Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32206050
PubMed Central
PMC7088420
DOI
10.1007/s10311-020-00984-0
PII: 984
Knihovny.cz E-zdroje
- Klíčová slova
- Bioimaging, Biomedical applications, Biotechnological applications, Cancer, Carbon dots, Diagnosis, Graphene quantum dots, Quantum dots, Sustainable synthesis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Carbon and graphene quantum dots are prepared using top-down and bottom-up methods. Sustainable synthesis of quantum dots has several advantages such as the use of low-cost and non-toxic raw materials, simple operations, expeditious reactions, renewable resources and straightforward post-processing steps. These nanomaterials are promising for clinical and biomedical sciences, especially in bioimaging, diagnosis, bioanalytical assays and biosensors. Here we review green methods for the fabrication of quantum dots, and biomedical and biotechnological applications.
Zobrazit více v PubMed
Amin N, Afkhami A, Hosseinzadeh L, Madrakian T. Green and cost-effective synthesis of carbon dots from date kernel and their application as a novel switchable fluorescence probe for sensitive assay of Zoledronic acid drug in human serum and cellular imaging. Anal Chim Acta. 2018;1030:183–193. doi: 10.1016/j.aca.2018.05.014. PubMed DOI
Arkan E, Barati A, Rahmanpanah M, Hosseinzadeh L, Moradi S, Hajialyani M. Green synthesis of carbon dots derived from walnut oil and an investigation of their cytotoxic and apoptogenic activities toward cancer cells. Adv Pharm Bull. 2018;8:149–155. doi: 10.15171/apb.2018.018. PubMed DOI PMC
Atchudan R, Edison TNJI, Lee YR. Nitrogen-doped carbon dots originating from unripe peach for fluorescent bioimaging and electrocatalytic oxygen reduction reaction. J Colloid Interface Sci. 2016;482:8–18. doi: 10.1016/j.jcis.2016.07.058. PubMed DOI
Atchudan R, Edison TNJI, Sethuraman MG, Lee YR. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume. Appl Surf Sci. 2016;384:432–441. doi: 10.1016/j.apsusc.2016.05.054. DOI
Atchudan R, Edison TNJI, Chakradhar D, Perumal S, Shim J-J, Lee YR. Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sens Actuators B Chem. 2017;246:497–509. doi: 10.1016/j.snb.2017.02.119. DOI
Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 2010;49(38):6726–6744. doi: 10.1002/anie.200906623. PubMed DOI
Balajia M, Jegatheeswarana S, Nithyaa P, Boomib P, Selvamc S, Sundrarajana M. Photoluminescent reduced graphene oxide quantum dots from latex of Calotropis gigantea for metal sensing, radical scavenging, cytotoxicity, and bioimaging in Artemia salina: a greener route. J Photochem Photobiol. 2018;178:371–379. doi: 10.1016/j.jphotobiol.2017.11.031. PubMed DOI
Bandi R, Reddy Gangapuram BR, Dadigala R, Eslavath R, Singh SS, Guttena V. Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Adv. 2016;6:28633–28639. doi: 10.1039/C6RA01669C. DOI
Bano D, Kumar V, Singha VK, Hasan SH. Green synthesis of fluorescent carbon quantum dots for the detection of mercury(II) and glutathione. New J Chem. 2018;42:5814–5821. doi: 10.1039/C8NJ00432C. DOI
Barras A, Pagneux Q, Sane F, Wang Q, Boukherroub R, Hober D, Szunerits S. High efficiency of functional carbon nanodots as entry inhibitors of herpes simplex virus type 1. ACS Appl Mater Interfaces. 2016;8:9004–9013. doi: 10.1021/acsami.6b01681. PubMed DOI
Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP. Photoluminescent carbogenic dots. Chem Mater. 2008;20(14):4539–4541. doi: 10.1021/cm800506r. DOI
Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Carbon dots and graphene quantum dots in electrochemical biosensing. Nanomaterials (Basel) 2019;9:634. doi: 10.3390/nano9040634. PubMed DOI PMC
Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D. Carbon dots for multiphoton bioimaging. J Am Chem Soc. 2007;129(37):11318–11319. doi: 10.1021/ja073527l. PubMed DOI PMC
Chen W, Li D, Tian L, Xiang W, Wang T, Hu W, Hu Y, Chen S, Chen J, Dai Z. Synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green Chem. 2018;20:4438–4442. doi: 10.1039/C8GC02106F. DOI
Chen W, Shen J, Lv G, Li D, Hu Y, Zhou C, Liu X, Dai Z. Green synthesis of graphene quantum dots from cotton cellulose. Chem Sel. 2019;4:2898–2902. doi: 10.1002/slct.201803512. DOI
Cheng C, Shi Y, Li M, Xing M, Wu Q. Carbon quantum dots from carbonized walnut shells: structural evolution, fluorescence characteristics, and intracellular bioimaging. Mater Sci Eng, C. 2017;79:473–480. doi: 10.1016/j.msec.2017.05.094. PubMed DOI
D’souza SL, Chettiar SS, Koduru JR, Kailasaa SK. Synthesis of fluorescent carbon dots using Daucus carota subsp. sativus roots for mitomycin drug delivery. Optik. 2018;158:893–900. doi: 10.1016/j.ijleo.2017.12.200. DOI
Dager A, Uchida T, Maekawa T, Tachibana M. Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: photoluminescence analysis using machine learning. Sci Rep. 2019;9:14004. doi: 10.1038/s41598-019-50397-5. PubMed DOI PMC
Dai H, Yang C, Tong Y, Xu G, Ma X, Lin Y, Chen G. Label-free electrochemiluminescent immunosensor for α-fetoprotein: performance of Nafion–carbon nanodots nanocomposite films as antibody carriers. Chem Commun. 2012;48(25):3055–3057. doi: 10.1039/C1CC16571B. PubMed DOI
Das R, Bandyopadhyay R, Pramanik P. Carbon quantum dots from natural resource: a review. Mater Today Chem. 2018;8:96–109. doi: 10.1016/j.mtchem.2018.03.003. DOI
