• This record comes from PubMed

Smart MXene Quantum Dot-Based Nanosystems for Biomedical Applications

. 2022 Apr 03 ; 12 (7) : . [epub] 20220403

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

MXene quantum dots (QDs), with their unique structural, optical, magnetic, and electronic characteristics, are promising contenders for various pharmaceutical and biomedical appliances including biological sensing/imaging, cancer diagnosis/therapy, regenerative medicine, tissue engineering, delivery of drugs/genes, and analytical biochemistry. Although functionalized MXene QDs have demonstrated high biocompatibility, superb optical properties, and stability, several challenging issues pertaining to their long-term toxicity, histopathology, biodistribution, biodegradability, and photoluminescence properties are still awaiting systematic study (especially the move towards the practical and clinical phases from the pre-clinical/lab-scale discoveries). The up-scalable and optimized synthesis methods need to be developed not only for the MXene QD-based nanosystems but also for other smart platforms and hybrid nanocomposites encompassing MXenes with vast clinical and biomedical potentials. Enhancing the functionalization strategies, improvement of synthesis methods, cytotoxicity/biosafety evaluations, enriching the biomedical applications, and exploring additional MXene QDs are crucial aspects for developing the smart MXene QD-based nanosystems with improved features. Herein, recent developments concerning the biomedical applications of MXene QDs are underscored with emphasis on current trends and future prospects.

See more in PubMed

Naguib M., Barsoum M.W., Gogotsi Y. Ten Years of Progress in the Synthesis and Development of MXenes. Adv. Mater. 2021;33:2103393. doi: 10.1002/adma.202103393. PubMed DOI

VahidMohammadi A., Rosen J., Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes) Science. 2021;372:eabf1581. doi: 10.1126/science.abf1581. PubMed DOI

Gogotsi Y., Huang Q. MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano. 2021;15:5775–5780. doi: 10.1021/acsnano.1c03161. PubMed DOI

Zhang J., Fu Y., Mo A. Multilayered Titanium Carbide MXene Film for Guided Bone Regeneration. Int. J. Nanomed. 2019;14:10091–10103. doi: 10.2147/IJN.S227830. PubMed DOI PMC

Iravani S., Varma R.S. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater. Sci. Eng. 2021;7:1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI

Cheng W., Zeng X., Chen H., Li Z., Zeng W., Mei L., Zhao Y. Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine. ACS Nano. 2019;13:8537–8565. doi: 10.1021/acsnano.9b04436. PubMed DOI

Zeng X., Luo M., Liu G., Wang X., Tao W., Lin Y., Ji X., Nie L., Mei L. Polydopamine-Modified Black Phosphorous Nanocapsule with Enhanced Stability and Photothermal Performance for Tumor Multimodal Treatments. Adv. Sci. 2018;5:1800510. doi: 10.1002/advs.201800510. PubMed DOI PMC

Luo M., Fan T., Zhou Y., Zhang H., Mei L. 2D Black Phosphorus–Based Biomedical Applications. Adv. Funct. Mater. 2019;29:1808306. doi: 10.1002/adfm.201808306. DOI

Jamalipour Soufi G., Iravani S. Eco-friendly and sustainable synthesis of biocompatible nanomaterials for diagnostic imaging: Current challenges and future perspectives. Green Chem. 2020;22:2662–2687. doi: 10.1039/D0GC00734J. DOI

Tao W., Zhu X., Yu X., Zeng X., Xiao Q., Zhang X., Ji X., Wang X., Shi J., Zhang H., et al. Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics. Adv. Mater. 2017;29:1603276. doi: 10.1002/adma.201603276. PubMed DOI PMC

Shao B., Liu Z., Zeng G., Wang H., Liang Q., He Q., Cheng M., Zhou C., Jiang L., Song B. Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): Synthesis, properties, applications and prospects. J. Mater. Chem. A. 2020;8:7508–7535. doi: 10.1039/D0TA01552K. DOI

