Smart MXene Quantum Dot-Based Nanosystems for Biomedical Applications
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
35407317
PubMed Central
PMC9000790
DOI
10.3390/nano12071200
PII: nano12071200
Knihovny.cz E-resources
- Keywords
- MXene quantum dots, MXenes, biocompatibility, biomedical applications, smart nanosystems, toxicity,
- Publication type
- Journal Article MeSH
- Review MeSH
MXene quantum dots (QDs), with their unique structural, optical, magnetic, and electronic characteristics, are promising contenders for various pharmaceutical and biomedical appliances including biological sensing/imaging, cancer diagnosis/therapy, regenerative medicine, tissue engineering, delivery of drugs/genes, and analytical biochemistry. Although functionalized MXene QDs have demonstrated high biocompatibility, superb optical properties, and stability, several challenging issues pertaining to their long-term toxicity, histopathology, biodistribution, biodegradability, and photoluminescence properties are still awaiting systematic study (especially the move towards the practical and clinical phases from the pre-clinical/lab-scale discoveries). The up-scalable and optimized synthesis methods need to be developed not only for the MXene QD-based nanosystems but also for other smart platforms and hybrid nanocomposites encompassing MXenes with vast clinical and biomedical potentials. Enhancing the functionalization strategies, improvement of synthesis methods, cytotoxicity/biosafety evaluations, enriching the biomedical applications, and exploring additional MXene QDs are crucial aspects for developing the smart MXene QD-based nanosystems with improved features. Herein, recent developments concerning the biomedical applications of MXene QDs are underscored with emphasis on current trends and future prospects.
See more in PubMed
Naguib M., Barsoum M.W., Gogotsi Y. Ten Years of Progress in the Synthesis and Development of MXenes. Adv. Mater. 2021;33:2103393. doi: 10.1002/adma.202103393. PubMed DOI
VahidMohammadi A., Rosen J., Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes) Science. 2021;372:eabf1581. doi: 10.1126/science.abf1581. PubMed DOI
Gogotsi Y., Huang Q. MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano. 2021;15:5775–5780. doi: 10.1021/acsnano.1c03161. PubMed DOI
Zhang J., Fu Y., Mo A. Multilayered Titanium Carbide MXene Film for Guided Bone Regeneration. Int. J. Nanomed. 2019;14:10091–10103. doi: 10.2147/IJN.S227830. PubMed DOI PMC
Iravani S., Varma R.S. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater. Sci. Eng. 2021;7:1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI
Cheng W., Zeng X., Chen H., Li Z., Zeng W., Mei L., Zhao Y. Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine. ACS Nano. 2019;13:8537–8565. doi: 10.1021/acsnano.9b04436. PubMed DOI
Zeng X., Luo M., Liu G., Wang X., Tao W., Lin Y., Ji X., Nie L., Mei L. Polydopamine-Modified Black Phosphorous Nanocapsule with Enhanced Stability and Photothermal Performance for Tumor Multimodal Treatments. Adv. Sci. 2018;5:1800510. doi: 10.1002/advs.201800510. PubMed DOI PMC
Luo M., Fan T., Zhou Y., Zhang H., Mei L. 2D Black Phosphorus–Based Biomedical Applications. Adv. Funct. Mater. 2019;29:1808306. doi: 10.1002/adfm.201808306. DOI