de Menezes FD, Dos Reis SRR, Pinto SR, Portilho FL, do Vale Chaves E, Mello F, Helal-Neto E, da Silva de Barros AO, Alencar LMR, de Menezes AS, Dos Santos CC, Saraiva-Souza A, Perini JA, Machado DE, Felzenswalb I, Araujo-Lima CF, Sukhanova A, Nabiev I, Santos-Oliveira R. Graphene quantum dots unraveling: green synthesis, characterization, radiolabeling with 99mTc, in vivo behavior and mutagenicity. Mater Sci Eng C Mater Biol Appl. 2019;102:405–414. doi: 10.1016/j.msec.2019.04.058. PubMed DOI
de Yro PAN, Quaichon GMO, Cruz RAT, Emolaga CS, Que MCO, Magdaluyo Jr ER, Basilia BA (2019) Hydrothermal synthesis of carbon quantum dots from biowaste for bio-imaging. In: AIP conference proceedings, vol 2083. 10.1063/1.5094310
Ding Z, Li F, Wen J, Wang X, Sun R. Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass. Green Chem. 2018;20:1383–1390. doi: 10.1039/C7GC03218H. DOI
Dong Y, Zhou N, Lin X, Lin J, Chi Y, Chen G. Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem Mater. 2010;22(21):5895–5899. doi: 10.1021/cm1018844. DOI
Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed. 2013;52(30):7800–7804. doi: 10.1002/anie.201301114. PubMed DOI
Dong J, Wang K, Sun L, Sun B, Yang M, Chen H, Wang Y, Sun J, Dong L. Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery. Sens Actuators B Chem. 2018;256:616–623. doi: 10.1016/j.snb.2017.09.200. DOI
Edison TN, Atchudan R, Sethuraman MG, Shim JJ, Lee YR. Microwave assisted green synthesis of fluorescent N-doped carbon dots: cytotoxicity and bio-imaging applications. J Photochem Photobiol, B. 2016;161:154–161. doi: 10.1016/j.jphotobiol.2016.05.017. PubMed DOI
Edison TN, Atchudan R, Shim JJ, Kalimuthu S, Ahn BC, Lee YR. Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging. J Photochem Photobiol, B. 2016;158:235–242. doi: 10.1016/j.jphotobiol.2016.03.010. PubMed DOI
Fan Z, Nie Y, Wei Y, Zhao J, Liao X, Zhang J. Facile and large-scale synthesis of graphene quantum dots for selective targeting and imaging of cell nucleus and mitochondria. Mater Sci Eng, C. 2019;103:109824. doi: 10.1016/j.msec.2019.109824. PubMed DOI
Fang L, Zhang L, Chen Z, Zhu C, Liu J, Zheng J. Ammonium citrate derived carbon quantum dot as on-off-on fluorescent sensor for detection of chromium (VI) and sulfites. Mater Lett. 2017;191:1–4. doi: 10.1016/j.matlet.2016.12.098. DOI
Feng X, Jiang Y, Zhao J, Miao M, Cao S, Fang J, Shi L. Easy synthesis of photoluminescent N-doped carbon dots from winter melon for bio-imaging. RSC Adv. 2015;5:31250–31254. doi: 10.1039/C5RA02271A. DOI
Feng Y, Zhong D, Miao H, Yang X. Carbon dots derived from rose flowers for tetracycline sensing. Talanta. 2015;140:128–133. doi: 10.1016/j.talanta.2015.03.038. PubMed DOI
Feng J, Wang W-J, Hai X, Yu Y-L, Wang J-H. Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging. J Mater Chem B. 2016;4(3):387–393. doi: 10.1039/C5TB01999K. PubMed DOI
Ge J, Li Y, Wang J, Pu Y, Xue W, Liu X. Green synthesis of graphene quantum dots and silver nanoparticles compounds with excellent surface enhanced Raman scattering performance. J Alloys Compd. 2016;663:166–171. doi: 10.1016/j.jallcom.2015.12.055. DOI
Gogoi N, Chowdhury D. Novel carbon dot coated alginate beads with superior stability, swelling and pH responsive drug delivery. J Mater Chem B. 2014;2(26):4089–4099. doi: 10.1039/C3TB21835J. PubMed DOI
Gogoi N, Barooah M, Majumdar G, Chowdhury D. Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions. ACS Appl Mater Interfaces. 2015;7(5):3058–3067. doi: 10.1021/am506558d. PubMed DOI
Gonçalves H, Jorge PA, Fernandes J, da Silva JCE. Hg (II) sensing based on functionalized carbon dots obtained by direct laser ablation. Sens Actuators B Chem. 2010;145(2):702–707. doi: 10.1016/j.snb.2010.01.031. DOI
Gu J, Hu MJ, Guo QQ, Ding ZF, Sun XL, Yang J. High-yield synthesis of graphene quantum dots with strong green photoluminescence. RSC Adv. 2014;4:50141–50144. doi: 10.1039/C4RA10011E. DOI
Gu D, Shang S, Yu Q, Shen J. Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging. Appl Surf Sci. 2016;390:38–42. doi: 10.1016/j.apsusc.2016.08.012. DOI
Habiba K, Bracho-Rincon DP, Gonzalez-Feliciano JA, Villalobos-Santos JC, Makarov VI, Ortiz D, Avalos JA, Gonzalez CI, Weiner BR, Morell G. Synergistic antibacterial activity of PEGylated silver–graphene quantum dots nanocomposites. Appl Mater Today. 2015;1:80–87. doi: 10.1016/j.apmt.2015.10.001. DOI
Halder A, Godoy-Gallardo M, Ashley J, Feng X, Zhou T, Hosta-Rigau L, Sun Y. One-pot green synthesis of biocompatible graphene quantum dots and their cell uptake studies. ACS Appl Bio Mater. 2018;1:452–461. doi: 10.1021/acsabm.8b00170. PubMed DOI
Hamilton IP, Li B, Yan X, Li L-s. Alignment of colloidal graphene quantum dots on polar surfaces. Nano Lett. 2011;11(4):1524–1529. doi: 10.1021/nl200298c. PubMed DOI
Hoan BT, Tam PD, Pham V-H. Green synthesis of highly luminescent carbon quantum dots from lemon juice. J Nanotechnol. 2019;2019:2852816. doi: 10.1155/2019/2852816. DOI
Hou J, Dong J, Zhu H, Teng X, Ai S, Mang M. A simple and sensitive fluorescent sensor for methyl parathion based on l-tyrosine methyl ester functionalized carbon dots. Biosens Bioelectron. 2015;68:20–26. doi: 10.1016/j.bios.2014.12.037. PubMed DOI
Hou Y, Lu Q, Deng J, Li H, Zhang Y. One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal Chim Acta. 2015;866:69–74. doi: 10.1016/j.aca.2015.01.039. PubMed DOI
HU S-L, BAI P-K, CAO S-R, SUN J. Preparation of fluorescent carbon nanoparticles by pulsed laser. Chem J Chin Univ. 2009;8:1497–1500.