Cheng H., Ding L.X., Chen G.F., Zhang L., Xue J., Wang H. Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions. Adv. Mater. 2018;30:1803694. doi: 10.1002/adma.201803694. PubMed DOI

Chen X., Sun X., Xu W., Pan G., Zhou D., Zhu J., Wang H., Bai X., Dong B., Song H. Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale. 2018;10:1111–1118. doi: 10.1039/C7NR06958H. PubMed DOI

Kong X., Liu X., Zheng Y., Chu P.K., Zhang Y., Wu S. Graphitic carbon nitride-based materials for photocatalytic antibacterial application. Mater. Sci. Eng. R Rep. 2021;145:100610. doi: 10.1016/j.mser.2021.100610. DOI

Liao G., He F., Li Q., Zhong L., Zhao R., Che H., Gao H., Fang B. Emerging graphitic carbon nitride-based materials for biomedical applications. Prog. Mater. Sci. 2020;112:100666. doi: 10.1016/j.pmatsci.2020.100666. DOI

Jin Z., Liu C., Liu Z., Han J., Fang Y., Han Y., Niu Y., Wu Y., Sun C., Xu Y. Rational Design of Hydroxyl-Rich Ti3C2Tx MXene Quantum Dots for High-Performance Electrochemical N2 Reduction. Adv. Energy Mater. 2020;10:2000797. doi: 10.1002/aenm.202000797. DOI

Lin H., Chen Y., Shi J. Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Adv. Sci. 2018;5:1800518. doi: 10.1002/advs.201800518. PubMed DOI PMC

Lin H., Gao S., Dai C., Chen Y., Shi J. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017;139:16235–16247. doi: 10.1021/jacs.7b07818. PubMed DOI

Lin H., Wang X., Yu L., Chen Y., Shi J. Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. Nano Lett. 2017;17:384–391. doi: 10.1021/acs.nanolett.6b04339. PubMed DOI

Lin H., Wang Y., Gao S., Chen Y., Shi J. Theranostic 2D Tantalum Carbide (MXene) Adv. Mater. 2018;30:1703284. doi: 10.1002/adma.201703284. PubMed DOI

Xu C., Wang L., Liu Z., Chen L., Guo J., Kang N., Ma X.-L., Cheng H.-M., Ren W. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015;14:1135–1141. doi: 10.1038/nmat4374. PubMed DOI

Sun W., Shah S., Chen Y., Tan Z., Gao H., Habib T., Radovic M., Green M. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A. 2017;5:21663–21668. doi: 10.1039/C7TA05574A. DOI

Li T., Yao L., Liu Q., Gu J., Luo R., Li J., Yan X., Wang W., Liu P., Chen B. Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T=OH, O) via Alkali Treatment. Angew. Chem. Int. Ed. 2018;57:6115–6119. doi: 10.1002/anie.201800887. PubMed DOI

Ma L., Ting L.R.L., Molinari V., Giordano C., Yeo B.S. Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A. 2015;3:8361–8368. doi: 10.1039/C5TA00139K. DOI

Yang G., Zhao J., Yi S., Wan X., Tang J. Biodegradable and photostable Nb2C MXene quantum dots as promising nanofluorophores for metal ions sensing and fluorescence imaging. Sens. Actuators B Chem. 2020;309:127735. doi: 10.1016/j.snb.2020.127735. DOI

Liu M., Bai Y., He Y., Zhou J., Ge Y., Zhou J., Song G. Facile microwave-assisted synthesis of Ti3C2 MXene quantum dots for ratiometric fluorescence detection of hypochlorite. Microchim. Acta. 2021;188:15. doi: 10.1007/s00604-020-04668-y. PubMed DOI