Jamalipour Soufi G., Iravani S. Eco-friendly and sustainable synthesis of biocompatible nanomaterials for diagnostic imaging: Current challenges and future perspectives. Green Chem. 2020;22:2662–2687. doi: 10.1039/D0GC00734J. DOI
Tao W., Zhu X., Yu X., Zeng X., Xiao Q., Zhang X., Ji X., Wang X., Shi J., Zhang H., et al. Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics. Adv. Mater. 2017;29:1603276. doi: 10.1002/adma.201603276. PubMed DOI PMC
Shao B., Liu Z., Zeng G., Wang H., Liang Q., He Q., Cheng M., Zhou C., Jiang L., Song B. Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): Synthesis, properties, applications and prospects. J. Mater. Chem. A. 2020;8:7508–7535. doi: 10.1039/D0TA01552K. DOI
Cheng H., Ding L.X., Chen G.F., Zhang L., Xue J., Wang H. Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions. Adv. Mater. 2018;30:1803694. doi: 10.1002/adma.201803694. PubMed DOI
Chen X., Sun X., Xu W., Pan G., Zhou D., Zhu J., Wang H., Bai X., Dong B., Song H. Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale. 2018;10:1111–1118. doi: 10.1039/C7NR06958H. PubMed DOI
Kong X., Liu X., Zheng Y., Chu P.K., Zhang Y., Wu S. Graphitic carbon nitride-based materials for photocatalytic antibacterial application. Mater. Sci. Eng. R Rep. 2021;145:100610. doi: 10.1016/j.mser.2021.100610. DOI
Liao G., He F., Li Q., Zhong L., Zhao R., Che H., Gao H., Fang B. Emerging graphitic carbon nitride-based materials for biomedical applications. Prog. Mater. Sci. 2020;112:100666. doi: 10.1016/j.pmatsci.2020.100666. DOI
Jin Z., Liu C., Liu Z., Han J., Fang Y., Han Y., Niu Y., Wu Y., Sun C., Xu Y. Rational Design of Hydroxyl-Rich Ti3C2Tx MXene Quantum Dots for High-Performance Electrochemical N2 Reduction. Adv. Energy Mater. 2020;10:2000797. doi: 10.1002/aenm.202000797. DOI
Lin H., Chen Y., Shi J. Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Adv. Sci. 2018;5:1800518. doi: 10.1002/advs.201800518. PubMed DOI PMC
Lin H., Gao S., Dai C., Chen Y., Shi J. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017;139:16235–16247. doi: 10.1021/jacs.7b07818. PubMed DOI
Lin H., Wang X., Yu L., Chen Y., Shi J. Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. Nano Lett. 2017;17:384–391. doi: 10.1021/acs.nanolett.6b04339. PubMed DOI
Lin H., Wang Y., Gao S., Chen Y., Shi J. Theranostic 2D Tantalum Carbide (MXene) Adv. Mater. 2018;30:1703284. doi: 10.1002/adma.201703284. PubMed DOI
Xu C., Wang L., Liu Z., Chen L., Guo J., Kang N., Ma X.-L., Cheng H.-M., Ren W. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015;14:1135–1141. doi: 10.1038/nmat4374. PubMed DOI
Sun W., Shah S., Chen Y., Tan Z., Gao H., Habib T., Radovic M., Green M. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A. 2017;5:21663–21668. doi: 10.1039/C7TA05574A. DOI
Li T., Yao L., Liu Q., Gu J., Luo R., Li J., Yan X., Wang W., Liu P., Chen B. Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T=OH, O) via Alkali Treatment. Angew. Chem. Int. Ed. 2018;57:6115–6119. doi: 10.1002/anie.201800887. PubMed DOI
Ma L., Ting L.R.L., Molinari V., Giordano C., Yeo B.S. Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A. 2015;3:8361–8368. doi: 10.1039/C5TA00139K. DOI