Hu S-L, Niu K-Y, Sun J, Yang J, Zhao N-Q, Du X-W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem. 2009;19(4):484–488. doi: 10.1039/B812943F. DOI
Hu Y, Zhang L, Li X, Liu R, Lin L, Zhao S. Green preparation of S and N Co-doped carbon dots from water chestnut and onion as well as their use as an off–on fluorescent probe for the quantification and imaging of coenzyme A. ACS Sustain Chem Eng. 2017;5:4992–5000. doi: 10.1021/acssuschemeng.7b00393. DOI
Huang H, Lv J-J, Zhou D-L, Bao N, Xu Y, Wang A-J, Feng J-J. One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Adv. 2013;3:21691–21696. doi: 10.1039/C3RA43452D. DOI
Huang G, Chen X, Wang C, Zheng H, Huang Z, Chen D, Xie H. Photoluminescent carbon dots derived from sugarcane molasses: synthesis, properties, and applications. RSC Adv. 2017;7:47840–47847. doi: 10.1039/C7RA09002A. DOI
Huang C, Dong H, Su Y, Wu Y, Narron R, Yong Q. Synthesis of carbon quantum dot nanoparticles derived from byproducts in bio-refinery process for cell imaging and in vivo bioimaging. Nanomaterials (Basel) 2019;9:387. doi: 10.3390/nano9030387. PubMed DOI PMC
Huang S, Li W, Han P, Zhou X, Cheng J, Wena H, Xue W. Carbon quantum dots: synthesis, properties, and sensing applications as a potential clinical analytical method. Anal Methods. 2019;11:2240–2258. doi: 10.1039/C9AY00068B. DOI
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–2650. doi: 10.1039/C1GC15386B. DOI
Iravani S, Varma R. Plant-derived edible nanoparticles and miRNAs: emerging frontier for therapeutics and targeted drug-delivery. ACS Sustain Chem Eng. 2019;7:8055–8069. doi: 10.1021/acssuschemeng.9b00954. DOI
Iravani S, Varma RS. Biofactories: engineered nanoparticles via genetically engineered organisms. Green Chem. 2019;21:4583–4603. doi: 10.1039/C9GC01759C. DOI
Iravani S, Varma RS. Greener synthesis of lignin nanoparticles and their applications. Green Chem. 2020;22:612–636. doi: 10.1039/C9GC02835H. DOI
Jaiswal A, Ghosh SS, Chattopadhyay A. One step synthesis of C-dots by microwave mediated caramelization of poly (ethylene glycol) Chem Commun. 2012;48(3):407–409. doi: 10.1039/C1CC15988G. PubMed DOI
Janus Ł, Piątkowski M, Radwan-Pragłowska J, Bogdał D, Matysek D. Chitosan-based carbon quantum dots for biomedical applications: synthesis and characterization. Nanomaterials (Basel) 2019;9:274. doi: 10.3390/nano9020274. PubMed DOI PMC
Jiang H, Chen F, Lagally MG, Denes FS. New strategy for synthesis and functionalization of carbon nanoparticles. Langmuir. 2009;26(3):1991–1995. doi: 10.1021/la9022163. PubMed DOI
Jiang C, Wu H, Song X, Ma X, Wang J, Tan M. Presence of photoluminescent carbon dots in Nescafe® original instant coffee: applications to bioimaging. Talanta. 2014;127:68–74. doi: 10.1016/j.talanta.2014.01.046. PubMed DOI
Jiao J, Liu C, Li X, Liu J, Di D, Zhang Y, Zhao Q, Wang S. Fluorescent carbon dot modified mesoporous silica nanocarriers for redox-responsive controlled drug delivery and bioimaging. J Colloid Interface Sci. 2016;483:343–352. doi: 10.1016/j.jcis.2016.08.033. PubMed DOI
Joseph J, Anappara AA. White-light-emitting carbon dots prepared by the electrochemical exfoliation of graphite. ChemPhysChem. 2017;18(3):292–298. doi: 10.1002/cphc.201601020. PubMed DOI
Karthik S, Saha B, Ghosh SK, Singh NP. Photoresponsive quinoline tethered fluorescent carbon dots for regulated anticancer drug delivery. Chem Commun. 2013;49(89):10471–10473. doi: 10.1039/C3CC46078A. PubMed DOI
Kasibabu BSB, D’souza SL, Jha S, Kailasa SK. Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from carica papaya juice. J Fluoresc. 2015;25:803–810. doi: 10.1007/s10895-015-1595-0. PubMed DOI
Keerthana AK, Ashraf PM. Carbon nanodots synthesized from chitosan and its application as a corrosion inhibitor in boat-building carbon steel BIS2062. Appl Nanosci. 2019 doi: 10.1007/s13204-019-01177-0. DOI
Kumar A, Chowdhuri AR, Laha D, Mahto TK, Karmakar P, Sahu SK. Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sens Actuators B Chem. 2017;242:679–686. doi: 10.1016/j.snb.2016.11.109. DOI
Kumawat MK, Thakur M, Gurung RB, Srivastava R. Graphene quantum dots for cell proliferation, nucleus imaging, and photoluminescent sensing applications. Sci Rep. 2017;7:1–16. doi: 10.1038/s41598-017-16025-w. PubMed DOI PMC
Kumawat MK, Thakur M, Gurung RB, Srivastava R. Graphene quantum dots from mangifera indica: application in near-infrared bioimaging and intracellular nanothermometry. ACS Sustain Chem Eng. 2017;5:1382–1391. doi: 10.1021/acssuschemeng.6b01893. DOI
Lan M, Di Y, Zhu X, Ng T-W, Xia J, Liu W, Meng X, Wang P, Lee C-S, Zhang W. A carbon dot-based fluorescence turn-on sensor for hydrogen peroxide with a photo-induced electron transfer mechanism. Chem Commun. 2015;51(85):15574–15577. doi: 10.1039/C5CC05835J. PubMed DOI
Lee HU, Park SY, Park ES, Son B, Lee SC, Lee JW, Lee Y-C, Kang KS, Kim MI, Park HG. Photoluminescent carbon nanotags from harmful cyanobacteria for drug delivery and imaging in cancer cells. Sci Rep. 2014 doi: 10.1038/srep04665. PubMed DOI PMC
Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee ST. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed. 2010;49(26):4430–4434. doi: 10.1002/anie.200906154. PubMed DOI
Li X, Wang H, Shimizu Y, Pyatenko A, Kawaguchi K, Koshizaki N. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem Commun. 2010;47(3):932–934. doi: 10.1039/C0CC03552A. PubMed DOI
Li H, He X, Liu Y, Yu H, Kang Z, Lee S-T. Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment. Mater Res Bull. 2011;46(1):147–151. doi: 10.1016/j.materresbull.2010.10.013. DOI
Li S, Wang L, Chusuei CC, Suarez VM, Blackwelder PL, Micic M, Orbulesu J, Leblanc RM. Nontoxic carbon dots potently inhibit human insulin fibrillation. Chem Mater. 2015;27:1764–1771. doi: 10.1021/cm504572b. DOI
Li H, Shao F-Q, Huang H, Feng J-J, Wang A-J. Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sens Actuators B Chem. 2016;226:506–511. doi: 10.1016/j.snb.2015.12.018. DOI
Li M, Chen T, Gooding JJ, Liu J. Review of carbon and graphene quantum dots for sensing. ACS Sens. 2019;4:1732–1748. doi: 10.1021/acssensors.9b00514. PubMed DOI
Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chem Soc Rev. 2015;44:362–381. doi: 10.1039/C4CS00269E. PubMed DOI
Lin LX, Zhang SW. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem Commun. 2012;48:10177–10179. doi: 10.1039/C2CC35559K. PubMed DOI
Lin Z, Xue W, Chen H, Lin J-M. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal Chem. 2011;83(21):8245–8251. doi: 10.1021/ac202039h. PubMed DOI
Lin L, Rong M, Luo F, Chen D, Wang Y, Chen X. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. Trends Anal Chem. 2014;54:83–102. doi: 10.1016/j.trac.2013.11.001. DOI
Lin F, Bao Y-W, Wu F-G. Carbon dots for sensing and killing microorganisms. C J Carbon Res. 2019;5:33. doi: 10.3390/c5020033. DOI
Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed. 2007;46(34):6473–6475. doi: 10.1002/anie.200701271. PubMed DOI
Liu R, Wu D, Liu S, Koynov K, Knoll W, Li Q. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem. 2009;121(25):4668–4671. doi: 10.1002/anie.200900652. PubMed DOI
Liu R, Wu D, Feng X, Müllen K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J Am Chem Soc. 2011;133(39):15221–15223. doi: 10.1021/ja204953k. PubMed DOI
Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, Liu Y, Wang H, Wang W, Liu W. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials. 2012;33(13):3604–3613. doi: 10.1016/j.biomaterials.2012.01.052. PubMed DOI
Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee S-T, Zhong J, Kang Z. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science. 2015;347:970–974. doi: 10.1126/science.aaa3145. PubMed DOI
Liu S, Zhao N, Cheng Z, Liu H. Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale. 2015;7(15):6836–6842. doi: 10.1039/C5NR00070J. PubMed DOI
Liu W, Li C, Ren Y, Sun X, Pan W, Li Y, Wang J, Wang W. Carbon dots: surface engineering and applications. J Mater Chem B. 2016;4:5772–5788. doi: 10.1039/C6TB00976J. PubMed DOI
Liu F, Zhang W, Chen W, Wang J, Yang Q, Zhu W, Wang J. One-pot synthesis of NiFe2O4 integrated with EDTA-derived carbon dots for enhanced removal of tetracycline. Chem Eng J. 2017;310:187–196. doi: 10.1016/j.cej.2016.10.116. DOI
Liu ML, Lin Y, Li RS, Chen BB, Liu H, Huang CZ. Large-scale simultaneous synthesis of highly photoluminescent green amorphous carbon nanodots and yellow crystalline graphene quantum dots at room temperature. Green Chem. 2017;19:3611–3617. doi: 10.1039/C7GC01236E. DOI
Liu Q, Zhang J, He H, Huang G, Xing B, Jia J, Zhang C. Green preparation of high yield fluorescent graphene quantum dots from coal-tar-pitch by mild oxidation. Nanomaterials (Basel) 2018;8:844. doi: 10.3390/nano8100844. PubMed DOI PMC
Liu X, Hao J, Liu J, Tao H (2018b) Green synthesis of carbon quantum dots from lignite coal and the application in Fe3+ detection. In: IOP Conference Series: Earth Environmental Science vol 113, p 012063. 10.1088/1755-1315/113/1/012063
Lu J, Yeo PSE, Gan CK, Wu P, Loh KP. Transforming C60 molecules into graphene quantum dots. Nat Nanotechnol. 2011;6(4):247–252. doi: 10.1038/nnano.2011.30. PubMed DOI
Lu Y-C, Chen J, Wang A-J, Bao N, Feng J-J, Wang W, Shao L. Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury(ii) detection and bioimaging. J Mater Chem C. 2015;3:73–78. doi: 10.1039/C4TC02111H. DOI
Majumdar S, Krishnatreya G, Gogoi N, Thakur D, Chowdhury D. Carbon-dot-coated alginate beads as a smart stimuli-responsive drug delivery system. ACS Appl Mater Interfaces. 2016;8(50):34179–34184. doi: 10.1021/acsami.6b10914. PubMed DOI
Mehta VN, Jha S, Kailasa SK. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng, C. 2014;38:20–27. doi: 10.1016/j.msec.2014.01.038. PubMed DOI
Mehta VN, Jha S, Basu H, Singhal RK, Kailasa SK. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sens Actuators B Chem. 2015;213:434–443. doi: 10.1016/j.snb.2015.02.104. DOI
Mei Q, Chen J, Zhao J, Yang L, Liu B, Liu RY, Zhang ZP. Atomic oxygen tailored graphene oxide nanosheets emissions for multicolor cellular imaging. ACS Appl Mater Interfaces. 2016;8:7390–7395. doi: 10.1021/acsami.6b00791. PubMed DOI
