Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review

. 2020 ; 18 (3) : 703-727. [epub] 20200310

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32206050

Carbon and graphene quantum dots are prepared using top-down and bottom-up methods. Sustainable synthesis of quantum dots has several advantages such as the use of low-cost and non-toxic raw materials, simple operations, expeditious reactions, renewable resources and straightforward post-processing steps. These nanomaterials are promising for clinical and biomedical sciences, especially in bioimaging, diagnosis, bioanalytical assays and biosensors. Here we review green methods for the fabrication of quantum dots, and biomedical and biotechnological applications.

Zobrazit více v PubMed

Amin N, Afkhami A, Hosseinzadeh L, Madrakian T. Green and cost-effective synthesis of carbon dots from date kernel and their application as a novel switchable fluorescence probe for sensitive assay of Zoledronic acid drug in human serum and cellular imaging. Anal Chim Acta. 2018;1030:183–193. doi: 10.1016/j.aca.2018.05.014. PubMed DOI

Arkan E, Barati A, Rahmanpanah M, Hosseinzadeh L, Moradi S, Hajialyani M. Green synthesis of carbon dots derived from walnut oil and an investigation of their cytotoxic and apoptogenic activities toward cancer cells. Adv Pharm Bull. 2018;8:149–155. doi: 10.15171/apb.2018.018. PubMed DOI PMC

Atchudan R, Edison TNJI, Lee YR. Nitrogen-doped carbon dots originating from unripe peach for fluorescent bioimaging and electrocatalytic oxygen reduction reaction. J Colloid Interface Sci. 2016;482:8–18. doi: 10.1016/j.jcis.2016.07.058. PubMed DOI

Atchudan R, Edison TNJI, Sethuraman MG, Lee YR. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume. Appl Surf Sci. 2016;384:432–441. doi: 10.1016/j.apsusc.2016.05.054. DOI

Atchudan R, Edison TNJI, Chakradhar D, Perumal S, Shim J-J, Lee YR. Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sens Actuators B Chem. 2017;246:497–509. doi: 10.1016/j.snb.2017.02.119. DOI

Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 2010;49(38):6726–6744. doi: 10.1002/anie.200906623. PubMed DOI

Balajia M, Jegatheeswarana S, Nithyaa P, Boomib P, Selvamc S, Sundrarajana M. Photoluminescent reduced graphene oxide quantum dots from latex of Calotropis gigantea for metal sensing, radical scavenging, cytotoxicity, and bioimaging in Artemia salina: a greener route. J Photochem Photobiol. 2018;178:371–379. doi: 10.1016/j.jphotobiol.2017.11.031. PubMed DOI

Bandi R, Reddy Gangapuram BR, Dadigala R, Eslavath R, Singh SS, Guttena V. Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Adv. 2016;6:28633–28639. doi: 10.1039/C6RA01669C. DOI

Bano D, Kumar V, Singha VK, Hasan SH. Green synthesis of fluorescent carbon quantum dots for the detection of mercury(II) and glutathione. New J Chem. 2018;42:5814–5821. doi: 10.1039/C8NJ00432C. DOI

Barras A, Pagneux Q, Sane F, Wang Q, Boukherroub R, Hober D, Szunerits S. High efficiency of functional carbon nanodots as entry inhibitors of herpes simplex virus type 1. ACS Appl Mater Interfaces. 2016;8:9004–9013. doi: 10.1021/acsami.6b01681. PubMed DOI

Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP. Photoluminescent carbogenic dots. Chem Mater. 2008;20(14):4539–4541. doi: 10.1021/cm800506r. DOI

Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Carbon dots and graphene quantum dots in electrochemical biosensing. Nanomaterials (Basel) 2019;9:634. doi: 10.3390/nano9040634. PubMed DOI PMC

Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D. Carbon dots for multiphoton bioimaging. J Am Chem Soc. 2007;129(37):11318–11319. doi: 10.1021/ja073527l. PubMed DOI PMC

Chen W, Li D, Tian L, Xiang W, Wang T, Hu W, Hu Y, Chen S, Chen J, Dai Z. Synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green Chem. 2018;20:4438–4442. doi: 10.1039/C8GC02106F. DOI

Chen W, Shen J, Lv G, Li D, Hu Y, Zhou C, Liu X, Dai Z. Green synthesis of graphene quantum dots from cotton cellulose. Chem Sel. 2019;4:2898–2902. doi: 10.1002/slct.201803512. DOI

Cheng C, Shi Y, Li M, Xing M, Wu Q. Carbon quantum dots from carbonized walnut shells: structural evolution, fluorescence characteristics, and intracellular bioimaging. Mater Sci Eng, C. 2017;79:473–480. doi: 10.1016/j.msec.2017.05.094. PubMed DOI

D’souza SL, Chettiar SS, Koduru JR, Kailasaa SK. Synthesis of fluorescent carbon dots using Daucus carota subsp. sativus roots for mitomycin drug delivery. Optik. 2018;158:893–900. doi: 10.1016/j.ijleo.2017.12.200. DOI

Dager A, Uchida T, Maekawa T, Tachibana M. Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: photoluminescence analysis using machine learning. Sci Rep. 2019;9:14004. doi: 10.1038/s41598-019-50397-5. PubMed DOI PMC

Dai H, Yang C, Tong Y, Xu G, Ma X, Lin Y, Chen G. Label-free electrochemiluminescent immunosensor for α-fetoprotein: performance of Nafion–carbon nanodots nanocomposite films as antibody carriers. Chem Commun. 2012;48(25):3055–3057. doi: 10.1039/C1CC16571B. PubMed DOI

Das R, Bandyopadhyay R, Pramanik P. Carbon quantum dots from natural resource: a review. Mater Today Chem. 2018;8:96–109. doi: 10.1016/j.mtchem.2018.03.003. DOI

de Menezes FD, Dos Reis SRR, Pinto SR, Portilho FL, do Vale Chaves E, Mello F, Helal-Neto E, da Silva de Barros AO, Alencar LMR, de Menezes AS, Dos Santos CC, Saraiva-Souza A, Perini JA, Machado DE, Felzenswalb I, Araujo-Lima CF, Sukhanova A, Nabiev I, Santos-Oliveira R. Graphene quantum dots unraveling: green synthesis, characterization, radiolabeling with 99mTc, in vivo behavior and mutagenicity. Mater Sci Eng C Mater Biol Appl. 2019;102:405–414. doi: 10.1016/j.msec.2019.04.058. PubMed DOI

de Yro PAN, Quaichon GMO, Cruz RAT, Emolaga CS, Que MCO, Magdaluyo Jr ER, Basilia BA (2019) Hydrothermal synthesis of carbon quantum dots from biowaste for bio-imaging. In: AIP conference proceedings, vol 2083. 10.1063/1.5094310

