Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications

. 2022 Jun 20 ; 3 (12) : 4765-4782. [epub] 20220516

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35812837

Grantová podpora
T32 EB009035 NIBIB NIH HHS - United States

Carbon nanotubes (CNTs) with attractive physicochemical characteristics such as high surface area, mechanical strength, functionality, and electrical/thermal conductivity have been widely studied in different fields of science. However, the preparation of these nanostructures on a large scale is either expensive or sometimes ecologically unfriendly. In this context, plenty of studies have been conducted to discover innovative methods to fabricate CNTs in an eco-friendly and inexpensive manner. CNTs have been synthesized using various natural hydrocarbon precursors, including plant extracts (e.g., tea-tree extract), essential oils (e.g., eucalyptus and sunflower oil), biodiesel, milk, honey, and eggs, among others. Additionally, agricultural bio-wastes have been widely studied for synthesizing CNTs. Researchers should embrace the usage of natural and renewable precursors as well as greener methods to produce various types of CNTs in large quantities with the advantages of cost-effectiveness and environmentally benign features. In addition, multifunctionalized CNTs with improved biocompatibility and targeting features are promising candidates for cancer theranostic applications owing to their attractive optical, chemical, thermal, and electrical properties. This perspective discusses the recent developments in eco-friendly synthesis of CNTs using green chemistry-based techniques, natural renewable resources, and sustainable catalysts, with emphasis on important challenges and future perspectives and highlighting techniques for the functionalization or modification of CNTs. Significant and promising cancer theranostic applications as well as their biocompatibility and cytotoxicity issues are also discussed.

Zobrazit více v PubMed

Chen Z. Zhang A. Wang X. Zhu J. Fan Y. Yu H. Yang Z. J. Nanomater. 2017:2017. doi: 10.1155/2017/3418932. DOI

Mostafavi E., Soltantabar P. and Webster T. J., Biomaterials in translational medicine, Elsevier, 2019, pp. 191–212

Iravani S. Green Chem. 2011;13:2638–2650. doi: 10.1039/C1GC15386B. DOI

Vivekanandhan S. Schreiber M. Muthuramkumar S. Misra M. Mohanty A. K. J. Appl. Polym. Sci. 2017;134:1–15. doi: 10.1002/app.44255. DOI

Iravani S. Varma R. S. Green Chem. 2020;22:2643–2661. doi: 10.1039/D0GC00885K. DOI

Iravani S. Varma R. S. Green Chem. 2020;22:612–636. doi: 10.1039/C9GC02835H. DOI

Iravani S. Varma R. S. Environ. Chem. Lett. 2020;18:703–727. doi: 10.1007/s10311-020-00984-0. PubMed DOI PMC

Zarghami Dehaghani M. Yousefi F. Sajadi S. M. Tajammal Munir M. Abida O. Habibzadeh S. Mashhadzadeh A. H. Rabiee N. Mostafavi E. Saeb M. R. Molecules. 2021;26:4920. doi: 10.3390/molecules26164920. PubMed DOI PMC

Zare H. Ahmadi S. Ghasemi A. Ghanbari M. Rabiee N. Bagherzadeh M. Karimi M. Webster T. J. Hamblin M. R. Mostafavi E. Int. J. Nanomed. 2021;16:1681–1706. doi: 10.2147/IJN.S299448. PubMed DOI PMC

Saliev T. J. Carbon Res. 2019;5:1–22.

Shoukat R. Imran Khan M. Microsyst. Technol. 2022;28:885–901. doi: 10.1007/s00542-022-05263-2. DOI

Rathinavel S. Priyadharshini K. Panda D. Mater. Sci. Eng., B. 2021;268:115095. doi: 10.1016/j.mseb.2021.115095. DOI

Dizaji B. F. Khoshbakht S. Farboudi A. Azarbaijan M. H. Irani M. Life Sci. 2020;257:118059. doi: 10.1016/j.lfs.2020.118059. PubMed DOI

Utreja P. Jain S. Tiwary A. K. Curr. Drug Delivery. 2010;7:152–161. doi: 10.2174/156720110791011783. PubMed DOI

Singh R. Torti S. V. Adv. Drug Delivery Rev. 2013;65:2045–2060. doi: 10.1016/j.addr.2013.08.001. PubMed DOI PMC

Marchesan S. Kostarelos K. Bianco A. Prato M. Mater. Today. 2015;18:12–19. doi: 10.1016/j.mattod.2014.07.009. DOI

Sheikhpour M. Naghinejad M. Kasaeian A. Lohrasbi A. Shahraeini S. S. Zomorodbakhsh S. Int. J. Nanomed. 2020;15:7063–7078. doi: 10.2147/IJN.S263238. PubMed DOI PMC