Mewada A, Pandey S, Shinde S, Mishra N, Oza G, Thakur M, Sharon M, Sharon M. Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Mater Sci Eng, C. 2013;33(5):2914–2917. doi: 10.1016/j.msec.2013.03.018. PubMed DOI
Miao P, Han K, Tang Y, Wang B, Lin T, Cheng W. Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale. 2015;7(5):1586–1595. doi: 10.1039/C4NR05712K. PubMed DOI
Ming H, Ma Z, Liu Y, Pan K, Yu H, Wang F, Kang Z. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans. 2012;41(31):9526–9531. doi: 10.1039/C2DT30985H. PubMed DOI
Mohammadinejad R, Karimi S, Iravani S, Varma RS. Plant-derived nanostructures: types and applications. Green Chem. 2016;18:20–52. doi: 10.1039/C5GC01403D. DOI
Mohammadinejad R, Shavandi A, Raie DS, Sangeetha J, Soleimani M, Hajibehzad SS, Thangadurai D, Hospet R, Popoola JO, Arzani A, Gómez-Lim MA, Iravani S, Varma RS. Plant molecular farming: production of metallic nanoparticles and therapeutic proteins using green factories. Green Chem. 2019;21:1845–1865. doi: 10.1039/C9GC00335E. DOI
Mueller ML, Yan X, Dragnea B, Li L-s. Slow hot-carrier relaxation in colloidal graphene quantum dots. Nano Lett. 2010;11(1):56–60. doi: 10.1021/nl102712x. PubMed DOI
Murugan N, Prakash M, Jayakumar M, Sundaramurthy A, Sundramoorthy AK. Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+ Appl Surf Sci. 2019;476:468–480. doi: 10.1016/j.apsusc.2019.01.090. DOI
Namdari P, Negahdari B, Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother. 2017;87:209–222. doi: 10.1016/j.biopha.2016.12.108. PubMed DOI
Nekoueian K, Amiri M, Sillanpaa M, Marken F, Boukherroub R, Szunerits S. Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chem Soc Rev. 2019;48:4281–4316. doi: 10.1039/C8CS00445E. PubMed DOI
Nie H, Li MJ, Li QS, Liang SJ, Tan YY, Sheng L, Shi W, Zhang SX-A. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater. 2014;26:3104–3112. doi: 10.1021/cm5003669. DOI
Park SY, Lee HU, Park ES, Lee SC, Lee J-W, Jeong SW, Kim CH, Lee Y-C, Huh YS, Lee J. Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS Appl Mater Interfaces. 2014;6(5):3365–3370. doi: 10.1021/am500159p. PubMed DOI
Pooja D, Saini S, Thakur A, Kumar B, Tyagi S, Nayak MK. A “Turn-On” thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection. J Hazard Mater. 2017;328:117–126. doi: 10.1016/j.jhazmat.2017.01.015. PubMed DOI
Prasannan A, Imae T. One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res. 2013;52:15673–15678. doi: 10.1021/ie402421s. DOI
Priyadarshini E, Rawat K, Prasad T, Bohidar HB. Antifungal efficacy of Au@carbon dots nanoconjugates against opportunistic fungal pathogen, Candida albicans. Colloid Surf B Biointerfaces. 2018;163:355–361. doi: 10.1016/j.colsurfb.2018.01.006. PubMed DOI
Qiao Z-A, Wang Y, Gao Y, Li H, Dai T, Liu Y, Huo Q. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun. 2010;46(46):8812–8814. doi: 10.1039/C0CC02724C. PubMed DOI
Qin X, Lu W, Asiri AM, Al-Youbi AO, Sun X. Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury (II) ions. Sens Actuators B Chem. 2013;184:156–162. doi: 10.1016/j.snb.2013.04.079. DOI
Ramanan V, Thiyagarajan SK, Raji K, Suresh R, Sekar R, Ramamurthy P. Outright green synthesis of fluorescent carbon dots from eutrophic algal blooms for in vitro imaging. ACS Sustain Chem Eng. 2016;4(9):4724–4731. doi: 10.1021/acssuschemeng.6b00935. DOI
Ramezani Z, Qorbanpour M, Rahbar N. Green synthesis of carbon quantum dots using quince fruit (Cydonia oblonga) powder as carbon precursor: application in cell imaging and As3+ determination. Colloids Surf A Physicochem Eng Asp. 2018;549:58–66. doi: 10.1016/j.colsurfa.2018.04.006. DOI
Ray S, Saha A, Jana NR, Sarkar R. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C. 2009;113(43):18546–18551. doi: 10.1021/jp905912n. DOI
Sachdev A, Gopinath P. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst. 2015;140:4260–4269. doi: 10.1039/C5AN00454C. PubMed DOI
Schneider J, Reckmeier CJ, Xiong Y, von Seckendorff M, Susha AS, Kasák P, Rogach AL. Molecular fluorescence in citric acid-based carbon dots. J Phys Chem C. 2017;121(3):2014–2022. doi: 10.1021/acs.jpcc.6b12519. DOI
Sharma A, Das J. Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotech. 2019;17:92. doi: 10.1186/s12951-019-0525-8. PubMed DOI PMC
Shen P, Xia Y. Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal Chem. 2014;86(11):5323–5329. doi: 10.1021/ac5001338. PubMed DOI
Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun. 2012;48(31):3686–3699. doi: 10.1039/C2CC00110A. PubMed DOI
Shen J, Shang S, Chen X, Wang D, Cai Y. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater Sci Eng, C. 2017;76:856–864. doi: 10.1016/j.msec.2017.03.178. PubMed DOI
Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, Huang Y. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun. 2011;47(23):6695–6697. doi: 10.1039/C1CC11943E. PubMed DOI
Shi B, Zhang L, Lan C, Zhao J, Su Y, Zhao S. One-pot green synthesis of oxygen-rich nitrogen-doped graphene quantum dots and their potential application in pH-sensitive photoluminescence and detection of mercury(II) ions. Talanta. 2015;142:131–139. doi: 10.1016/j.talanta.2015.04.059. PubMed DOI