Ding Z, Li F, Wen J, Wang X, Sun R. Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass. Green Chem. 2018;20:1383–1390. doi: 10.1039/C7GC03218H. DOI

Dong Y, Zhou N, Lin X, Lin J, Chi Y, Chen G. Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem Mater. 2010;22(21):5895–5899. doi: 10.1021/cm1018844. DOI

Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed. 2013;52(30):7800–7804. doi: 10.1002/anie.201301114. PubMed DOI

Dong J, Wang K, Sun L, Sun B, Yang M, Chen H, Wang Y, Sun J, Dong L. Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery. Sens Actuators B Chem. 2018;256:616–623. doi: 10.1016/j.snb.2017.09.200. DOI

Edison TN, Atchudan R, Sethuraman MG, Shim JJ, Lee YR. Microwave assisted green synthesis of fluorescent N-doped carbon dots: cytotoxicity and bio-imaging applications. J Photochem Photobiol, B. 2016;161:154–161. doi: 10.1016/j.jphotobiol.2016.05.017. PubMed DOI

Edison TN, Atchudan R, Shim JJ, Kalimuthu S, Ahn BC, Lee YR. Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging. J Photochem Photobiol, B. 2016;158:235–242. doi: 10.1016/j.jphotobiol.2016.03.010. PubMed DOI

Fan Z, Nie Y, Wei Y, Zhao J, Liao X, Zhang J. Facile and large-scale synthesis of graphene quantum dots for selective targeting and imaging of cell nucleus and mitochondria. Mater Sci Eng, C. 2019;103:109824. doi: 10.1016/j.msec.2019.109824. PubMed DOI

Fang L, Zhang L, Chen Z, Zhu C, Liu J, Zheng J. Ammonium citrate derived carbon quantum dot as on-off-on fluorescent sensor for detection of chromium (VI) and sulfites. Mater Lett. 2017;191:1–4. doi: 10.1016/j.matlet.2016.12.098. DOI

Feng X, Jiang Y, Zhao J, Miao M, Cao S, Fang J, Shi L. Easy synthesis of photoluminescent N-doped carbon dots from winter melon for bio-imaging. RSC Adv. 2015;5:31250–31254. doi: 10.1039/C5RA02271A. DOI

Feng Y, Zhong D, Miao H, Yang X. Carbon dots derived from rose flowers for tetracycline sensing. Talanta. 2015;140:128–133. doi: 10.1016/j.talanta.2015.03.038. PubMed DOI

Feng J, Wang W-J, Hai X, Yu Y-L, Wang J-H. Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging. J Mater Chem B. 2016;4(3):387–393. doi: 10.1039/C5TB01999K. PubMed DOI

Ge J, Li Y, Wang J, Pu Y, Xue W, Liu X. Green synthesis of graphene quantum dots and silver nanoparticles compounds with excellent surface enhanced Raman scattering performance. J Alloys Compd. 2016;663:166–171. doi: 10.1016/j.jallcom.2015.12.055. DOI

Gogoi N, Chowdhury D. Novel carbon dot coated alginate beads with superior stability, swelling and pH responsive drug delivery. J Mater Chem B. 2014;2(26):4089–4099. doi: 10.1039/C3TB21835J. PubMed DOI

Gogoi N, Barooah M, Majumdar G, Chowdhury D. Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions. ACS Appl Mater Interfaces. 2015;7(5):3058–3067. doi: 10.1021/am506558d. PubMed DOI

Gonçalves H, Jorge PA, Fernandes J, da Silva JCE. Hg (II) sensing based on functionalized carbon dots obtained by direct laser ablation. Sens Actuators B Chem. 2010;145(2):702–707. doi: 10.1016/j.snb.2010.01.031. DOI

Gu J, Hu MJ, Guo QQ, Ding ZF, Sun XL, Yang J. High-yield synthesis of graphene quantum dots with strong green photoluminescence. RSC Adv. 2014;4:50141–50144. doi: 10.1039/C4RA10011E. DOI

Gu D, Shang S, Yu Q, Shen J. Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging. Appl Surf Sci. 2016;390:38–42. doi: 10.1016/j.apsusc.2016.08.012. DOI

Habiba K, Bracho-Rincon DP, Gonzalez-Feliciano JA, Villalobos-Santos JC, Makarov VI, Ortiz D, Avalos JA, Gonzalez CI, Weiner BR, Morell G. Synergistic antibacterial activity of PEGylated silver–graphene quantum dots nanocomposites. Appl Mater Today. 2015;1:80–87. doi: 10.1016/j.apmt.2015.10.001. DOI

Halder A, Godoy-Gallardo M, Ashley J, Feng X, Zhou T, Hosta-Rigau L, Sun Y. One-pot green synthesis of biocompatible graphene quantum dots and their cell uptake studies. ACS Appl Bio Mater. 2018;1:452–461. doi: 10.1021/acsabm.8b00170. PubMed DOI

Hamilton IP, Li B, Yan X, Li L-s. Alignment of colloidal graphene quantum dots on polar surfaces. Nano Lett. 2011;11(4):1524–1529. doi: 10.1021/nl200298c. PubMed DOI

Hoan BT, Tam PD, Pham V-H. Green synthesis of highly luminescent carbon quantum dots from lemon juice. J Nanotechnol. 2019;2019:2852816. doi: 10.1155/2019/2852816. DOI

Hou J, Dong J, Zhu H, Teng X, Ai S, Mang M. A simple and sensitive fluorescent sensor for methyl parathion based on l-tyrosine methyl ester functionalized carbon dots. Biosens Bioelectron. 2015;68:20–26. doi: 10.1016/j.bios.2014.12.037. PubMed DOI

Hou Y, Lu Q, Deng J, Li H, Zhang Y. One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal Chim Acta. 2015;866:69–74. doi: 10.1016/j.aca.2015.01.039. PubMed DOI

HU S-L, BAI P-K, CAO S-R, SUN J. Preparation of fluorescent carbon nanoparticles by pulsed laser. Chem J Chin Univ. 2009;8:1497–1500.