Chen D. Dougherty C. A. Zhu K. Hong H. J. Controlled Release. 2015;210:230–245. doi: 10.1016/j.jconrel.2015.04.021. PubMed DOI

Kostarelos K. Lacerda L. Pastorin G. Wu W. Wieckowski S. Luangsivilay J. Godefroy S. Pantarotto D. Briand J.-P. Muller S. Prato M. Bianco A. Nat. Nanotechnol. 2007;2:108–113. doi: 10.1038/nnano.2006.209. PubMed DOI

Sanginario A. Miccoli B. Demarchi D. Biosensors. 2017;7:9. doi: 10.3390/bios7010009. PubMed DOI PMC

Kościk I. Jankowski D. Jagusiak A. J. Carbon Res. 2022;8:1–16.

Deshmukh M. A. Jeon J. Y. Ha T. J. Biosens. Bioelectron. 2020;150:111919. doi: 10.1016/j.bios.2019.111919. PubMed DOI

Tang L. Xiao Q. Mei Y. He S. Zhang Z. Wang R. Wang W. J. Nanobiotechnol. 2021;19:423. doi: 10.1186/s12951-021-01174-y. PubMed DOI PMC

Hossen S. Hossain M. K. Basher M. K. Mia M. N.-H. Rahman M. T. Uddin M. J. J. Adv. Res. 2019;15:1–18. doi: 10.1016/j.jare.2018.06.005. PubMed DOI PMC

Liao Z. Wong S. W. Yeo H. L. Zhao Y. NanoImpact. 2020;20:100253. doi: 10.1016/j.impact.2020.100253. DOI

Niyogi S. Hamon M. A. Hu H. Zhao B. Bhowmik P. Sen R. Itkis M. E. Haddon R. C. Acc. Chem. Res. 2002;35:1105–1113. doi: 10.1021/ar010155r. PubMed DOI

Jamalipour Soufi G. Iravani P. Hekmatnia A. Mostafavi E. Khatami M. Iravani S. Comments Inorg. Chem. 2021 doi: 10.1080/02603594.2021.1990890. DOI

Jamalipour Soufi G. Iravani S. Green Chem. 2020;22:2662–2687. doi: 10.1039/D0GC00734J. DOI

Negri V. Pacheco-Torres J. Calle D. López-Larrubia P. Top. Curr. Chem. 2020;378:15. doi: 10.1007/s41061-019-0278-8. PubMed DOI

Chen Z. Zhang A. Wang X. Zhu J. Fan Y. Yu H. Yang Z. J. Nanomater. 2017;2017:1–13.

Simon J. Flahaut E. Golzio M. Materials. 2019;12:624. doi: 10.3390/ma12040624. PubMed DOI PMC

Suriani A. B. Azira A. A. Nik S. F. Md Nor R. Rusop M. Mater. Lett. 2009;63:2704–2706. doi: 10.1016/j.matlet.2009.09.048. DOI

Deng L. Xu Q. Wu H. Proc. Environ. Sci. 2016;31:662–667. doi: 10.1016/j.proenv.2016.02.122. DOI

Chufa B. M. Ananda Murthy H. C. Gonfa B. A. Anshebo T. Y. Green Chem. Lett. Rev. 2021;14:640–657.

Ukai M. Kameya H. Nakamura H. Shimoyama Y. Spectrochim. Acta, Part A. 2008;69:1417–1422. doi: 10.1016/j.saa.2007.09.043. PubMed DOI

Zhang J. Tahmasebi A. Omoriyekomwan J. E. Yu J. J. Anal. Appl. Pyrolysis. 2018;130:142–148. doi: 10.1016/j.jaap.2018.01.016. DOI

Omoriyekomwan J. E. Tahmasebi A. Dou J. Wang R. Yu J. Fuel Process. Technol. 2021;214:106686. doi: 10.1016/j.fuproc.2020.106686. DOI

Liu Y. He J. Zhang N. Zhang W. Zhou Y. Huang K. J. Mater. Sci. 2021;56:12559–12583. doi: 10.1007/s10853-021-06128-1. DOI

Kumar R. Singh R. K. Singh D. P. Renewable Sustainable Energy Rev. 2016;58:976–1006. doi: 10.1016/j.rser.2015.12.120. DOI

Makgabutlane B. Nthunya L. N. Maubane-Nkadimeng M. S. Mhlanga S. D. J. Environ. Chem. Eng. 2021;9:104736. doi: 10.1016/j.jece.2020.104736. DOI

Burakova E. A. Dyachkova T. P. Rukhov A. V. Tugolukov E. N. Galunin E. V. Tkachev A. G. Basheer A. A. Ali I. J. Mol. Liq. 2018;253:340–346. doi: 10.1016/j.molliq.2018.01.062. DOI