Liu J., Jiang X., Zhang R., Zhang Y., Wu L., Lu W., Li J., Li Y., Zhang H. MXene-Enabled Electrochemical Microfluidic Biosensor: Applications toward Multicomponent Continuous Monitoring in Whole Blood. Adv. Funct. Mater. 2019;29:1807326. doi: 10.1002/adfm.201807326. DOI

Salim O., Mahmoud K.A., Pant K.K., Joshi R.K. Introduction to MXenes: Synthesis and characteristics. Mater. Today Chem. 2019;14:100191. doi: 10.1016/j.mtchem.2019.08.010. PubMed DOI

Urbankowski P., Anasori B., Makaryan T., Er D., Kota S., Walsh P.L., Zhao M., Shenoy V.B., Barsoum M.W., Gogotsi Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene) Nanoscale. 2016;8:11385. doi: 10.1039/C6NR02253G. PubMed DOI

Xue Q., Zhang H., Zhu M., Pei Z., Li H., Wang Z., Huang Y., Huang Y., Deng Q., Zhou J., et al. Photoluminescent Ti3C2 MXene Quantum Dots for Multicolor Cellular Imaging. Adv. Mater. 2017;29:1604847. doi: 10.1002/adma.201604847. PubMed DOI

Yu X., Cai X., Cui H., Lee S.-W., Yu X.-F., Liu B. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale. 2017;9:17859–17864. doi: 10.1039/C7NR05997C. PubMed DOI

Bai Y., He Y., Wang M., Song G. Microwave-assisted synthesis of nitrogen, phosphorus-doped Ti3C2 MXene quantum dots for colorimetric/fluorometric dual-modal nitrite assay with a portable smartphone platform. Sens. Actuators B Chem. 2022;357:131410. doi: 10.1016/j.snb.2022.131410. DOI

Shuck C.E., Ventura-Martinez K., Goad A., Uzun S., Shekhirev M., Gogotsi Y. Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis. ACS Chem. Health Saf. 2021;28:326–338. doi: 10.1021/acs.chas.1c00051. DOI

Iravani S., Varma R.S. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances. Mater. Adv. 2021;2:2906–2917. doi: 10.1039/D1MA00189B. DOI

Gogotsi Y., Anasori B. The Rise of MXenes. ACS Nano. 2019;13:8491–8494. doi: 10.1021/acsnano.9b06394. PubMed DOI

Jamalipour Soufi G., Iravani P., Hekmatnia A., Mostafavi E., Khatami M., Iravani S. MXenes and MXene-based Materials with Cancer Diagnostic Applications: Challenges and Opportunities. Comments Inorg. Chem. 2021 doi: 10.1080/02603594.2021.1990890. DOI

Rasool K., Mahmoud K.A., Johnson D.J., Helal M., Berdiyorov G.R., Gogotsi Y. Efficient Antibacterial Membrane based on Two-Dimensional Ti3C2Tx (MXene) Nanosheets. Sci. Rep. 2017;7:1598. doi: 10.1038/s41598-017-01714-3. PubMed DOI PMC

Yin W., Yu J., Lv F., Yan L., Zheng L.R., Gu Z., Zhao Y. Functionalized Nano-MoS2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. ACS Nano. 2016;10:11000–11011. doi: 10.1021/acsnano.6b05810. PubMed DOI

Shafiei N., Nasrollahzadeh M., Iravani S. Green Synthesis of Silica and Silicon Nanoparticles and Their Biomedical and Catalytic Applications. Comments Inorg. Chem. 2021;41:317–372. doi: 10.1080/02603594.2021.1904912. DOI

Lim G.P., Soon C.F., Ma N.L., Morsin M., Nayan N., Ahmad M.K., Tee K.S. Cytotoxicity of MXene-based nanomaterials for biomedical applications: A mini review. Environ. Res. 2021;201:111592. doi: 10.1016/j.envres.2021.111592. PubMed DOI