Shi J, Chan C, Pang Y, Ye W, Tian F, Lyu J, Zhang Y, Yang M. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens Bioelectron. 2015;67:595–600. doi: 10.1016/j.bios.2014.09.059. PubMed DOI
Shinde DB, Pillai VK. Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem A Eur J. 2012;18(39):12522–12528. doi: 10.1002/chem.201201043. PubMed DOI
Sivasankaran U, Jesny S, Jose AR, Kumar KG. Fluorescence determination of glutathione using tissue paper-derived carbon dots as fluorophores. Anal Sci. 2017;33(3):281–285. doi: 10.2116/analsci.33.281. PubMed DOI
Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756–7757. doi: 10.1021/ja062677d. PubMed DOI
Tadessea A, RamaDevid D, Hagosa M, Battud GR, Basavaiah K. Facile green synthesis of fluorescent carbon quantum dots from citrus lemon juice for live cell imaging. Asian J Nanosci Mater. 2018;1:36–46. doi: 10.26655/ajnanomat.2018.1.5. DOI
Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano. 2012;6(6):5102–5110. doi: 10.1021/nn300760g. PubMed DOI
Tao H, Yang K, Ma Z, Wan J, Zhang Y, Kang Z, Liu Z. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small. 2012;8(2):281–290. doi: 10.1002/smll.201101706. PubMed DOI
Thakur M, Mewada A, Pandey S, Bhori M, Singh K, Sharon M, Sharon M. Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system. Mater Sci Eng C Mater Biol Appl. 2016;67:468–477. doi: 10.1016/j.msec.2016.05.007. PubMed DOI
Tripathi KM, Tran TS, Tung TT, Losic D, Kim T. Water soluble fluorescent carbon nanodots from biosource for cells imaging. J Nanomater. 2017;2017:1–10. doi: 10.1155/2017/7029731. DOI
Tyagi A, Tripathi KM, Singh N, Choudhary S, Gupta RK. Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Adv. 2016;6:72423–72432. doi: 10.1039/C6RA10488F. DOI
Vandarkuzhali SAA, Jeyalakshmi V, Sivaraman G, Singaravadivel S, Krishnamurthy KR, Viswanathan B. Highly fluorescent carbon dots from Pseudo-stem of banana plant: applications as nanosensor and bio-imaging agents. Sens Actuators B Chem. 2017;252:894–900. doi: 10.1016/j.snb.2017.06.088. DOI
Varma RS. Greener approach to nanomaterials and their sustainable applications. Curr Opin Chem Eng. 2012;1:123–128. doi: 10.1016/j.coche.2011.12.002. DOI
Varma RS. Greener and sustainable chemistry. Appl Sci. 2014;4:493–497. doi: 10.3390/app4040493. DOI
Varma RS. Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014;16:2027–2041. doi: 10.1039/C3GC42640H. DOI
Varma RS. Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustain Chem Eng. 2016;4:5866–5878. doi: 10.1021/acssuschemeng.6b01623. PubMed DOI PMC
Varma RS. Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustain Chem Eng. 2019;7:6458–6470. doi: 10.1021/acssuschemeng.8b06550. DOI
Vedamalai M, Periasamy AP, Wang CW, Tseng YT, Ho LC, Shih CC, Chang HT. Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale. 2014;6(21):13119–13125. doi: 10.1039/C4NR03213F. PubMed DOI
Vinci JC, Ferrer IM, Seedhouse SJ, Bourdon AK, Reynard JM, Foster BA, Bright FV, Colón LA. Hidden properties of carbon dots revealed after HPLC fractionation. J Phys Chem Lett. 2012;4(2):239–243. doi: 10.1021/jz301911y. PubMed DOI
Wang Y, Hu A. Carbon quantum dots: synthesis, properties and applications. J Mater Chem C. 2014;2:6921–6939. doi: 10.1039/C4TC00988F. DOI
Wang X, Cao L, Yang ST, Lu F, Meziani MJ, Tian L, Sun KW, Bloodgood MA, Sun YP. Bandgap-Like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Ed. 2010;49(31):5310–5314. doi: 10.1002/anie.201000982. PubMed DOI PMC
Wang J, Xin X, Lin Z. Cu 2 ZnSnS 4 nanocrystals and graphene quantum dots for photovoltaics. Nanoscale. 2011;3(8):3040–3048. doi: 10.1039/C1NR10425J. PubMed DOI
Wang Q, Zheng H, Long Y, Zhang L, Gao M, Bai W. Microwave–hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon. 2011;49(9):3134–3140. doi: 10.1016/j.carbon.2011.03.041. DOI
Wang K, Gao Z, Gao G, Wo Y, Wang Y, Shen G, Cui D. Systematic safety evaluation on photoluminescent carbon dots. Nanoscale Res Lett. 2013;8(1):122. doi: 10.1186/1556-276X-8-122. PubMed DOI PMC
Wang Q, Huang X, Long Y, Wang X, Zhang H, Zhu R, Liang L, Teng P, Zheng H. Hollow luminescent carbon dots for drug delivery. Carbon. 2013;59:192–199. doi: 10.1016/j.carbon.2013.03.009. DOI
Wang R, Li G, Dong Y, Chi Y, Chen G. Carbon quantum dot-functionalized aerogels for NO2 gas sensing. Anal Chem. 2013;85:8065–8069. doi: 10.1021/ac401880h. PubMed DOI
Wang W, Li Y, Cheng L, Cao Z, Liu W. Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. J Mater Chem B. 2013;2(1):46–48. doi: 10.1039/C3TB21370F. PubMed DOI
Wang Y, Wang S, Ge S, Wang S, Yan M, Zang D, Yu J. Facile and sensitive paper-based chemiluminescence DNA biosensor using carbon dots dotted nanoporous gold signal amplification label. Anal Methods. 2013;5(5):1328–1336. doi: 10.1039/C2AY26485D. DOI
Wang D, Chen JF, Dai L. Recent advances in graphene quantum dots for fluorescence bioimaging from cells through tissues to animals. Part Part Syst Charact. 2014;32:515–523. doi: 10.1002/ppsc.201400219. DOI