Chen M. Chen C. Shi S. Chen C. Jpn. J. Appl. Phys. 2003;42:614–619. doi: 10.1143/JJAP.42.614. DOI

Lee J. Y. Lee B. S. Thin Solid Films. 2002;418:85–88. doi: 10.1016/S0040-6090(02)00788-5. DOI

Hirata A. Yoshioka N. Tribol. Int. 2004;37:893–898. doi: 10.1016/j.triboint.2004.07.005. DOI

Mubarak N. M. Sahu J. N. Abdullah E. C. Jayakumar N. S. Ganesan P. Res. Chem. Intermed. 2016;42:3257–3281. doi: 10.1007/s11164-015-2209-9. DOI

Menéndez J. A. Arenillas A. Fidalgo B. Fernández Y. Zubizarreta L. Calvo E. G. Bermúdez J. M. Fuel Process. Technol. 2010;91:1–8. doi: 10.1016/j.fuproc.2009.08.021. DOI

Guo S. Dai Q. Wang Z. Yao H. Composites, Part B. 2017;124:134–143. doi: 10.1016/j.compositesb.2017.05.033. DOI

Zhang J. Tahmasebi A. Omoriyekomwan J. E. Yu J. Diamond Relat. Mater. 2019;91:98–106. doi: 10.1016/j.diamond.2018.11.012. DOI

Shi K. Yan J. Lester E. Wu T. Ind. Eng. Chem. Res. 2014;53:15012–15019. doi: 10.1021/ie503076n. DOI

Wang Z. Ogata H. Morimoto S. Ortiz-Medina J. Fujishige M. Takeuchi K. Muramatsu H. Hayashi T. Terrones M. Hashimoto Y. Endo M. Carbon. 2015;94:479–484. doi: 10.1016/j.carbon.2015.07.037. DOI

Hildago-Oporto P. Navia R. Hunter R. Coronado G. Gonzalez M. E. J. Environ. Manag. 2019;244:83–91. doi: 10.1016/j.jenvman.2019.03.082. PubMed DOI

Debalina B. Reddy R. B. Vinu R. J. Anal. Appl. Pyrolysis. 2017;124:310–318. doi: 10.1016/j.jaap.2017.01.018. DOI

Omoriyekomwan J. E. Tahmasebi A. Zhang J. Yu J. Energy Convers. Manag. 2019;192:88–99. doi: 10.1016/j.enconman.2019.04.042. DOI

Li J. Dai J. Liu G. Zhang H. Gao Z. Fu J. He Y. Huang Y. Biomass Bioenergy. 2016;94:228–244. doi: 10.1016/j.biombioe.2016.09.010. DOI

Rossi A. S. Pereira M. S. dos Santos J. M. Petri Jr I. Ataíde C. H. Mater. Sci. Forum. 2017;899:528–533.

Ingole P. Ranveer A. Deshmukh S. Deshmukh K. Int. J. Adv. Technol. Eng. Sci. 2016;4:78–84.

Haque A. K.-M. M. Oh G. S. Kim T. Kim J. Noh J. Huh S. Chung H. Jeong H. Mater. Res. Bull. 2016;73:247–255. doi: 10.1016/j.materresbull.2015.09.011. DOI

Zheng J. Bao R. Yi J. Yang P. Diamond Relat. Mater. 2016;68:93–101. doi: 10.1016/j.diamond.2016.06.006. DOI

Gomez V. Irusta S. Lawal O. B. Adams W. Hauge R. H. Dunnill C. W. Barron A. R. RSC Adv. 2016;6:11895–11902. doi: 10.1039/C5RA24854J. DOI

Ling Y. and Deokar A., in Carbon Nanotubes Applications on Electron Devices, ed. J. M. Marulanda, IntechOpen, UK (London), 2010, pp. 128–141

Economopoulos S. P. Karousis N. Rotas G. Pagona G. Tagmatarchis N. Curr. Org. Chem. 2011;15:1121–1132. doi: 10.2174/138527211795203031. DOI

Luo J. Liu Y. Wei H. Wang B. Wu K.-H. Zhang B. Su D. S. Green Chem. 2017;19:1052–1062. doi: 10.1039/C6GC02806C. DOI

Jung M. Hong S.-g. Moon J. Mater. Des. 2020;193:108813. doi: 10.1016/j.matdes.2020.108813. DOI

Cao X. T. Prakash Patil M. Phan Q. T. Le C. M.-Q. Ahn B.-H. Kim G.-D. Lim K. T. J. Ind. Eng. Chem. 2020;83:173–180. doi: 10.1016/j.jiec.2019.11.025. DOI

Mallakpour S. Abdolmaleki A. Azimi F. Ultrason. Sonochem. 2017;39:589–596. doi: 10.1016/j.ultsonch.2017.05.028. PubMed DOI

Le C. M.-Q. Cao X. T. Lim K. T. Ultrason. Sonochem. 2017;39:321–329. doi: 10.1016/j.ultsonch.2017.04.042. PubMed DOI

Li C. P. Teo B. K. Sun X. H. Wong N. B. Lee S. T. Chem. Mater. 2005:17.