Hu S-L, Niu K-Y, Sun J, Yang J, Zhao N-Q, Du X-W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem. 2009;19(4):484–488. doi: 10.1039/B812943F. DOI

Hu Y, Zhang L, Li X, Liu R, Lin L, Zhao S. Green preparation of S and N Co-doped carbon dots from water chestnut and onion as well as their use as an off–on fluorescent probe for the quantification and imaging of coenzyme A. ACS Sustain Chem Eng. 2017;5:4992–5000. doi: 10.1021/acssuschemeng.7b00393. DOI

Huang H, Lv J-J, Zhou D-L, Bao N, Xu Y, Wang A-J, Feng J-J. One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Adv. 2013;3:21691–21696. doi: 10.1039/C3RA43452D. DOI

Huang G, Chen X, Wang C, Zheng H, Huang Z, Chen D, Xie H. Photoluminescent carbon dots derived from sugarcane molasses: synthesis, properties, and applications. RSC Adv. 2017;7:47840–47847. doi: 10.1039/C7RA09002A. DOI

Huang C, Dong H, Su Y, Wu Y, Narron R, Yong Q. Synthesis of carbon quantum dot nanoparticles derived from byproducts in bio-refinery process for cell imaging and in vivo bioimaging. Nanomaterials (Basel) 2019;9:387. doi: 10.3390/nano9030387. PubMed DOI PMC

Huang S, Li W, Han P, Zhou X, Cheng J, Wena H, Xue W. Carbon quantum dots: synthesis, properties, and sensing applications as a potential clinical analytical method. Anal Methods. 2019;11:2240–2258. doi: 10.1039/C9AY00068B. DOI

Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–2650. doi: 10.1039/C1GC15386B. DOI

Iravani S, Varma R. Plant-derived edible nanoparticles and miRNAs: emerging frontier for therapeutics and targeted drug-delivery. ACS Sustain Chem Eng. 2019;7:8055–8069. doi: 10.1021/acssuschemeng.9b00954. DOI

Iravani S, Varma RS. Biofactories: engineered nanoparticles via genetically engineered organisms. Green Chem. 2019;21:4583–4603. doi: 10.1039/C9GC01759C. DOI

Iravani S, Varma RS. Greener synthesis of lignin nanoparticles and their applications. Green Chem. 2020;22:612–636. doi: 10.1039/C9GC02835H. DOI

Jaiswal A, Ghosh SS, Chattopadhyay A. One step synthesis of C-dots by microwave mediated caramelization of poly (ethylene glycol) Chem Commun. 2012;48(3):407–409. doi: 10.1039/C1CC15988G. PubMed DOI

Janus Ł, Piątkowski M, Radwan-Pragłowska J, Bogdał D, Matysek D. Chitosan-based carbon quantum dots for biomedical applications: synthesis and characterization. Nanomaterials (Basel) 2019;9:274. doi: 10.3390/nano9020274. PubMed DOI PMC

Jiang H, Chen F, Lagally MG, Denes FS. New strategy for synthesis and functionalization of carbon nanoparticles. Langmuir. 2009;26(3):1991–1995. doi: 10.1021/la9022163. PubMed DOI

Jiang C, Wu H, Song X, Ma X, Wang J, Tan M. Presence of photoluminescent carbon dots in Nescafe® original instant coffee: applications to bioimaging. Talanta. 2014;127:68–74. doi: 10.1016/j.talanta.2014.01.046. PubMed DOI

Jiao J, Liu C, Li X, Liu J, Di D, Zhang Y, Zhao Q, Wang S. Fluorescent carbon dot modified mesoporous silica nanocarriers for redox-responsive controlled drug delivery and bioimaging. J Colloid Interface Sci. 2016;483:343–352. doi: 10.1016/j.jcis.2016.08.033. PubMed DOI

Joseph J, Anappara AA. White-light-emitting carbon dots prepared by the electrochemical exfoliation of graphite. ChemPhysChem. 2017;18(3):292–298. doi: 10.1002/cphc.201601020. PubMed DOI

Karthik S, Saha B, Ghosh SK, Singh NP. Photoresponsive quinoline tethered fluorescent carbon dots for regulated anticancer drug delivery. Chem Commun. 2013;49(89):10471–10473. doi: 10.1039/C3CC46078A. PubMed DOI

Kasibabu BSB, D’souza SL, Jha S, Kailasa SK. Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from carica papaya juice. J Fluoresc. 2015;25:803–810. doi: 10.1007/s10895-015-1595-0. PubMed DOI

Keerthana AK, Ashraf PM. Carbon nanodots synthesized from chitosan and its application as a corrosion inhibitor in boat-building carbon steel BIS2062. Appl Nanosci. 2019 doi: 10.1007/s13204-019-01177-0. DOI

Kumar A, Chowdhuri AR, Laha D, Mahto TK, Karmakar P, Sahu SK. Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sens Actuators B Chem. 2017;242:679–686. doi: 10.1016/j.snb.2016.11.109. DOI

Kumawat MK, Thakur M, Gurung RB, Srivastava R. Graphene quantum dots for cell proliferation, nucleus imaging, and photoluminescent sensing applications. Sci Rep. 2017;7:1–16. doi: 10.1038/s41598-017-16025-w. PubMed DOI PMC

Kumawat MK, Thakur M, Gurung RB, Srivastava R. Graphene quantum dots from mangifera indica: application in near-infrared bioimaging and intracellular nanothermometry. ACS Sustain Chem Eng. 2017;5:1382–1391. doi: 10.1021/acssuschemeng.6b01893. DOI

Lan M, Di Y, Zhu X, Ng T-W, Xia J, Liu W, Meng X, Wang P, Lee C-S, Zhang W. A carbon dot-based fluorescence turn-on sensor for hydrogen peroxide with a photo-induced electron transfer mechanism. Chem Commun. 2015;51(85):15574–15577. doi: 10.1039/C5CC05835J. PubMed DOI

Lee HU, Park SY, Park ES, Son B, Lee SC, Lee JW, Lee Y-C, Kang KS, Kim MI, Park HG. Photoluminescent carbon nanotags from harmful cyanobacteria for drug delivery and imaging in cancer cells. Sci Rep. 2014 doi: 10.1038/srep04665. PubMed DOI PMC

Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee ST. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed. 2010;49(26):4430–4434. doi: 10.1002/anie.200906154. PubMed DOI

Li X, Wang H, Shimizu Y, Pyatenko A, Kawaguchi K, Koshizaki N. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem Commun. 2010;47(3):932–934. doi: 10.1039/C0CC03552A. PubMed DOI

Li H, He X, Liu Y, Yu H, Kang Z, Lee S-T. Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment. Mater Res Bull. 2011;46(1):147–151. doi: 10.1016/j.materresbull.2010.10.013. DOI

Li S, Wang L, Chusuei CC, Suarez VM, Blackwelder PL, Micic M, Orbulesu J, Leblanc RM. Nontoxic carbon dots potently inhibit human insulin fibrillation. Chem Mater. 2015;27:1764–1771. doi: 10.1021/cm504572b. DOI

Li H, Shao F-Q, Huang H, Feng J-J, Wang A-J. Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sens Actuators B Chem. 2016;226:506–511. doi: 10.1016/j.snb.2015.12.018. DOI

Li M, Chen T, Gooding JJ, Liu J. Review of carbon and graphene quantum dots for sensing. ACS Sens. 2019;4:1732–1748. doi: 10.1021/acssensors.9b00514. PubMed DOI

Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chem Soc Rev. 2015;44:362–381. doi: 10.1039/C4CS00269E. PubMed DOI

Lin LX, Zhang SW. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem Commun. 2012;48:10177–10179. doi: 10.1039/C2CC35559K. PubMed DOI

Lin Z, Xue W, Chen H, Lin J-M. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal Chem. 2011;83(21):8245–8251. doi: 10.1021/ac202039h. PubMed DOI

Lin L, Rong M, Luo F, Chen D, Wang Y, Chen X. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. Trends Anal Chem. 2014;54:83–102. doi: 10.1016/j.trac.2013.11.001. DOI

Lin F, Bao Y-W, Wu F-G. Carbon dots for sensing and killing microorganisms. C J Carbon Res. 2019;5:33. doi: 10.3390/c5020033. DOI

Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed. 2007;46(34):6473–6475. doi: 10.1002/anie.200701271. PubMed DOI

Liu R, Wu D, Liu S, Koynov K, Knoll W, Li Q. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem. 2009;121(25):4668–4671. doi: 10.1002/anie.200900652. PubMed DOI

Liu R, Wu D, Feng X, Müllen K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J Am Chem Soc. 2011;133(39):15221–15223. doi: 10.1021/ja204953k. PubMed DOI

Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, Liu Y, Wang H, Wang W, Liu W. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials. 2012;33(13):3604–3613. doi: 10.1016/j.biomaterials.2012.01.052. PubMed DOI

Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee S-T, Zhong J, Kang Z. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science. 2015;347:970–974. doi: 10.1126/science.aaa3145. PubMed DOI

Liu S, Zhao N, Cheng Z, Liu H. Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale. 2015;7(15):6836–6842. doi: 10.1039/C5NR00070J. PubMed DOI

Liu W, Li C, Ren Y, Sun X, Pan W, Li Y, Wang J, Wang W. Carbon dots: surface engineering and applications. J Mater Chem B. 2016;4:5772–5788. doi: 10.1039/C6TB00976J. PubMed DOI

Liu F, Zhang W, Chen W, Wang J, Yang Q, Zhu W, Wang J. One-pot synthesis of NiFe2O4 integrated with EDTA-derived carbon dots for enhanced removal of tetracycline. Chem Eng J. 2017;310:187–196. doi: 10.1016/j.cej.2016.10.116. DOI

Liu ML, Lin Y, Li RS, Chen BB, Liu H, Huang CZ. Large-scale simultaneous synthesis of highly photoluminescent green amorphous carbon nanodots and yellow crystalline graphene quantum dots at room temperature. Green Chem. 2017;19:3611–3617. doi: 10.1039/C7GC01236E. DOI

Liu Q, Zhang J, He H, Huang G, Xing B, Jia J, Zhang C. Green preparation of high yield fluorescent graphene quantum dots from coal-tar-pitch by mild oxidation. Nanomaterials (Basel) 2018;8:844. doi: 10.3390/nano8100844. PubMed DOI PMC

Liu X, Hao J, Liu J, Tao H (2018b) Green synthesis of carbon quantum dots from lignite coal and the application in Fe3+ detection. In: IOP Conference Series: Earth Environmental Science vol 113, p 012063. 10.1088/1755-1315/113/1/012063

Lu J, Yeo PSE, Gan CK, Wu P, Loh KP. Transforming C60 molecules into graphene quantum dots. Nat Nanotechnol. 2011;6(4):247–252. doi: 10.1038/nnano.2011.30. PubMed DOI

Lu Y-C, Chen J, Wang A-J, Bao N, Feng J-J, Wang W, Shao L. Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury(ii) detection and bioimaging. J Mater Chem C. 2015;3:73–78. doi: 10.1039/C4TC02111H. DOI

Majumdar S, Krishnatreya G, Gogoi N, Thakur D, Chowdhury D. Carbon-dot-coated alginate beads as a smart stimuli-responsive drug delivery system. ACS Appl Mater Interfaces. 2016;8(50):34179–34184. doi: 10.1021/acsami.6b10914. PubMed DOI

Mehta VN, Jha S, Kailasa SK. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng, C. 2014;38:20–27. doi: 10.1016/j.msec.2014.01.038. PubMed DOI

Mehta VN, Jha S, Basu H, Singhal RK, Kailasa SK. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sens Actuators B Chem. 2015;213:434–443. doi: 10.1016/j.snb.2015.02.104. DOI

Mei Q, Chen J, Zhao J, Yang L, Liu B, Liu RY, Zhang ZP. Atomic oxygen tailored graphene oxide nanosheets emissions for multicolor cellular imaging. ACS Appl Mater Interfaces. 2016;8:7390–7395. doi: 10.1021/acsami.6b00791. PubMed DOI

Mewada A, Pandey S, Shinde S, Mishra N, Oza G, Thakur M, Sharon M, Sharon M. Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Mater Sci Eng, C. 2013;33(5):2914–2917. doi: 10.1016/j.msec.2013.03.018. PubMed DOI