Rafieerad A., Yan W., Sequiera G.L., Sareen N., Abu-El-Rub E., Moudgil M., Dhingra S. Application of Ti3C2 MXene Quantum Dots for Immunomodulation and Regenerative Medicine. Adv. Healthc. Mater. 2019;8:1900569. doi: 10.1002/adhm.201900569. PubMed DOI

Chen X., Li J., Pan G., Xu W., Zhu J., Zhou D., Li D., Chen C., Lu G., Song H. Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing. Sens. Actuators B Chem. 2019;289:131–137. doi: 10.1016/j.snb.2019.03.052. DOI

Cai G., Yu Z., Tong P., Tang D. Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone. Nanoscale. 2019;11:15659–15667. doi: 10.1039/C9NR05797H. PubMed DOI

Dai W., Dong H., Zhang X. A Semimetal-like Molybdenum Carbide Quantum Dots Photoacoustic Imaging and Photothermal Agent with High Photothermal Conversion Efficiency. Materials. 2018;11:1776. doi: 10.3390/ma11091776. PubMed DOI PMC

Cao Y., Wu T., Zhang K., Meng X., Dai W., Wang D., Dong H., Zhang X. Engineered Exosome-Mediated Near-Infrared-II Region V2C Quantum Dot Delivery for Nucleus-Target Low-Temperature Photothermal Therapy. ACS Nano. 2019;13:1499–1510. doi: 10.1021/acsnano.8b07224. PubMed DOI

Guo Z., Zhu X., Wang S., Lei C., Huang Y., Nie Z., Yao S. Fluorescent Ti3C2 MXene quantum dots for an alkaline phosphatase assay and embryonic stem cell identification based on the inner filter effect. Nanoscale. 2018;10:19579–19585. doi: 10.1039/C8NR05767B. PubMed DOI

Gou J., Zhao L., Li Y., Zhang J. Nitrogen-Doped Ti2C MXene Quantum Dots as Antioxidants. ACS Appl. Nano Mater. 2021;4:12308–12315. doi: 10.1021/acsanm.1c02783. DOI

Liu M., Zhou J., He Y., Cai Z., Ge Y., Zhou J., Song G. ε-Poly-L-lysine-protected Ti3C2 MXene quantum dots with high quantum yield for fluorometric determination of cytochrome c and trypsin. Microchim. Acta. 2019;186:1–9. doi: 10.1007/s00604-019-3945-0. PubMed DOI

Xu X., Zhang H., Diao Q., Zhu Y., Yang G., Ma B. Highly sensitive fluorescent sensing for intracellular glutathione based on Ti3C2 quantum dots. J. Mater. Sci. Mater. Electron. 2020;31:175–181. doi: 10.1007/s10854-019-02682-2. DOI

Guan Q., Ma J., Yang W., Zhang R., Zhang X., Dong X., Fan Y., Cai L., Cao Y., Zhang Y., et al. Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing. Nanoscale. 2019;11:14123–14133. doi: 10.1039/C9NR04421C. PubMed DOI

Yang X., Jia Q., Duan F., Hu B., Wang M., He L., Song Y., Zhang Z. Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: Non–Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution. Appl. Surf. Sci. 2019;464:78–87. doi: 10.1016/j.apsusc.2018.09.069. DOI

Niu Y., Li J., Gao J., Ouyang X., Cai L., Xu Q. Two-dimensional quantum dots for biological applications. Nano Res. 2021;14:3820–3839. doi: 10.1007/s12274-021-3757-5. DOI

Sinha A., Dhanjai, Zhao H., Huang Y., Lu X., Chen J., Jain R. MXene: An emerging material for sensing and biosensing. TrAC Trends Anal. Chem. 2018;105:424–435. doi: 10.1016/j.trac.2018.05.021. DOI

Khatami M., Iravani S. MXenes and MXene-based Materials for the Removal of Water Pollutants: Challenges and Opportunities. Comments Inorg. Chem. 2021;41:213–248. doi: 10.1080/02603594.2021.1922396. DOI