Jeong S.-H. Ko J.-H. Park J.-B. Park W. J. Am. Chem. Soc. 2004;126:15982–15983. doi: 10.1021/ja0451867. PubMed DOI

Skrabalak S. E. Phys. Chem. Chem. Phys. 2009;11:4930–4942. doi: 10.1039/B823408F. PubMed DOI

Goswami A. D. Trivedi D. H. Jadhav N. L. Pinjari D. V. J. Environ. Chem. Eng. 2021;9:106118. doi: 10.1016/j.jece.2021.106118. DOI

Romanovicz V. Berns B. A. Carpenter S. D. Carpenter D. Int. J. Energy Power Eng. 2013;7:665–668.

Kumar M. Ando Y. J. Phys.: Conf. Ser. 2007;61:129. doi: 10.1088/1742-6596/61/1/129. DOI

Wani T. U. Mohi-Ud-Din R. Wani T. A. Mir R. H. Itoo A. M. Sheikh F. A. Khan N. A. Pottoo F. H. Curr. Pharm. Biotechnol. 2021;22:793–807. PubMed

Verma S. K. Das A. K. Gantait S. Kumar V. Gurel E. Sci. Total Environ. 2019;667:485–499. doi: 10.1016/j.scitotenv.2019.02.409. PubMed DOI

Endo M. Takeuchi K. Kim Y. A. Park K. C. Ichiki T. Hayashi T. Fukuyo T. Iinou S. Su D. S. Terrones M. Dresselhaus M. S. ChemSusChem. 2008;1:820–822. doi: 10.1002/cssc.200800150. PubMed DOI

Zhang Q. Zhao M.-Q. Huang J.-Q. Liu Y. Wang Y. Qian W.-Z. Wei F. Carbon. 2009;47:2600–2610. doi: 10.1016/j.carbon.2009.05.012. DOI

Zhang W.-D. Phang I. Y. Liu T. X. Adv. Mater. 2006;18:73–77. doi: 10.1002/adma.200501217. DOI

Kumar A. Kostikov Y. Zanatta M. Sorarù G. D. Orberger B. Nessim G. D. Mariotto G. Diamond Relat. Mater. 2019;97:107433. doi: 10.1016/j.diamond.2019.05.018. DOI

Malik S. Polyhedron. 2018;152:90–93. doi: 10.1016/j.poly.2018.06.033. DOI

Tripathi N. Pavelyev V. Islam S. S. Appl. Nanosci. 2017;7:557–566. doi: 10.1007/s13204-017-0598-3. DOI

Janas D. Sustainability. 2020;12:4115. doi: 10.3390/su12104115. DOI

Qu J. Luo C. Cong Q. Yuan X. J. Mater. Cycles Waste Manag. 2014;16:162–166. doi: 10.1007/s10163-013-0156-3. DOI

Paul S. Samdarshi S. K. New Carbon Mater. 2011;26:85–88. doi: 10.1016/S1872-5805(11)60068-1. DOI

Abdel Hamid Z. Abdul Azim A. Abdel Mouez F. Abdel Rehim S. S. J. Anal. Appl. Pyrolysis. 2017;126:218–229. doi: 10.1016/j.jaap.2017.06.005. DOI

Patel D. K. Kim H.-B. Dutta S. D. Ganguly K. Lim K.-T. Materials. 2020;13:1679. doi: 10.3390/ma13071679. PubMed DOI PMC

Ghosh P. Afre R. A. Soga T. Jimbo T. Mater. Lett. 2007;61:3768–3770. doi: 10.1016/j.matlet.2006.12.030. DOI

Zhu J. Jia J. Kwong F. L. Leung Ng D. H. Tjong S. C. Biomass Bioenergy. 2012;36:12–19. doi: 10.1016/j.biombioe.2011.08.023. DOI

Lotfy V. F. Fathy N. A. Basta A. H. J. Environ. Chem. Eng. 2018;6:6263–6274. doi: 10.1016/j.jece.2018.09.055. DOI

Awasthi K. Kumar R. Tiwari R. S. Srivastava O. N. J. Exp. Nanosci. 2010;5:498–508. doi: 10.1080/17458081003664159. DOI

Kumar R. Singh R. K. Tiwari R. S. Mater. Des. 2016;94:166–175. doi: 10.1016/j.matdes.2016.01.025. DOI