Yang G., Zhao J., Yi S., Wan X., Tang J. Biodegradable and photostable Nb2C MXene quantum dots as promising nanofluorophores for metal ions sensing and fluorescence imaging. Sens. Actuators B Chem. 2020;309:127735. doi: 10.1016/j.snb.2020.127735. DOI
Liu M., Bai Y., He Y., Zhou J., Ge Y., Zhou J., Song G. Facile microwave-assisted synthesis of Ti3C2 MXene quantum dots for ratiometric fluorescence detection of hypochlorite. Microchim. Acta. 2021;188:15. doi: 10.1007/s00604-020-04668-y. PubMed DOI
Liu J., Jiang X., Zhang R., Zhang Y., Wu L., Lu W., Li J., Li Y., Zhang H. MXene-Enabled Electrochemical Microfluidic Biosensor: Applications toward Multicomponent Continuous Monitoring in Whole Blood. Adv. Funct. Mater. 2019;29:1807326. doi: 10.1002/adfm.201807326. DOI
Salim O., Mahmoud K.A., Pant K.K., Joshi R.K. Introduction to MXenes: Synthesis and characteristics. Mater. Today Chem. 2019;14:100191. doi: 10.1016/j.mtchem.2019.08.010. PubMed DOI
Urbankowski P., Anasori B., Makaryan T., Er D., Kota S., Walsh P.L., Zhao M., Shenoy V.B., Barsoum M.W., Gogotsi Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene) Nanoscale. 2016;8:11385. doi: 10.1039/C6NR02253G. PubMed DOI
Xue Q., Zhang H., Zhu M., Pei Z., Li H., Wang Z., Huang Y., Huang Y., Deng Q., Zhou J., et al. Photoluminescent Ti3C2 MXene Quantum Dots for Multicolor Cellular Imaging. Adv. Mater. 2017;29:1604847. doi: 10.1002/adma.201604847. PubMed DOI
Yu X., Cai X., Cui H., Lee S.-W., Yu X.-F., Liu B. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale. 2017;9:17859–17864. doi: 10.1039/C7NR05997C. PubMed DOI
Bai Y., He Y., Wang M., Song G. Microwave-assisted synthesis of nitrogen, phosphorus-doped Ti3C2 MXene quantum dots for colorimetric/fluorometric dual-modal nitrite assay with a portable smartphone platform. Sens. Actuators B Chem. 2022;357:131410. doi: 10.1016/j.snb.2022.131410. DOI
Shuck C.E., Ventura-Martinez K., Goad A., Uzun S., Shekhirev M., Gogotsi Y. Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis. ACS Chem. Health Saf. 2021;28:326–338. doi: 10.1021/acs.chas.1c00051. DOI
Iravani S., Varma R.S. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances. Mater. Adv. 2021;2:2906–2917. doi: 10.1039/D1MA00189B. DOI
Gogotsi Y., Anasori B. The Rise of MXenes. ACS Nano. 2019;13:8491–8494. doi: 10.1021/acsnano.9b06394. PubMed DOI
Jamalipour Soufi G., Iravani P., Hekmatnia A., Mostafavi E., Khatami M., Iravani S. MXenes and MXene-based Materials with Cancer Diagnostic Applications: Challenges and Opportunities. Comments Inorg. Chem. 2021 doi: 10.1080/02603594.2021.1990890. DOI
Rasool K., Mahmoud K.A., Johnson D.J., Helal M., Berdiyorov G.R., Gogotsi Y. Efficient Antibacterial Membrane based on Two-Dimensional Ti3C2Tx (MXene) Nanosheets. Sci. Rep. 2017;7:1598. doi: 10.1038/s41598-017-01714-3. PubMed DOI PMC
Yin W., Yu J., Lv F., Yan L., Zheng L.R., Gu Z., Zhao Y. Functionalized Nano-MoS2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. ACS Nano. 2016;10:11000–11011. doi: 10.1021/acsnano.6b05810. PubMed DOI
Shafiei N., Nasrollahzadeh M., Iravani S. Green Synthesis of Silica and Silicon Nanoparticles and Their Biomedical and Catalytic Applications. Comments Inorg. Chem. 2021;41:317–372. doi: 10.1080/02603594.2021.1904912. DOI