Wang X, Sun X, Lao J, He H, Cheng T, Wang M, Wang S, Huang F. Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf B Biointerfaces. 2014;122:638–644. doi: 10.1016/j.colsurfb.2014.07.043. PubMed DOI
Wang J, Wei J, Sua S, Qiu J. Novel fluorescence resonance energy transfer optical sensors for vitamin B12 detection using thermally reduced carbon dots. New J Chem. 2015;39:501–507. doi: 10.1039/C4NJ00538D. DOI
Wang W, Lu Y-C, Huang H, Wang A-J, Chen J-R, Feng J-J. Facile synthesis of N, S-codoped fluorescent carbon nanodots for fluorescent resonance energy transfer recognition of methotrexate with high sensitivity and selectivity. Biosens Bioelectron. 2015;64:517–522. doi: 10.1016/j.bios.2014.09.066. PubMed DOI
Wang Z, Liao H, Wu H, Wang B, Zhao H, Tan M. Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery. Anal Methods. 2015;7(20):8911–8917. doi: 10.1039/C5AY01978H. DOI
Wang L, Bi Y, Gao J, Li Y, Ding H, Ding L. Carbon dots based turn-on fluorescent probes for the sensitive determination of glyphosate in environmental water samples. RSC Adv. 2016;6(89):85820–85828. doi: 10.1039/C6RA10115A. DOI
Wang L, Li W, Wu B, Li Z, Wang S, Liu Y, Pan D, Wu M. Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chem Eng J. 2016;300:75–82. doi: 10.1016/j.cej.2016.04.123. DOI
Wang X, Yang P, Feng Q, Meng T, Wei J, Xu C, Han J. Green preparation of fluorescent carbon quantum dots from cyanobacteria for biological imaging. Polymers (Basel) 2019;11:616. doi: 10.3390/polym11040616. PubMed DOI PMC
Wei J, Zhang X, Sheng Y, Shen J, Huang P, Guo S, Pan J, Liu B, Feng B. Simple one-step synthesis of water-soluble fluorescent carbon dots from waste paper. New J Chem. 2014;38(3):906–909. doi: 10.1039/C3NJ01325A. DOI
Wu ZL, Zhang P, Gao MX, Liu CF, Wang W, Leng F, Huang CZ. One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk–natural proteins. J Mater Chem B. 2013;1(22):2868–2873. doi: 10.1039/C3TB20418A. PubMed DOI
Xie Y, Wan B, Yang Y, Cui X, Xin Y, Guo L-H. Cytotoxicity and autophagy induction by graphene quantum dots with different functional groups. J Environ Sci. 2019;77:198–209. doi: 10.1016/j.jes.2018.07.014. PubMed DOI
Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126(40):12736–12737. doi: 10.1021/ja040082h. PubMed DOI
Xu Y, Wu M, Liu Y, Feng XZ, Yin XB, He XW, Zhang YK. Nitrogen-doped carbon dots: a facile and general preparation method, photoluminescence investigation, and imaging applications. Chem Eur J. 2013;19(7):2276–2283. doi: 10.1002/chem.201203641. PubMed DOI
Xu J, Zhou Y, Liu S, Dong M, Huang C. Low-cost synthesis of carbon nanodots from natural products used as a fluorescent probe for the detection of ferrum (III) ions in lake water. Anal Methods. 2014;6(7):2086–2090. doi: 10.1039/C3AY41715H. DOI
Xu J, Lai T, Feng Z, Weng X, Huang C. Formation of fluorescent carbon nanodots from kitchen wastes and their application for detection of Fe3+ Luminescence. 2015;30(4):420–424. doi: 10.1002/bio.2754. PubMed DOI
Yan Z, Qu X, Niu Q, Tian C, Fan C, Ye B. A green synthesis of highly fluorescent nitrogen-doped graphene quantum dots for the highly sensitive and selective detection of mercury(II) ions and biothiols. Anal Methods. 2016;8:1565–1571. doi: 10.1039/C5AY03208C. DOI
Yang S-T, Cao L, Luo PG, Lu F, Wang X, Wang H, Meziani MJ, Liu Y, Qi G, Sun Y-P. Carbon dots for optical imaging in vivo. J Am Chem Soc. 2009;131(32):11308–11309. doi: 10.1021/ja904843x. PubMed DOI PMC
Yang S-T, Wang X, Wang H, Lu F, Luo PG, Cao L, Meziani MJ, Liu J-H, Liu Y, Chen M. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C. 2009;113(42):18110–18114. doi: 10.1021/jp9085969. PubMed DOI PMC
Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Dou Y. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens Bioelectron. 2014;60:292–298. doi: 10.1016/j.bios.2014.04.046. PubMed DOI
Yang R, Guoa X, Jia L, Zhang Y, Zhao Z, Lonshakov F. Green preparation of carbon dots with mangosteen pulp for the selective detection of Fe3+ ions and cell imaging. Appl Surf Sci. 2017;423:426–432. doi: 10.1016/j.apsusc.2017.05.252. DOI
Yang X, Wang Y, Shen X, Su C, Yang J, Piao M, Jia F, Gao G, Zhang L, Lin Q. One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery. J Colloid Interface Sci. 2017;492:1–7. doi: 10.1016/j.jcis.2016.12.057. PubMed DOI
Yang C, Chan KK, Xu G, Yin M, Lin G, Wang X, Lin WJ, Birowosuto MD, Zeng S, Ogi T, Okuyama K, Permatasari FA, Iskandar F, Chen CK, Yong KT. Biodegradable polymer-coated multifunctional graphene quantum dots for light-triggered synergetic therapy of pancreatic cancer. ACS Appl Mater Interfaces. 2019;11:2768–2781. doi: 10.1021/acsami.8b16168. PubMed DOI
Yang J, Gao G, Zhang X, Ma Y-H, Chen X, Wu F-G. One-step synthesis of carbon dots with bacterial contact-enhanced fluorescence emission: fast Gram-type identification and selective Gram-positive bacterial inactivation. Carbon. 2019;146:827–839. doi: 10.1016/j.carbon.2019.02.040. DOI
Yazid SNAM, Chin SF, Pang SC, Ng SM. Detection of Sn (II) ions via quenching of the fluorescence of carbon nanodots. Microchim Acta. 2013;180(1–2):137–143. doi: 10.1007/s00604-012-0908-0. DOI