Kumar R. Tiwari R. S. Srivastava O. N. Nanoscale Res. Lett. 2011;6:92. doi: 10.1186/1556-276X-6-92. PubMed DOI PMC

Augustine S. Singh J. Srivastava M. Sharma M. Das A. Malhotra B. D. Biomater. Sci. 2017;5:901–952. doi: 10.1039/C7BM00008A. PubMed DOI

Derakhshi M. Daemi S. Shahini P. Habibzadeh A. Mostafavi E. Ashkarran A. A. J. Funct. Biomater. 2022;13:27. doi: 10.3390/jfb13010027. PubMed DOI PMC

Ashrafizadeh M. Saebfar H. Gholami M. H. Hushmandi K. Zabolian A. Bikarannejad P. Hashemi M. Daneshi S. Mirzaei S. Sharifi E. Kumar A. P. Khan H. Sheikh Hossein H. H. Vosough M. Rabiee N. Thakur V. K. Makvandi P. Mishra Y. K. Tay F. R. Wang Y. Zarrabi A. Orive G. Mostafavi E. Expert Opin. Drug Delivery. 2022;19:355–382. doi: 10.1080/17425247.2022.2041598. PubMed DOI

Vasilescu A. Hayat A. Gáspár S. Marty J.-L. Electroanalysis. 2018;30:2–19. doi: 10.1002/elan.201700578. DOI

Saleem J. Wang L. Chen C. Adv. Healthcare Mater. 2018;7:1800525. doi: 10.1002/adhm.201800525. PubMed DOI

Park K. ACS Nano. 2013;7:7442–7447. doi: 10.1021/nn404501g. PubMed DOI PMC

Poland C. A. Duffin R. Kinloch I. Maynard A. Wallace W. A. Seaton A. Stone V. Brown S. MacNee W. Donaldson K. Nat. Nanotechnol. 2008;3:423–428. doi: 10.1038/nnano.2008.111. PubMed DOI

Grosse Y. Loomis D. Guyton K. Z. Lauby-Secretan B. Ghissassi F. E. Bouvard V. Benbrahim-Tallaa L. Guha N. Scoccianti C. Mattock H. Straif K. Lancet Oncol. 2014;15:1427–1428. doi: 10.1016/S1470-2045(14)71109-X. PubMed DOI

Chen D. Dougherty C. A. Zhu K. Hong H. J. Controlled Release. 2015;210:230–245. doi: 10.1016/j.jconrel.2015.04.021. PubMed DOI

Tonelli F. M. Goulart V. A. Gomes K. N. Ladeira M. S. Santos A. K. Lorençon E. Ladeira L. O. Resende R. R. Nanomedicine. 2015;10:2423–2450. doi: 10.2217/nnm.15.65. PubMed DOI

Bhattacharya K. Mukherjee S. P. Gallud A. Burkert S. C. Bistarelli S. Bellucci S. Bottini M. Star A. Fadeel B. Nanomedicine. 2016;12:333–351. doi: 10.1016/j.nano.2015.11.011. PubMed DOI PMC

Ravi Kiran A. V.-V. V. Kusuma Kumari G. Krishnamurthy P. T. J. Drug Delivery Sci. Technol. 2020;59:101892. doi: 10.1016/j.jddst.2020.101892. DOI

Raj S. Khurana S. Choudhari R. Kesari K. K. Kamal M. A. Garg N. Ruokolainen J. Das B. C. Kumar D. Semin. Cancer Biol. 2021;69:166–177. doi: 10.1016/j.semcancer.2019.11.002. PubMed DOI

Carrion C. C. Nasrollahzadeh M. Sajjadi M. Jaleh B. Jamalipour Soufi G. Iravani S. Int. J. Biol. Macromol. 2021;178:193–228. doi: 10.1016/j.ijbiomac.2021.02.123. PubMed DOI

Nasrollahzadeh M. Sajjadi M. Iravani S. Varma R. S. Nanomaterials. 2020;10:1784. doi: 10.3390/nano10091784. doi: 10.3390/nano10091784. PubMed DOI PMC

Nasrollahzadeh M. Sajjadi M. Iravani S. Varma R. S. Chemosphere. 2021;263:128005. doi: 10.1016/j.chemosphere.2020.128005. PubMed DOI PMC

Iravani S. Varma R. S. Mater. Adv. 2021;2:2906–2917. doi: 10.1039/D1MA00189B. DOI

Iravani S. Varma R. S. ACS Biomater. Sci. Eng. 2021;7:1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI

Badea N. Craciun M. M. Dragomir A. S. Balas M. Dinischiotu A. Nistor C. Gavan C. Ionita D. Mater. Chem. Phys. 2020;241:122435. doi: 10.1016/j.matchemphys.2019.122435. DOI