Lim G.P., Soon C.F., Ma N.L., Morsin M., Nayan N., Ahmad M.K., Tee K.S. Cytotoxicity of MXene-based nanomaterials for biomedical applications: A mini review. Environ. Res. 2021;201:111592. doi: 10.1016/j.envres.2021.111592. PubMed DOI
Rafieerad A., Yan W., Sequiera G.L., Sareen N., Abu-El-Rub E., Moudgil M., Dhingra S. Application of Ti3C2 MXene Quantum Dots for Immunomodulation and Regenerative Medicine. Adv. Healthc. Mater. 2019;8:1900569. doi: 10.1002/adhm.201900569. PubMed DOI
Chen X., Li J., Pan G., Xu W., Zhu J., Zhou D., Li D., Chen C., Lu G., Song H. Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing. Sens. Actuators B Chem. 2019;289:131–137. doi: 10.1016/j.snb.2019.03.052. DOI
Cai G., Yu Z., Tong P., Tang D. Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone. Nanoscale. 2019;11:15659–15667. doi: 10.1039/C9NR05797H. PubMed DOI
Dai W., Dong H., Zhang X. A Semimetal-like Molybdenum Carbide Quantum Dots Photoacoustic Imaging and Photothermal Agent with High Photothermal Conversion Efficiency. Materials. 2018;11:1776. doi: 10.3390/ma11091776. PubMed DOI PMC
Cao Y., Wu T., Zhang K., Meng X., Dai W., Wang D., Dong H., Zhang X. Engineered Exosome-Mediated Near-Infrared-II Region V2C Quantum Dot Delivery for Nucleus-Target Low-Temperature Photothermal Therapy. ACS Nano. 2019;13:1499–1510. doi: 10.1021/acsnano.8b07224. PubMed DOI
Guo Z., Zhu X., Wang S., Lei C., Huang Y., Nie Z., Yao S. Fluorescent Ti3C2 MXene quantum dots for an alkaline phosphatase assay and embryonic stem cell identification based on the inner filter effect. Nanoscale. 2018;10:19579–19585. doi: 10.1039/C8NR05767B. PubMed DOI
Gou J., Zhao L., Li Y., Zhang J. Nitrogen-Doped Ti2C MXene Quantum Dots as Antioxidants. ACS Appl. Nano Mater. 2021;4:12308–12315. doi: 10.1021/acsanm.1c02783. DOI
Liu M., Zhou J., He Y., Cai Z., Ge Y., Zhou J., Song G. ε-Poly-L-lysine-protected Ti3C2 MXene quantum dots with high quantum yield for fluorometric determination of cytochrome c and trypsin. Microchim. Acta. 2019;186:1–9. doi: 10.1007/s00604-019-3945-0. PubMed DOI
Xu X., Zhang H., Diao Q., Zhu Y., Yang G., Ma B. Highly sensitive fluorescent sensing for intracellular glutathione based on Ti3C2 quantum dots. J. Mater. Sci. Mater. Electron. 2020;31:175–181. doi: 10.1007/s10854-019-02682-2. DOI
Guan Q., Ma J., Yang W., Zhang R., Zhang X., Dong X., Fan Y., Cai L., Cao Y., Zhang Y., et al. Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing. Nanoscale. 2019;11:14123–14133. doi: 10.1039/C9NR04421C. PubMed DOI
Yang X., Jia Q., Duan F., Hu B., Wang M., He L., Song Y., Zhang Z. Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: Non–Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution. Appl. Surf. Sci. 2019;464:78–87. doi: 10.1016/j.apsusc.2018.09.069. DOI
Niu Y., Li J., Gao J., Ouyang X., Cai L., Xu Q. Two-dimensional quantum dots for biological applications. Nano Res. 2021;14:3820–3839. doi: 10.1007/s12274-021-3757-5. DOI
Sinha A., Dhanjai, Zhao H., Huang Y., Lu X., Chen J., Jain R. MXene: An emerging material for sensing and biosensing. TrAC Trends Anal. Chem. 2018;105:424–435. doi: 10.1016/j.trac.2018.05.021. DOI