Miao P, Han K, Tang Y, Wang B, Lin T, Cheng W. Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale. 2015;7(5):1586–1595. doi: 10.1039/C4NR05712K. PubMed DOI

Ming H, Ma Z, Liu Y, Pan K, Yu H, Wang F, Kang Z. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans. 2012;41(31):9526–9531. doi: 10.1039/C2DT30985H. PubMed DOI

Mohammadinejad R, Karimi S, Iravani S, Varma RS. Plant-derived nanostructures: types and applications. Green Chem. 2016;18:20–52. doi: 10.1039/C5GC01403D. DOI

Mohammadinejad R, Shavandi A, Raie DS, Sangeetha J, Soleimani M, Hajibehzad SS, Thangadurai D, Hospet R, Popoola JO, Arzani A, Gómez-Lim MA, Iravani S, Varma RS. Plant molecular farming: production of metallic nanoparticles and therapeutic proteins using green factories. Green Chem. 2019;21:1845–1865. doi: 10.1039/C9GC00335E. DOI

Mueller ML, Yan X, Dragnea B, Li L-s. Slow hot-carrier relaxation in colloidal graphene quantum dots. Nano Lett. 2010;11(1):56–60. doi: 10.1021/nl102712x. PubMed DOI

Murugan N, Prakash M, Jayakumar M, Sundaramurthy A, Sundramoorthy AK. Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+ Appl Surf Sci. 2019;476:468–480. doi: 10.1016/j.apsusc.2019.01.090. DOI

Namdari P, Negahdari B, Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother. 2017;87:209–222. doi: 10.1016/j.biopha.2016.12.108. PubMed DOI

Nekoueian K, Amiri M, Sillanpaa M, Marken F, Boukherroub R, Szunerits S. Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chem Soc Rev. 2019;48:4281–4316. doi: 10.1039/C8CS00445E. PubMed DOI

Nie H, Li MJ, Li QS, Liang SJ, Tan YY, Sheng L, Shi W, Zhang SX-A. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater. 2014;26:3104–3112. doi: 10.1021/cm5003669. DOI

Park SY, Lee HU, Park ES, Lee SC, Lee J-W, Jeong SW, Kim CH, Lee Y-C, Huh YS, Lee J. Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS Appl Mater Interfaces. 2014;6(5):3365–3370. doi: 10.1021/am500159p. PubMed DOI

Pooja D, Saini S, Thakur A, Kumar B, Tyagi S, Nayak MK. A “Turn-On” thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection. J Hazard Mater. 2017;328:117–126. doi: 10.1016/j.jhazmat.2017.01.015. PubMed DOI

Prasannan A, Imae T. One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res. 2013;52:15673–15678. doi: 10.1021/ie402421s. DOI

Priyadarshini E, Rawat K, Prasad T, Bohidar HB. Antifungal efficacy of Au@carbon dots nanoconjugates against opportunistic fungal pathogen, Candida albicans. Colloid Surf B Biointerfaces. 2018;163:355–361. doi: 10.1016/j.colsurfb.2018.01.006. PubMed DOI

Qiao Z-A, Wang Y, Gao Y, Li H, Dai T, Liu Y, Huo Q. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun. 2010;46(46):8812–8814. doi: 10.1039/C0CC02724C. PubMed DOI

Qin X, Lu W, Asiri AM, Al-Youbi AO, Sun X. Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury (II) ions. Sens Actuators B Chem. 2013;184:156–162. doi: 10.1016/j.snb.2013.04.079. DOI

Ramanan V, Thiyagarajan SK, Raji K, Suresh R, Sekar R, Ramamurthy P. Outright green synthesis of fluorescent carbon dots from eutrophic algal blooms for in vitro imaging. ACS Sustain Chem Eng. 2016;4(9):4724–4731. doi: 10.1021/acssuschemeng.6b00935. DOI

Ramezani Z, Qorbanpour M, Rahbar N. Green synthesis of carbon quantum dots using quince fruit (Cydonia oblonga) powder as carbon precursor: application in cell imaging and As3+ determination. Colloids Surf A Physicochem Eng Asp. 2018;549:58–66. doi: 10.1016/j.colsurfa.2018.04.006. DOI

Ray S, Saha A, Jana NR, Sarkar R. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C. 2009;113(43):18546–18551. doi: 10.1021/jp905912n. DOI

Sachdev A, Gopinath P. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst. 2015;140:4260–4269. doi: 10.1039/C5AN00454C. PubMed DOI

Schneider J, Reckmeier CJ, Xiong Y, von Seckendorff M, Susha AS, Kasák P, Rogach AL. Molecular fluorescence in citric acid-based carbon dots. J Phys Chem C. 2017;121(3):2014–2022. doi: 10.1021/acs.jpcc.6b12519. DOI

Sharma A, Das J. Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotech. 2019;17:92. doi: 10.1186/s12951-019-0525-8. PubMed DOI PMC

Shen P, Xia Y. Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal Chem. 2014;86(11):5323–5329. doi: 10.1021/ac5001338. PubMed DOI

Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun. 2012;48(31):3686–3699. doi: 10.1039/C2CC00110A. PubMed DOI

Shen J, Shang S, Chen X, Wang D, Cai Y. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater Sci Eng, C. 2017;76:856–864. doi: 10.1016/j.msec.2017.03.178. PubMed DOI

Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, Huang Y. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun. 2011;47(23):6695–6697. doi: 10.1039/C1CC11943E. PubMed DOI

Shi B, Zhang L, Lan C, Zhao J, Su Y, Zhao S. One-pot green synthesis of oxygen-rich nitrogen-doped graphene quantum dots and their potential application in pH-sensitive photoluminescence and detection of mercury(II) ions. Talanta. 2015;142:131–139. doi: 10.1016/j.talanta.2015.04.059. PubMed DOI

Shi J, Chan C, Pang Y, Ye W, Tian F, Lyu J, Zhang Y, Yang M. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens Bioelectron. 2015;67:595–600. doi: 10.1016/j.bios.2014.09.059. PubMed DOI

Shinde DB, Pillai VK. Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem A Eur J. 2012;18(39):12522–12528. doi: 10.1002/chem.201201043. PubMed DOI