El-Shahawy A. A.-G. Elnagar N. Zohery M. Abd Elhafeez M. S. El-Dek S. I. Int. J. Polym. Mater. Polym. Biomater. 2021 doi: 10.1080/00914037.2021.1925277. DOI

Aoki K. Saito N. Nanomaterials. 2020;10:264. doi: 10.3390/nano10020264. PubMed DOI PMC

Saleemi M. A. Kong Y. L. Yong P. V.-C. Wong E. H. J. Drug Delivery Sci. Technol. 2020;59:101855. doi: 10.1016/j.jddst.2020.101855. DOI

Eskandari M. Hosseini S. H. Adeli M. Pourjavadi A. Iran. Polym. J. 2014;23:387–403. doi: 10.1007/s13726-014-0228-9. DOI

Zhang Y. Bai Y. Yan B. Drug Discovery Today. 2010;15:428–435. doi: 10.1016/j.drudis.2010.04.005. PubMed DOI PMC

Berber M. R. Elkhenany H. Hafez I. H. El-Badawy A. Essawy M. El-Badri N. Nanomedicine. 2020;15:793–808. doi: 10.2217/nnm-2019-0445. doi: 10.2217/nnm-2019-0445. PubMed DOI

Singhai N. J. Maheshwari R. Ramteke S. Colloids Interface Sci. Commun. 2020;35:100235. doi: 10.1016/j.colcom.2020.100235. DOI

Gu Y.-J. Cheng J. Jin J. Cheng S. H. Wong W.-T. Int. J. Nanomed. 2011;6:2889–2898. PubMed PMC

Wang Y. Wang C. Jia Y. Cheng X. Lin Q. Zhu M. Lu Y. Ding L. Weng Z. Wu K. PLoS One. 2014;9:e104209. doi: 10.1371/journal.pone.0104209. PubMed DOI PMC

Koh B. Park S. B. Yoon E. Yoo H. M. Lee D. Heo J. N. Ahn S. J. Pharm. Sci. 2019;108:3704–3712. doi: 10.1016/j.xphs.2019.07.011. PubMed DOI

Li H. Zhang N. Hao Y. Wang Y. Jia S. Zhang H. Drug Delivery. 2019;26:1017–1026. doi: 10.1080/10717544.2019.1672829. PubMed DOI PMC

Bartholomeusz G. Cherukuri P. Kingston J. Cognet L. Lemos R. Leeuw T. K. Gumbiner-Russo L. Weisman R. B. Powis G. Nano Res. 2009;2:279–291. doi: 10.1007/s12274-009-9026-7. PubMed DOI PMC

Wang X. Ren J. Qu X. ChemMedChem. 2008;3:940–945. doi: 10.1002/cmdc.200700329. PubMed DOI

Karmakar A. Bratton S. M. Dervishi E. Ghosh A. Mahmood M. Xu Y. Mohammed Saeed L. Mustafa T. Casciano D. Radominska-Pandya A. Biris A. S. Int. J. Nanomed. 2011;6:1045–1055. PubMed PMC

Cirillo G. Vittorio O. Kunhardt D. Valli E. Farfalla A. Curcio M. Spizzirri U. G. Hampel S. Materials. 2019;12:2889. doi: 10.3390/ma12182889. PubMed DOI PMC

Prajapati S. K. Jain A. Shrivastava C. Jain A. K. Int. J. Biol. Macromol. 2019;123:691–703. doi: 10.1016/j.ijbiomac.2018.11.116. PubMed DOI

Salas-Treviño D. Saucedo-Cárdenas O. Loera-Arias M. D. Rodríguez-Rocha H. García-García A. Montes-de-Oca-Luna R. Piña-Mendoza E. I. Contreras-Torres F. F. García-Rivas G. Soto-Domínguez A. Nanomaterials. 2019;9:1572. doi: 10.3390/nano9111572. PubMed DOI PMC

Weng X. Wang M. Ge J. Yu S. Liu B. Zhong J. Kong J. Mol. BioSyst. 2009;5:1224–1231. doi: 10.1039/B906948H. PubMed DOI

Zhu Y. Sun Q. Liu Y. Ma T. Su L. Liu S. Shi X. Han D. Liang F. R. Soc. Open Sci. 2018;5:180159. doi: 10.1098/rsos.180159. PubMed DOI PMC

Zhang B. Wang H. Shen S. She X. Shi W. Chen J. Zhang Q. Hu Y. Pang Z. Jiang X. Biomaterials. 2016;79:46–55. doi: 10.1016/j.biomaterials.2015.11.061. PubMed DOI

Zhang P. Yi W. Hou J. Yoo S. Jin W. Yang Q. Int. J. Nanomed. 2018;13:3069. doi: 10.2147/IJN.S165232. PubMed DOI PMC

