2019.105210. PubMed DOI
Suo N. Wang M. Jin Y. Ding J. Gao X. Sun X. Zhang H. Cui M. Zheng J. Li N. Jin X. Jiang S. Int. J. Nanomed. 2019;14:1241–1254. doi: 10.2147/IJN.S189688. PubMed DOI PMC
Morais R. P. Novais G. B. Sangenito L. S. Santos A. L.-S. Priefer R. Morsink M. Mendonça M. C. Souto E. B. Severino P. Cardoso J. C. Int. J. Mol. Sci. 2020;21:4557. doi: 10.3390/ijms21124557. PubMed DOI PMC
Singh R. P. Sharma Sonali G. Singh S. Bharti S. Pandey B. L. Koch B. Muthu M. S. Mater. Sci. Eng., C. 2017;77:446–458. doi: 10.1016/j.msec.2017.03.225. PubMed DOI
Ji Z. Lin G. Lu Q. Meng L. Shen X. Dong L. Fu C. Zhang X. J. Colloid Interface Sci. 2012;365:143–149. doi: 10.1016/j.jcis.2011.09.013. PubMed DOI
Lu Y. J. Wei K. C. Ma C. C.-M. Yang S. Y. Chen J. P. Colloids Surf., B. 2012;89:1–9. doi: 10.1016/j.colsurfb.2011.08.001. PubMed DOI
Liu H. Xu H. Wang Y. He Z. Li S. Drug Dev. Ind. Pharm. 2012;38:1031–1038. doi: 10.3109/03639045.2011.637050. PubMed DOI
Adeli M. Hakimpoor F. Ashiri M. Kabiri R. Bavadi M. Soft Matter. 2011;7:4062–4070. doi: 10.1039/C0SM01550D. DOI
Yang F. Jin C. Yang D. Jiang Y. Li J. Di Y. Hu J. Wang C. Ni Q. Fu D. Eur. J. Cancer. 2011;47:1873–1882. doi: 10.1016/j.ejca.2011.03.018. PubMed DOI
Mohammadi M. Salmasi Z. Hashemi M. Mosaffa F. Abnous K. Ramezani M. Int. J. Pharm. 2015;485:50–60. doi: 10.1016/j.ijpharm.2015.02.031. PubMed DOI
McDevitt M. R. Chattopadhyay D. Kappel B. J. Jaggi J. S. Schiffman S. R. Antczak C. Njardarson J. T. Brentjens R. Scheinberg D. A. J. Nucl. Med. 2007;48:1180–1189. doi: 10.2967/jnumed.106.039131. PubMed DOI
Dong X. Sun Z. Wang X. Leng X. Nanomedicine. 2017;13:2271–2280. doi: 10.1016/j.nano.2017.07.002. PubMed DOI
Chen J. Chen S. Zhao X. Kuznetsova L. V. Wong S. S. Ojima I. J. Am. Chem. Soc. 2008;130:16778–16785. doi: 10.1021/ja805570f. PubMed DOI PMC
Zhang Z. Yang X. Zhang Y. Zeng B. Wang S. Zhu T. Roden R. B.-S. Chen Y. Yang R. Clin. Cancer Res. 2006;12:4933–4939. doi: 10.1158/1078-0432.CCR-05-2831. PubMed DOI
Ozgen P. S.-O. Atasoy S. Kurt B. Z. Durmus Z. Yigit G. Dag A. J. Mater. Chem. B. 2020;8:3123–3137. doi: 10.1039/C9TB02711D. PubMed DOI
Genady A. R. Fong D. Slikboer S. R. El-Zaria M. E. Swann R. Janzen N. Faraday A. McNelles S. A. Rezvani M. Sadeghi S. Adronov A. Valliant J. F. ACS Appl. Nano Mater. 2020;3:11819–11824. doi: 10.1021/acsanm.0c02339. DOI
Golubewa L. Kulahava T. Kunitskaya Y. Bulai P. Shuba M. Karpicz R. Biochem. Biophys. Res. Commun. 2020;529:647–651. doi: 10.1016/j.bbrc.2020.06.100. PubMed DOI
Sundaram P. Abrahamse H. Int. J. Mol. Sci. 2020;21:4745. doi: 10.3390/ijms21134745. PubMed DOI PMC
Ceppi L. Bardhan N. M. Na Y. Siegel A. Rajan N. Fruscio R. Carmen M. G. D. Belcher A. M. Birrer M. J. ACS Nano. 2019;13:5356–5365. doi: 10.1021/acsnano.8b09829. PubMed DOI
Díez-Pascual A. M. Macromolecules. 2021;1:64–83.
Dubey R. Dutta D. Sarkar A. Chattopadhyay P. Nanoscale Adv. 2021;3:5722–5744. doi: 10.1039/D1NA00293G. PubMed DOI PMC
Kostarelos K. Nat. Biotechnol. 2008;26:774–776. doi: 10.1038/nbt0708-774. PubMed DOI
Harik V. M. Toxicol. Lett. 2017;273:69–85. doi: 10.1016/j.toxlet.2017.03.016. PubMed DOI
Alharbi T. M. Li Q. Raston C. L. ACS Sustainable Chem. Eng. 2021;9:16044–16051. doi: 10.1021/acssuschemeng.1c03109. DOI
Smart S. K. Cassady A. I. Lu G. Q. Martin D. J. Carbon. 2006;44:1034–1047. doi: 10.1016/j.carbon.2005.10.011. DOI
Gaffney A. M. Santos-Martinez M. J. Satti A. Major T. C. Wynne K. J. Gun'ko Y. K. Annich G. M. Elia G. Radomski M. W. Nanomedicine. 2015;11:39–46. doi: 10.1016/j.nano.2014.07.005. PubMed DOI
Ravichandran P. Baluchamy S. Gopikrishnan R. Biradar S. Ramesh V. Goornavar V. Thomas R. Wilson B. L. Jeffers R. Hall J. C. Ramesh G. T. J. Biol. Chem. 2011;286:29725–29733. doi: 10.1074/jbc.M111.251884. PubMed DOI PMC
Bianco A. Kostarelos K. Prato M. Chem. Commun. 2011;47:10182–10188. doi: 10.1039/C1CC13011K. PubMed DOI
Chłopek J. Czajkowska B. Szaraniec B. Frackowiak E. Szostak K. Béguin F. Carbon. 2006;44:1106–1111. doi: 10.1016/j.carbon.2005.11.022. DOI
Galassi T. V. Antman-Passig M. Yaari Z. Jessurun J. Schwartz R. E. Heller D. A. PLoS One. 2020;15:e0226791. doi: 10.1371/journal.pone.0226791. PubMed DOI PMC
Liang X. Li H. Dou J. Wang Q. He W. Wang C. Li D. Lin J.-M. Zhang Y. Adv. Mater. 2020;32:2000165. doi: 10.1002/adma.202000165. PubMed DOI
Zhang X. Liu M. Zhang X. Deng F. Zhou C. Hui J. Liu W. Wei Y. Toxicol. Res. 2015;4:160–168. doi: 10.1039/C4TX00066H. DOI
Jain S. Dongave S. M. Date T. Kushwah V. Mahajan R. R. Pujara N. Kumeria T. Popat A. ACS Biomater. Sci. Eng. 2019;5:3361–3372. doi: 10.1021/acsbiomaterials.9b00268. PubMed DOI