Khatami M., Iravani S. MXenes and MXene-based Materials for the Removal of Water Pollutants: Challenges and Opportunities. Comments Inorg. Chem. 2021;41:213–248. doi: 10.1080/02603594.2021.1922396. DOI
Fu B., Sun J., Wang C., Shang C., Xu L., Li J., Zhang H. MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. Small. 2021;17:2006054. doi: 10.1002/smll.202006054. PubMed DOI
Verger L., Xu C., Natu V., Cheng H.-M., Ren W., Barsoum M.W. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 2019;23:149–163. doi: 10.1016/j.cossms.2019.02.001. DOI
Matthews K., Zhang T., Shuck C.E., VahidMohammadi A., Gogotsi Y. Guidelines for Synthesis and Processing of Chemically Stable Two-Dimensional V2CTx MXene. Chem. Mater. 2022;34:499–509. doi: 10.1021/acs.chemmater.1c03508. DOI
Wyatt B.C., Rosenkranz A., Anasori B. 2D MXenes: Tunable Mechanical and Tribological Properties. Adv. Mater. 2021;33:2007973. doi: 10.1002/adma.202007973. PubMed DOI
Deshmukh K., Kovářík T., Pasha S.K. State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: A comprehensive review. Coord. Chem. Rev. 2020;424:213514. doi: 10.1016/j.ccr.2020.213514. DOI
Yang F., Ge Y., Yin T., Guo J., Zhang F., Tang X., Qiu M., Liang W., Xu N., Wang C., et al. Ti3C2Tx MXene Quantum Dots with Enhanced Stability for Ultrafast Photonics. ACS Appl. Nano Mater. 2020;3:11850–11860. doi: 10.1021/acsanm.0c02369. DOI
Iravani S., Varma R.S. Biofactories: Engineered nanoparticles via genetically engineered organisms. Green Chem. 2019;21:4583–4603. doi: 10.1039/C9GC01759C. DOI
Iravani S., Varma R.S. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ. Chem. Lett. 2020;18:703–727. doi: 10.1007/s10311-020-00984-0. PubMed DOI PMC
Xu Q., Ma J., Khan W., Zeng X., Li N., Cao Y., Zhao X., Xu M. Highly green fluorescent Nb2C MXene quantum dots. Chem. Commun. 2020;56:6648–6651. doi: 10.1039/D0CC02131H. PubMed DOI
Xu Q., Ding L., Wen Y., Yang W., Zhou H., Chen X., Street J., Zhou A., Ong W.-J., Li N. High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots. J. Mater. Chem. C. 2018;6:6360–6369. doi: 10.1039/C8TC02156B. DOI
Gu M., Dai Z., Yan X., Ma J., Niu Y., Lan W., Wang X., Xu Q. Comparison of toxicity of Ti3C2 and Nb2C Mxene quantum dots (QDs) to human umbilical vein endothelial cells. J. Appl. Toxicol. 2021;41:745–754. doi: 10.1002/jat.4085. PubMed DOI
Mozafari M., Soroush M. Surface functionalization of MXenes. Mater. Adv. 2021;2:7277–7307. doi: 10.1039/D1MA00625H. DOI
Wang D., Wang L., Lou Z., Zheng Y., Wang K., Zhao L., Han W., Jiang K., Shen G. Biomimetic, biocompatible and robust silk Fibroin-MXene film with sTable 3D cross-link structure for flexible pressure sensors. Nano Energy. 2020;78:105252. doi: 10.1016/j.nanoen.2020.105252. DOI
Al-Duais M.A., Mohammedsaleh Z.M., Al-Shehri H.S., Al-Awthan Y.S., Bani-Atta S.A., Keshk A.A., Mustafa S.K., Althaqafy A.D., Al-Tweher J.N., Al-Aoh H.A., et al. Bovine serum albumin functionalized blue emitting Ti3C2 MXene Quantum Dots as a sensitive fluorescence probe for Fe3+ ions detection and its toxicity analysis. Luminescence. 2022 doi: 10.1002/bio.4204. PubMed DOI
Lu S., Sui L., Liu Y., Yong X., Xiao G., Yuan K., Liu Z., Liu B., Zou B., Yang B. White Photoluminescent Ti3C2 MXene Quantum Dots with Two-Photon Fluorescence. Advaced Sci. 2019;6:1801470. doi: 10.1002/advs.201801470. PubMed DOI PMC