Yin B, Deng J, Peng X, Long Q, Zhao J, Lu Q, Chen Q, Li H, Tang H, Zhang Y. Green synthesis of carbon dots with down-and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst. 2013;138(21):6551–6557. doi: 10.1039/C3AN01003A. PubMed DOI
Yuan X, Liu Z, Guo Z, Ji Y, Jin M, Wang X. Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Res Lett. 2014;9:108. doi: 10.1186/1556-276X-9-108. PubMed DOI PMC
Zhang L, Xing Y, He N, Zhang Y, Lu Z, Zhang J, Zhang Z. Preparation of graphene quantum dots for bioimaging application. J Nanosci Nanotechnol. 2012;12:2924–2928. doi: 10.1166/jnn.2012.5698. PubMed DOI
Zhang X, Wang S, Zhu C, Liu M, Ji Y, Feng L, Tao L, Wei Y. Carbon-dots derived from nanodiamond: photoluminescence tunable nanoparticles for cell imaging. J Colloid Interface Sci. 2013;397:39–44. doi: 10.1016/j.jcis.2013.01.063. PubMed DOI
Zhang H, Wang Y, Zhao D, Zeng D, Xia J, Aldalbahi A, Wang C, San L, Fan C, Zuo X, Mi S. Universal fluorescence biosensor platform based on graphene quantum dots and pyrenefunctionalized molecular beacons for detection of microRNAs. ACS Appl Mater Interfaces. 2015;7:16152–16156. doi: 10.1021/acsami.5b04773. PubMed DOI
Zhang J, Yuan Y, Liang G, Yu SH. Scale-Up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis. Adv Sci. 2015;2:1–6. doi: 10.1002/advs.201500002. PubMed DOI PMC
Zhang Z, Sun W, Wu P. Highly photoluminescent carbon dots derived from egg white: facile and green synthesis, photoluminescence properties, and multiple applications. ACS Sustain Chem Eng. 2015;3(7):1412–1418. doi: 10.1021/acssuschemeng.5b00156. DOI
Zhang M, Zhao X, Fang Z, Niu Y, Lou J, Wu Y, Zou S, Xia S, Sun M, Du F. Fabrication of HA/PEI-functionalized carbon dots for tumor targeting, intracellular imaging and gene delivery. RSC Adv. 2017;7(6):3369–3375. doi: 10.1039/C6RA26048A. DOI
Zhao HX, Liu LQ, De Liu Z, Wang Y, Zhao XJ, Huang CZ. Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots. Chem Commun. 2011;47(9):2604–2606. doi: 10.1039/C0CC04399K. PubMed DOI
Zhao J, Yan Y, Zhu L, Li X, Li G. An amperometric biosensor for the detection of hydrogen peroxide released from human breast cancer cells. Biosens Bioelectron. 2013;41:815–819. doi: 10.1016/j.bios.2012.10.019. PubMed DOI
Zhao S, Lan M, Zhu X, Xue H, Ng T-W, Meng X, Lee C-S, Wang P, Zhang W. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl Mater Interfaces. 2015;7(31):17054–17060. doi: 10.1021/acsami.5b03228. PubMed DOI
Zheng XT, Than A, Ananthanaraya A, Kim D-H, Chen P. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano. 2013;7(7):6278–6286. doi: 10.1021/nn4023137. PubMed DOI
Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015;11(14):1620–1636. doi: 10.1002/smll.201402648. PubMed DOI
Zhou J, Booker C, Li R, Zhou X, Sham T-K, Sun X, Ding Z. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs) J Am Chem Soc. 2007;129(4):744–745. doi: 10.1021/ja0669070. PubMed DOI
Zhou J, Han T, Ma H, Yan T, Pang X, Li Y, Wei Q. A novel electrochemiluminescent immunosensor based on the quenching effect of aminated graphene on nitrogen-doped carbon quantum dots. Anal Chim Acta. 2015;889:82–89. doi: 10.1016/j.aca.2015.07.018. PubMed DOI
Zhou Y, Sun H, Wang F, Ren J, Qu X. How functional groups influence the ROS generation and cytotoxicity of graphene quantum dots. Chem Commun. 2017;53:10588–10591. doi: 10.1039/C7CC04831A. PubMed DOI
Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H, Wei H, Zhang H, Sun H, Yang B. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun (Camb) 2011;47:6858–6860. doi: 10.1039/C1CC11122A. PubMed DOI
Zhu A, Luo Z, Ding C, Li B, Zhou S, Wang R, Tian Y. A two-photon “turn-on” fluorescent probe based on carbon nanodots for imaging and selective biosensing of hydrogen sulfide in live cells and tissues. Analyst. 2014;139(8):1945–1952. doi: 10.1039/C3AN02086J. PubMed DOI
Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 2015;8(2):355–381. doi: 10.1007/s12274-014-0644-3. DOI
Zong J, Zhu Y, Yang X, Shen J, Li C. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chem Commun. 2011;47(2):764–766. doi: 10.1039/C0CC03092A. PubMed DOI
Zou Y, Yan F, Zheng T, Shi D, Sun F, Yang N, Chen L. Highly luminescent organosilane-functionalized carbon dots as a nanosensor for sensitive and selective detection of quercetin in aqueous solution. Talanta. 2015;135:145–148. doi: 10.1016/j.talanta.2014.12.029. PubMed DOI
Eco-Friendly and Sustainable Pathways to Photoluminescent Carbon Quantum Dots (CQDs)
Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy
MXenes in Cancer Nanotheranostics
Biowaste-Derived Carbon Dots: A Perspective on Biomedical Potentials
Quantum dots against SARS-CoV-2: diagnostic and therapeutic potentials
Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications
Smart MXene Quantum Dot-Based Nanosystems for Biomedical Applications
Current Strategies for Noble Metal Nanoparticle Synthesis
Human virus detection with graphene-based materials
Trimetallic Nanoparticles: Greener Synthesis and Their Applications