Yi W. Zhang P. Hou J. Chen W. Bai L. Yoo S. Khalid A. Hou X. Int. J. Biol. Macromol. 2018;120:1525–1532. doi: 10.1016/j.ijbiomac.2018.09.085. PubMed DOI

Zhang X. Chen J. Weng Z. Li Q. Zhao L. Yu N. Deng L. Xu W. Yang Y. Zhu Z. Huang H. Mol. Immunol. 2020;119:48–58. doi: 10.1016/j.molimm.2020.01.009. PubMed DOI

Ozgen P. S.-O. Atasoy S. Kurt B. Z. Durmus Z. Yigite G. Dag A. J. Mater. Chem. B. 2020;8:3123–3137. doi: 10.1039/C9TB02711D. PubMed DOI

Battigelli A. Wang J. T.-W. Russier J. Da Ros T. Kostarelos K. Al-Jamal K. T. Prato M. Bianco A. J.-S. Small. 2013;9:3610–3619. doi: 10.1002/smll.201300264. PubMed DOI

Singh P. Samorì C. Toma F. M. Bussy C. Nunes A. Al-Jamal K. T. Ménard-Moyon C. Prato M. Kostarelos K. Bianco A. J. Mater. Chem. 2011;21:4850–4860. doi: 10.1039/C0JM04064A. DOI

Hasnain M. S. and Nayak A. K., Carbon Nanotubes for Targeted Drug Delivery, Springer, 2019, pp. 1–910.1007/978-981-15-0910-0_1 DOI

Maleki R. Afrouzi H. H. Hosseini M. Toghraie D. Piranfar A. Rostami S. Comput. Methods Prog. Biomed. 2020;186:105210. doi: 10.1016/j.cmpb.2019.105210. PubMed DOI

Suo N. Wang M. Jin Y. Ding J. Gao X. Sun X. Zhang H. Cui M. Zheng J. Li N. Jin X. Jiang S. Int. J. Nanomed. 2019;14:1241–1254. doi: 10.2147/IJN.S189688. PubMed DOI PMC

Morais R. P. Novais G. B. Sangenito L. S. Santos A. L.-S. Priefer R. Morsink M. Mendonça M. C. Souto E. B. Severino P. Cardoso J. C. Int. J. Mol. Sci. 2020;21:4557. doi: 10.3390/ijms21124557. PubMed DOI PMC

Singh R. P. Sharma Sonali G. Singh S. Bharti S. Pandey B. L. Koch B. Muthu M. S. Mater. Sci. Eng., C. 2017;77:446–458. doi: 10.1016/j.msec.2017.03.225. PubMed DOI

Ji Z. Lin G. Lu Q. Meng L. Shen X. Dong L. Fu C. Zhang X. J. Colloid Interface Sci. 2012;365:143–149. doi: 10.1016/j.jcis.2011.09.013. PubMed DOI

Lu Y. J. Wei K. C. Ma C. C.-M. Yang S. Y. Chen J. P. Colloids Surf., B. 2012;89:1–9. doi: 10.1016/j.colsurfb.2011.08.001. PubMed DOI

Liu H. Xu H. Wang Y. He Z. Li S. Drug Dev. Ind. Pharm. 2012;38:1031–1038. doi: 10.3109/03639045.2011.637050. PubMed DOI

Adeli M. Hakimpoor F. Ashiri M. Kabiri R. Bavadi M. Soft Matter. 2011;7:4062–4070. doi: 10.1039/C0SM01550D. DOI

Yang F. Jin C. Yang D. Jiang Y. Li J. Di Y. Hu J. Wang C. Ni Q. Fu D. Eur. J. Cancer. 2011;47:1873–1882. doi: 10.1016/j.ejca.2011.03.018. PubMed DOI

Mohammadi M. Salmasi Z. Hashemi M. Mosaffa F. Abnous K. Ramezani M. Int. J. Pharm. 2015;485:50–60. doi: 10.1016/j.ijpharm.2015.02.031. PubMed DOI

McDevitt M. R. Chattopadhyay D. Kappel B. J. Jaggi J. S. Schiffman S. R. Antczak C. Njardarson J. T. Brentjens R. Scheinberg D. A. J. Nucl. Med. 2007;48:1180–1189. doi: 10.2967/jnumed.106.039131. PubMed DOI

Dong X. Sun Z. Wang X. Leng X. Nanomedicine. 2017;13:2271–2280. doi: 10.1016/j.nano.2017.07.002. PubMed DOI

Chen J. Chen S. Zhao X. Kuznetsova L. V. Wong S. S. Ojima I. J. Am. Chem. Soc. 2008;130:16778–16785. doi: 10.1021/ja805570f. PubMed DOI PMC