Rafieerad A., Yan W., Amiri A., Dhingra S. Bioactive and trackable MXene quantum dots for subcellular nanomedicine applications. Mater. Des. 2020;196:109091. doi: 10.1016/j.matdes.2020.109091. DOI
Feng Y., Zhou F., Deng Q., Peng C. Solvothermal synthesis of in situ nitrogen-doped Ti3C2 MXene fluorescent quantum dots for selective Cu2+ detection. Ceram. Int. 2020;46:8320–8327. doi: 10.1016/j.ceramint.2019.12.063. DOI
Ai F., Fu C., Cheng G., Zhang H., Feng Y., Yan X., Zheng X. Amino-Functionalized Ti3C2 MXene Quantum Dots as Photoluminescent Sensors for Diagnosing Histidine in Human Serum. ACS Appl. Nano Mater. 2021;4:8192–8199. doi: 10.1021/acsanm.1c01425. DOI
Sun J., Du H., Chen Z., Wang L., Shen G. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 2021;2021:1–7. doi: 10.1007/s12274-021-3967-x. DOI
Chen R., Kan L., Duan F., He L., Wang M., Cui J., Zhang Z., Zhang Z. Surface plasmon resonance aptasensor based on niobium carbide MXene quantum dots for nucleocapsid of SARS-CoV-2 detection. Mikrochim. Acta. 2021;188:316. doi: 10.1007/s00604-021-04974-z. PubMed DOI PMC
Bai Y., He Y., Wang Y., Song G. Nitrogen, boron-doped Ti3C2 MXene quantum dot-based ratiometric fluorescence sensing platform for point-of-care testing of tetracycline using an enhanced antenna effect by Eu3+ Microchim. Acta. 2021;188:401. doi: 10.1007/s00604-021-05064-w. PubMed DOI
Rafieerad A., Yan W., Alagarsamy K.N., Srivastava A., Sareen N., Arora R.C., Dhingra S. Fabrication of Smart Tantalum Carbide MXene Quantum Dots with Intrinsic Immunomodulatory Properties for Treatment of Allograft Vasculopathy. Adv. Funct. Mater. 2021;31:2106786. doi: 10.1002/adfm.202106786. PubMed DOI PMC
Das P., Ganguly S., Margel S., Gedanken A. Tailor made magnetic nanolights: Fabrication to cancer theranostics applications. Nanoscale Adv. 2021;3:6762–6796. doi: 10.1039/D1NA00447F. PubMed DOI PMC
Ahmed S.R., Kumar S., Ortega G.A., Srinivasan S., Rajabzadeh A.R. Target specific aptamer-induced self-assembly of fluorescent graphene quantum dots on palladium nanoparticles for sensitive detection of tetracycline in raw milk. Food Chem. 2021;346:128893. doi: 10.1016/j.foodchem.2020.128893. PubMed DOI
Das P., Ganguly S., Saha A., Noked M., Margel S., Gedanken A. Carbon-Dots-Initiated Photopolymerization: An In Situ Synthetic Approach for MXene/Poly(norepinephrine)/Copper Hybrid and its Application for Mitigating Water Pollution. ACS Appl. Mater. Interfaces. 2021;13:31038–31050. doi: 10.1021/acsami.1c08111. PubMed DOI
Ahmed S.R., Sherazee M., Srinivasan S., Rajabzadeh A.R. Nanozymatic detection of thiocyanate through accelerating the growth of ultra-small gold nanoparticles/graphene quantum dots hybrids. Food Chem. 2022;379:132152. doi: 10.1016/j.foodchem.2022.132152. PubMed DOI
Li X., Liu F., Huang D., Xue N., Dang Y., Zhang M., Zhang L., Li B., Liu D., Wang L., et al. Nonoxidized MXene Quantum Dots Prepared by Microexplosion Method for Cancer Catalytic Therapy. Adv. Funct. Mater. 2020;30:2000308. doi: 10.1002/adfm.202000308. DOI
Shao J., Zhang J., Jiang C., Lin J., Huang P. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem. Eng. J. 2020;400:126009. doi: 10.1016/j.cej.2020.126009. DOI