Sivasankaran U, Jesny S, Jose AR, Kumar KG. Fluorescence determination of glutathione using tissue paper-derived carbon dots as fluorophores. Anal Sci. 2017;33(3):281–285. doi: 10.2116/analsci.33.281. PubMed DOI

Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756–7757. doi: 10.1021/ja062677d. PubMed DOI

Tadessea A, RamaDevid D, Hagosa M, Battud GR, Basavaiah K. Facile green synthesis of fluorescent carbon quantum dots from citrus lemon juice for live cell imaging. Asian J Nanosci Mater. 2018;1:36–46. doi: 10.26655/ajnanomat.2018.1.5. DOI

Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano. 2012;6(6):5102–5110. doi: 10.1021/nn300760g. PubMed DOI

Tao H, Yang K, Ma Z, Wan J, Zhang Y, Kang Z, Liu Z. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small. 2012;8(2):281–290. doi: 10.1002/smll.201101706. PubMed DOI

Thakur M, Mewada A, Pandey S, Bhori M, Singh K, Sharon M, Sharon M. Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system. Mater Sci Eng C Mater Biol Appl. 2016;67:468–477. doi: 10.1016/j.msec.2016.05.007. PubMed DOI

Tripathi KM, Tran TS, Tung TT, Losic D, Kim T. Water soluble fluorescent carbon nanodots from biosource for cells imaging. J Nanomater. 2017;2017:1–10. doi: 10.1155/2017/7029731. DOI

Tyagi A, Tripathi KM, Singh N, Choudhary S, Gupta RK. Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Adv. 2016;6:72423–72432. doi: 10.1039/C6RA10488F. DOI

Vandarkuzhali SAA, Jeyalakshmi V, Sivaraman G, Singaravadivel S, Krishnamurthy KR, Viswanathan B. Highly fluorescent carbon dots from Pseudo-stem of banana plant: applications as nanosensor and bio-imaging agents. Sens Actuators B Chem. 2017;252:894–900. doi: 10.1016/j.snb.2017.06.088. DOI

Varma RS. Greener approach to nanomaterials and their sustainable applications. Curr Opin Chem Eng. 2012;1:123–128. doi: 10.1016/j.coche.2011.12.002. DOI

Varma RS. Greener and sustainable chemistry. Appl Sci. 2014;4:493–497. doi: 10.3390/app4040493. DOI

Varma RS. Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014;16:2027–2041. doi: 10.1039/C3GC42640H. DOI

Varma RS. Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustain Chem Eng. 2016;4:5866–5878. doi: 10.1021/acssuschemeng.6b01623. PubMed DOI PMC

Varma RS. Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustain Chem Eng. 2019;7:6458–6470. doi: 10.1021/acssuschemeng.8b06550. DOI

Vedamalai M, Periasamy AP, Wang CW, Tseng YT, Ho LC, Shih CC, Chang HT. Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale. 2014;6(21):13119–13125. doi: 10.1039/C4NR03213F. PubMed DOI

Vinci JC, Ferrer IM, Seedhouse SJ, Bourdon AK, Reynard JM, Foster BA, Bright FV, Colón LA. Hidden properties of carbon dots revealed after HPLC fractionation. J Phys Chem Lett. 2012;4(2):239–243. doi: 10.1021/jz301911y. PubMed DOI

Wang Y, Hu A. Carbon quantum dots: synthesis, properties and applications. J Mater Chem C. 2014;2:6921–6939. doi: 10.1039/C4TC00988F. DOI

Wang X, Cao L, Yang ST, Lu F, Meziani MJ, Tian L, Sun KW, Bloodgood MA, Sun YP. Bandgap-Like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Ed. 2010;49(31):5310–5314. doi: 10.1002/anie.201000982. PubMed DOI PMC

Wang J, Xin X, Lin Z. Cu 2 ZnSnS 4 nanocrystals and graphene quantum dots for photovoltaics. Nanoscale. 2011;3(8):3040–3048. doi: 10.1039/C1NR10425J. PubMed DOI

Wang Q, Zheng H, Long Y, Zhang L, Gao M, Bai W. Microwave–hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon. 2011;49(9):3134–3140. doi: 10.1016/j.carbon.2011.03.041. DOI

Wang K, Gao Z, Gao G, Wo Y, Wang Y, Shen G, Cui D. Systematic safety evaluation on photoluminescent carbon dots. Nanoscale Res Lett. 2013;8(1):122. doi: 10.1186/1556-276X-8-122. PubMed DOI PMC

Wang Q, Huang X, Long Y, Wang X, Zhang H, Zhu R, Liang L, Teng P, Zheng H. Hollow luminescent carbon dots for drug delivery. Carbon. 2013;59:192–199. doi: 10.1016/j.carbon.2013.03.009. DOI

Wang R, Li G, Dong Y, Chi Y, Chen G. Carbon quantum dot-functionalized aerogels for NO2 gas sensing. Anal Chem. 2013;85:8065–8069. doi: 10.1021/ac401880h. PubMed DOI

Wang W, Li Y, Cheng L, Cao Z, Liu W. Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. J Mater Chem B. 2013;2(1):46–48. doi: 10.1039/C3TB21370F. PubMed DOI

Wang Y, Wang S, Ge S, Wang S, Yan M, Zang D, Yu J. Facile and sensitive paper-based chemiluminescence DNA biosensor using carbon dots dotted nanoporous gold signal amplification label. Anal Methods. 2013;5(5):1328–1336. doi: 10.1039/C2AY26485D. DOI

Wang D, Chen JF, Dai L. Recent advances in graphene quantum dots for fluorescence bioimaging from cells through tissues to animals. Part Part Syst Charact. 2014;32:515–523. doi: 10.1002/ppsc.201400219. DOI

Wang X, Sun X, Lao J, He H, Cheng T, Wang M, Wang S, Huang F. Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf B Biointerfaces. 2014;122:638–644. doi: 10.1016/j.colsurfb.2014.07.043. PubMed DOI

Wang J, Wei J, Sua S, Qiu J. Novel fluorescence resonance energy transfer optical sensors for vitamin B12 detection using thermally reduced carbon dots. New J Chem. 2015;39:501–507. doi: 10.1039/C4NJ00538D. DOI

Wang W, Lu Y-C, Huang H, Wang A-J, Chen J-R, Feng J-J. Facile synthesis of N, S-codoped fluorescent carbon nanodots for fluorescent resonance energy transfer recognition of methotrexate with high sensitivity and selectivity. Biosens Bioelectron. 2015;64:517–522. doi: 10.1016/j.bios.2014.09.066. PubMed DOI