Zhang Z. Yang X. Zhang Y. Zeng B. Wang S. Zhu T. Roden R. B.-S. Chen Y. Yang R. Clin. Cancer Res. 2006;12:4933–4939. doi: 10.1158/1078-0432.CCR-05-2831. PubMed DOI

Ozgen P. S.-O. Atasoy S. Kurt B. Z. Durmus Z. Yigit G. Dag A. J. Mater. Chem. B. 2020;8:3123–3137. doi: 10.1039/C9TB02711D. PubMed DOI

Genady A. R. Fong D. Slikboer S. R. El-Zaria M. E. Swann R. Janzen N. Faraday A. McNelles S. A. Rezvani M. Sadeghi S. Adronov A. Valliant J. F. ACS Appl. Nano Mater. 2020;3:11819–11824. doi: 10.1021/acsanm.0c02339. DOI

Golubewa L. Kulahava T. Kunitskaya Y. Bulai P. Shuba M. Karpicz R. Biochem. Biophys. Res. Commun. 2020;529:647–651. doi: 10.1016/j.bbrc.2020.06.100. PubMed DOI

Sundaram P. Abrahamse H. Int. J. Mol. Sci. 2020;21:4745. doi: 10.3390/ijms21134745. PubMed DOI PMC

Ceppi L. Bardhan N. M. Na Y. Siegel A. Rajan N. Fruscio R. Carmen M. G. D. Belcher A. M. Birrer M. J. ACS Nano. 2019;13:5356–5365. doi: 10.1021/acsnano.8b09829. PubMed DOI

Díez-Pascual A. M. Macromolecules. 2021;1:64–83.

Dubey R. Dutta D. Sarkar A. Chattopadhyay P. Nanoscale Adv. 2021;3:5722–5744. doi: 10.1039/D1NA00293G. PubMed DOI PMC

Kostarelos K. Nat. Biotechnol. 2008;26:774–776. doi: 10.1038/nbt0708-774. PubMed DOI

Harik V. M. Toxicol. Lett. 2017;273:69–85. doi: 10.1016/j.toxlet.2017.03.016. PubMed DOI

Alharbi T. M. Li Q. Raston C. L. ACS Sustainable Chem. Eng. 2021;9:16044–16051. doi: 10.1021/acssuschemeng.1c03109. DOI

Smart S. K. Cassady A. I. Lu G. Q. Martin D. J. Carbon. 2006;44:1034–1047. doi: 10.1016/j.carbon.2005.10.011. DOI

Gaffney A. M. Santos-Martinez M. J. Satti A. Major T. C. Wynne K. J. Gun'ko Y. K. Annich G. M. Elia G. Radomski M. W. Nanomedicine. 2015;11:39–46. doi: 10.1016/j.nano.2014.07.005. PubMed DOI

Ravichandran P. Baluchamy S. Gopikrishnan R. Biradar S. Ramesh V. Goornavar V. Thomas R. Wilson B. L. Jeffers R. Hall J. C. Ramesh G. T. J. Biol. Chem. 2011;286:29725–29733. doi: 10.1074/jbc.M111.251884. PubMed DOI PMC

Bianco A. Kostarelos K. Prato M. Chem. Commun. 2011;47:10182–10188. doi: 10.1039/C1CC13011K. PubMed DOI

Chłopek J. Czajkowska B. Szaraniec B. Frackowiak E. Szostak K. Béguin F. Carbon. 2006;44:1106–1111. doi: 10.1016/j.carbon.2005.11.022. DOI

Galassi T. V. Antman-Passig M. Yaari Z. Jessurun J. Schwartz R. E. Heller D. A. PLoS One. 2020;15:e0226791. doi: 10.1371/journal.pone.0226791. PubMed DOI PMC

Liang X. Li H. Dou J. Wang Q. He W. Wang C. Li D. Lin J.-M. Zhang Y. Adv. Mater. 2020;32:2000165. doi: 10.1002/adma.202000165. PubMed DOI

Zhang X. Liu M. Zhang X. Deng F. Zhou C. Hui J. Liu W. Wei Y. Toxicol. Res. 2015;4:160–168. doi: 10.1039/C4TX00066H. DOI

Jain S. Dongave S. M. Date T. Kushwah V. Mahajan R. R. Pujara N. Kumeria T. Popat A. ACS Biomater. Sci. Eng. 2019;5:3361–3372. doi: 10.1021/acsbiomaterials.9b00268. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

MXene-based composites against antibiotic-resistant bacteria: current trends and future perspectives

. 2023 Mar 20 ; 13 (14) : 9665-9677. [epub] 20230324

MXene-Carbon Nanotube Composites: Properties and Applications

. 2023 Jan 14 ; 13 (2) : . [epub] 20230114

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...