Jiang X., Wang H., Shen Y., Hu N., Shi W. Nitrogen-doped Ti3C2 MXene quantum dots as novel high-efficiency electrochemiluminescent emitters for sensitive mucin 1 detection. Sens. Actuators B Chem. 2022;350:130891. doi: 10.1016/j.snb.2021.130891. DOI
Wang L., Zhang N., Li Y., Kong W., Gou J., Zhang Y., Wang L.-N., Yu G., Zhang P., Cheng H., et al. Mechanism of Nitrogen-Doped Ti3C2 Quantum Dots for Free-Radical Scavenging and the Ultrasensitive H2O2 Detection Performance. ACS Appl. Mater. Interfaces. 2021;13:42442–42450. doi: 10.1021/acsami.1c11242. PubMed DOI
Zhao L., Wang Z., Li Y., Wang S., Wang L., Qi Z., Ge Q., Liu X., Zhang J.Z. Designed synthesis of chlorine and nitrogen co-doped Ti3C2 MXene quantum dots and their outstanding hydroxyl radical scavenging properties. J. Mater. Sci. Technol. 2021;78:30–37. doi: 10.1016/j.jmst.2020.10.048. DOI
Qi Z., Wang S., Li Y., Wang L., Zhao L., Ge Q., Zhang J.Z. Scavenging activity and reaction mechanism of Ti3C2Tx MXene as a novel free radical scavenger. Ceram. Int. 2021;47:16555–16561. doi: 10.1016/j.ceramint.2021.02.226. DOI
Zhao X., Wang L.-Y., Li J.-M., Peng L.-M., Tang C.-Y., Zha X.-J., Ke K., Yang M.-B., Su B.-H., Yang W. Redox-Mediated Artificial Non-Enzymatic Antioxidant MXene Nanoplatforms for Acute Kidney Injury Alleviation. Adv. Sci. 2021;8:2101498. doi: 10.1002/advs.202101498. PubMed DOI PMC
Zamhuri A., Lim G.P., Ma N.L., Tee K.S., Soon C.F. MXene in the lens of biomedical engineering: Synthesis, applications and future outlook. BioMed. Eng. OnLine. 2021;20:1–24. doi: 10.1186/s12938-021-00873-9. PubMed DOI PMC
Kong Q., An X., Huang L., Wang X., Feng W., Qiu S., Wang Q., Sun C. A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure an hydrogen evolution performance. Front. Phys. 2021;16:53506. doi: 10.1007/s11467-021-1066-9. DOI
Bhardwaj S.K., Singh H., Khatri M., Kim K.-H., Bhardwaj N. Advances in MXenes-based optical biosensors: A review. Biosens. Bioelectron. 2022;202:113995. doi: 10.1016/j.bios.2022.113995. PubMed DOI
Zhou S., Gu C., Li Z., Yang L., He L., Wang M., Huang X., Zhou N., Zhang Z. Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: Ultra-sensitive platform for the detection of osteopontin. Appl. Surf. Sci. 2019;498:143889. doi: 10.1016/j.apsusc.2019.143889. DOI
Champagne A., Charlier J.-C. Physical properties of 2D MXenes: From a theoretical perspective. J. Phys. Mater. 2021;3:032006. doi: 10.1088/2515-7639/ab97ee. DOI
Dwivedi N., Dhand C., Kumar P., Srivastava A.K. Emergent 2D materials for combating infectious diseases: The potential of MXenes and MXene–graphene composites to fight against pandemics. Mater. Adv. 2021;2:2892–2905. doi: 10.1039/D1MA00003A. DOI
Wu Q., Li N., Wang Y., Liu Y., Xu Y., Wei S., Wu J., Jia G., Fang X., Chen F., et al. A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection. Biosens. Bioelectron. 2019;144:111697. doi: 10.1016/j.bios.2019.111697. PubMed DOI
Mohammadniaei M., Koyappayil A., Sun Y., Min J., Lee M.-H. Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosens. Bioelectron. 2020;159:112208. doi: 10.1016/j.bios.2020.112208. PubMed DOI
MXenes in Cancer Nanotheranostics