Wang Z, Liao H, Wu H, Wang B, Zhao H, Tan M. Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery. Anal Methods. 2015;7(20):8911–8917. doi: 10.1039/C5AY01978H. DOI

Wang L, Bi Y, Gao J, Li Y, Ding H, Ding L. Carbon dots based turn-on fluorescent probes for the sensitive determination of glyphosate in environmental water samples. RSC Adv. 2016;6(89):85820–85828. doi: 10.1039/C6RA10115A. DOI

Wang L, Li W, Wu B, Li Z, Wang S, Liu Y, Pan D, Wu M. Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chem Eng J. 2016;300:75–82. doi: 10.1016/j.cej.2016.04.123. DOI

Wang X, Yang P, Feng Q, Meng T, Wei J, Xu C, Han J. Green preparation of fluorescent carbon quantum dots from cyanobacteria for biological imaging. Polymers (Basel) 2019;11:616. doi: 10.3390/polym11040616. PubMed DOI PMC

Wei J, Zhang X, Sheng Y, Shen J, Huang P, Guo S, Pan J, Liu B, Feng B. Simple one-step synthesis of water-soluble fluorescent carbon dots from waste paper. New J Chem. 2014;38(3):906–909. doi: 10.1039/C3NJ01325A. DOI

Wu ZL, Zhang P, Gao MX, Liu CF, Wang W, Leng F, Huang CZ. One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk–natural proteins. J Mater Chem B. 2013;1(22):2868–2873. doi: 10.1039/C3TB20418A. PubMed DOI

Xie Y, Wan B, Yang Y, Cui X, Xin Y, Guo L-H. Cytotoxicity and autophagy induction by graphene quantum dots with different functional groups. J Environ Sci. 2019;77:198–209. doi: 10.1016/j.jes.2018.07.014. PubMed DOI

Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126(40):12736–12737. doi: 10.1021/ja040082h. PubMed DOI

Xu Y, Wu M, Liu Y, Feng XZ, Yin XB, He XW, Zhang YK. Nitrogen-doped carbon dots: a facile and general preparation method, photoluminescence investigation, and imaging applications. Chem Eur J. 2013;19(7):2276–2283. doi: 10.1002/chem.201203641. PubMed DOI

Xu J, Zhou Y, Liu S, Dong M, Huang C. Low-cost synthesis of carbon nanodots from natural products used as a fluorescent probe for the detection of ferrum (III) ions in lake water. Anal Methods. 2014;6(7):2086–2090. doi: 10.1039/C3AY41715H. DOI

Xu J, Lai T, Feng Z, Weng X, Huang C. Formation of fluorescent carbon nanodots from kitchen wastes and their application for detection of Fe3+ Luminescence. 2015;30(4):420–424. doi: 10.1002/bio.2754. PubMed DOI

Yan Z, Qu X, Niu Q, Tian C, Fan C, Ye B. A green synthesis of highly fluorescent nitrogen-doped graphene quantum dots for the highly sensitive and selective detection of mercury(II) ions and biothiols. Anal Methods. 2016;8:1565–1571. doi: 10.1039/C5AY03208C. DOI

Yang S-T, Cao L, Luo PG, Lu F, Wang X, Wang H, Meziani MJ, Liu Y, Qi G, Sun Y-P. Carbon dots for optical imaging in vivo. J Am Chem Soc. 2009;131(32):11308–11309. doi: 10.1021/ja904843x. PubMed DOI PMC

Yang S-T, Wang X, Wang H, Lu F, Luo PG, Cao L, Meziani MJ, Liu J-H, Liu Y, Chen M. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C. 2009;113(42):18110–18114. doi: 10.1021/jp9085969. PubMed DOI PMC

Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Dou Y. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens Bioelectron. 2014;60:292–298. doi: 10.1016/j.bios.2014.04.046. PubMed DOI

Yang R, Guoa X, Jia L, Zhang Y, Zhao Z, Lonshakov F. Green preparation of carbon dots with mangosteen pulp for the selective detection of Fe3+ ions and cell imaging. Appl Surf Sci. 2017;423:426–432. doi: 10.1016/j.apsusc.2017.05.252. DOI

Yang X, Wang Y, Shen X, Su C, Yang J, Piao M, Jia F, Gao G, Zhang L, Lin Q. One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery. J Colloid Interface Sci. 2017;492:1–7. doi: 10.1016/j.jcis.2016.12.057. PubMed DOI

Yang C, Chan KK, Xu G, Yin M, Lin G, Wang X, Lin WJ, Birowosuto MD, Zeng S, Ogi T, Okuyama K, Permatasari FA, Iskandar F, Chen CK, Yong KT. Biodegradable polymer-coated multifunctional graphene quantum dots for light-triggered synergetic therapy of pancreatic cancer. ACS Appl Mater Interfaces. 2019;11:2768–2781. doi: 10.1021/acsami.8b16168. PubMed DOI

Yang J, Gao G, Zhang X, Ma Y-H, Chen X, Wu F-G. One-step synthesis of carbon dots with bacterial contact-enhanced fluorescence emission: fast Gram-type identification and selective Gram-positive bacterial inactivation. Carbon. 2019;146:827–839. doi: 10.1016/j.carbon.2019.02.040. DOI

Yazid SNAM, Chin SF, Pang SC, Ng SM. Detection of Sn (II) ions via quenching of the fluorescence of carbon nanodots. Microchim Acta. 2013;180(1–2):137–143. doi: 10.1007/s00604-012-0908-0. DOI

Yin B, Deng J, Peng X, Long Q, Zhao J, Lu Q, Chen Q, Li H, Tang H, Zhang Y. Green synthesis of carbon dots with down-and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst. 2013;138(21):6551–6557. doi: 10.1039/C3AN01003A. PubMed DOI

Yuan X, Liu Z, Guo Z, Ji Y, Jin M, Wang X. Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Res Lett. 2014;9:108. doi: 10.1186/1556-276X-9-108. PubMed DOI PMC

Zhang L, Xing Y, He N, Zhang Y, Lu Z, Zhang J, Zhang Z. Preparation of graphene quantum dots for bioimaging application. J Nanosci Nanotechnol. 2012;12:2924–2928. doi: 10.1166/jnn.2012.5698. PubMed DOI

Zhang X, Wang S, Zhu C, Liu M, Ji Y, Feng L, Tao L, Wei Y. Carbon-dots derived from nanodiamond: photoluminescence tunable nanoparticles for cell imaging. J Colloid Interface Sci. 2013;397:39–44. doi: 10.1016/j.jcis.2013.01.063. PubMed DOI

Zhang H, Wang Y, Zhao D, Zeng D, Xia J, Aldalbahi A, Wang C, San L, Fan C, Zuo X, Mi S. Universal fluorescence biosensor platform based on graphene quantum dots and pyrenefunctionalized molecular beacons for detection of microRNAs. ACS Appl Mater Interfaces. 2015;7:16152–16156. doi: 10.1021/acsami.5b04773. PubMed DOI

Zhang J, Yuan Y, Liang G, Yu SH. Scale-Up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis. Adv Sci. 2015;2:1–6. doi: 10.1002/advs.201500002. PubMed DOI PMC

Zhang Z, Sun W, Wu P. Highly photoluminescent carbon dots derived from egg white: facile and green synthesis, photoluminescence properties, and multiple applications. ACS Sustain Chem Eng. 2015;3(7):1412–1418. doi: 10.1021/acssuschemeng.5b00156. DOI

Zhang M, Zhao X, Fang Z, Niu Y, Lou J, Wu Y, Zou S, Xia S, Sun M, Du F. Fabrication of HA/PEI-functionalized carbon dots for tumor targeting, intracellular imaging and gene delivery. RSC Adv. 2017;7(6):3369–3375. doi: 10.1039/C6RA26048A. DOI

Zhao HX, Liu LQ, De Liu Z, Wang Y, Zhao XJ, Huang CZ. Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots. Chem Commun. 2011;47(9):2604–2606. doi: 10.1039/C0CC04399K. PubMed DOI

Zhao J, Yan Y, Zhu L, Li X, Li G. An amperometric biosensor for the detection of hydrogen peroxide released from human breast cancer cells. Biosens Bioelectron. 2013;41:815–819. doi: 10.1016/j.bios.2012.10.019. PubMed DOI

Zhao S, Lan M, Zhu X, Xue H, Ng T-W, Meng X, Lee C-S, Wang P, Zhang W. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl Mater Interfaces. 2015;7(31):17054–17060. doi: 10.1021/acsami.5b03228. PubMed DOI

Zheng XT, Than A, Ananthanaraya A, Kim D-H, Chen P. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano. 2013;7(7):6278–6286. doi: 10.1021/nn4023137. PubMed DOI

Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015;11(14):1620–1636. doi: 10.1002/smll.201402648. PubMed DOI

Zhou J, Booker C, Li R, Zhou X, Sham T-K, Sun X, Ding Z. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs) J Am Chem Soc. 2007;129(4):744–745. doi: 10.1021/ja0669070. PubMed DOI

Zhou J, Han T, Ma H, Yan T, Pang X, Li Y, Wei Q. A novel electrochemiluminescent immunosensor based on the quenching effect of aminated graphene on nitrogen-doped carbon quantum dots. Anal Chim Acta. 2015;889:82–89. doi: 10.1016/j.aca.2015.07.018. PubMed DOI

Zhou Y, Sun H, Wang F, Ren J, Qu X. How functional groups influence the ROS generation and cytotoxicity of graphene quantum dots. Chem Commun. 2017;53:10588–10591. doi: 10.1039/C7CC04831A. PubMed DOI

Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H, Wei H, Zhang H, Sun H, Yang B. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun (Camb) 2011;47:6858–6860. doi: 10.1039/C1CC11122A. PubMed DOI

Zhu A, Luo Z, Ding C, Li B, Zhou S, Wang R, Tian Y. A two-photon “turn-on” fluorescent probe based on carbon nanodots for imaging and selective biosensing of hydrogen sulfide in live cells and tissues. Analyst. 2014;139(8):1945–1952. doi: 10.1039/C3AN02086J. PubMed DOI

Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 2015;8(2):355–381. doi: 10.1007/s12274-014-0644-3. DOI

Zong J, Zhu Y, Yang X, Shen J, Li C. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chem Commun. 2011;47(2):764–766. doi: 10.1039/C0CC03092A. PubMed DOI

Zou Y, Yan F, Zheng T, Shi D, Sun F, Yang N, Chen L. Highly luminescent organosilane-functionalized carbon dots as a nanosensor for sensitive and selective detection of quercetin in aqueous solution. Talanta. 2015;135:145–148. doi: 10.1016/j.talanta.2014.12.029. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Eco-Friendly and Sustainable Pathways to Photoluminescent Carbon Quantum Dots (CQDs)

. 2023 Jan 30 ; 13 (3) : . [epub] 20230130

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

. 2023 ; 14 () : 165-174. [epub] 20230130

Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy

. 2022 Oct 19 ; 13 (10) : . [epub] 20221019

MXenes in Cancer Nanotheranostics

. 2022 Sep 27 ; 12 (19) : . [epub] 20220927

Biowaste-Derived Carbon Dots: A Perspective on Biomedical Potentials

. 2022 Sep 21 ; 27 (19) : . [epub] 20220921

Quantum dots against SARS-CoV-2: diagnostic and therapeutic potentials

. 2022 Jul ; 97 (7) : 1640-1654. [epub] 20220204

Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications

. 2022 Jun 20 ; 3 (12) : 4765-4782. [epub] 20220516

Smart MXene Quantum Dot-Based Nanosystems for Biomedical Applications

. 2022 Apr 03 ; 12 (7) : . [epub] 20220403

Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials

. 2021 Jul ; 275 () : 130055. [epub] 20210222

Current Strategies for Noble Metal Nanoparticle Synthesis

. 2021 Mar 15 ; 16 (1) : 47. [epub] 20210315

Human virus detection with graphene-based materials

. 2020 Oct 15 ; 166 () : 112436. [epub] 20200722

Trimetallic Nanoparticles: Greener Synthesis and Their Applications

. 2020 Sep 09 ; 10 (9) : . [epub] 20200909

Fruit and Vegetable Peels: Utilization of High Value Horticultural Waste in Novel Industrial Applications

. 2020 Jun 18 ; 25 (12) : . [epub] 20200618

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...