Fu B., Sun J., Wang C., Shang C., Xu L., Li J., Zhang H. MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. Small. 2021;17:2006054. doi: 10.1002/smll.202006054. PubMed DOI

Verger L., Xu C., Natu V., Cheng H.-M., Ren W., Barsoum M.W. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 2019;23:149–163. doi: 10.1016/j.cossms.2019.02.001. DOI

Matthews K., Zhang T., Shuck C.E., VahidMohammadi A., Gogotsi Y. Guidelines for Synthesis and Processing of Chemically Stable Two-Dimensional V2CTx MXene. Chem. Mater. 2022;34:499–509. doi: 10.1021/acs.chemmater.1c03508. DOI

Wyatt B.C., Rosenkranz A., Anasori B. 2D MXenes: Tunable Mechanical and Tribological Properties. Adv. Mater. 2021;33:2007973. doi: 10.1002/adma.202007973. PubMed DOI

Deshmukh K., Kovářík T., Pasha S.K. State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: A comprehensive review. Coord. Chem. Rev. 2020;424:213514. doi: 10.1016/j.ccr.2020.213514. DOI

Yang F., Ge Y., Yin T., Guo J., Zhang F., Tang X., Qiu M., Liang W., Xu N., Wang C., et al. Ti3C2Tx MXene Quantum Dots with Enhanced Stability for Ultrafast Photonics. ACS Appl. Nano Mater. 2020;3:11850–11860. doi: 10.1021/acsanm.0c02369. DOI

Iravani S., Varma R.S. Biofactories: Engineered nanoparticles via genetically engineered organisms. Green Chem. 2019;21:4583–4603. doi: 10.1039/C9GC01759C. DOI

Iravani S., Varma R.S. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ. Chem. Lett. 2020;18:703–727. doi: 10.1007/s10311-020-00984-0. PubMed DOI PMC

Xu Q., Ma J., Khan W., Zeng X., Li N., Cao Y., Zhao X., Xu M. Highly green fluorescent Nb2C MXene quantum dots. Chem. Commun. 2020;56:6648–6651. doi: 10.1039/D0CC02131H. PubMed DOI

Xu Q., Ding L., Wen Y., Yang W., Zhou H., Chen X., Street J., Zhou A., Ong W.-J., Li N. High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots. J. Mater. Chem. C. 2018;6:6360–6369. doi: 10.1039/C8TC02156B. DOI

Gu M., Dai Z., Yan X., Ma J., Niu Y., Lan W., Wang X., Xu Q. Comparison of toxicity of Ti3C2 and Nb2C Mxene quantum dots (QDs) to human umbilical vein endothelial cells. J. Appl. Toxicol. 2021;41:745–754. doi: 10.1002/jat.4085. PubMed DOI

Mozafari M., Soroush M. Surface functionalization of MXenes. Mater. Adv. 2021;2:7277–7307. doi: 10.1039/D1MA00625H. DOI

Wang D., Wang L., Lou Z., Zheng Y., Wang K., Zhao L., Han W., Jiang K., Shen G. Biomimetic, biocompatible and robust silk Fibroin-MXene film with sTable 3D cross-link structure for flexible pressure sensors. Nano Energy. 2020;78:105252. doi: 10.1016/j.nanoen.2020.105252. DOI

Al-Duais M.A., Mohammedsaleh Z.M., Al-Shehri H.S., Al-Awthan Y.S., Bani-Atta S.A., Keshk A.A., Mustafa S.K., Althaqafy A.D., Al-Tweher J.N., Al-Aoh H.A., et al. Bovine serum albumin functionalized blue emitting Ti3C2 MXene Quantum Dots as a sensitive fluorescence probe for Fe3+ ions detection and its toxicity analysis. Luminescence. 2022 doi: 10.1002/bio.4204. PubMed DOI

Lu S., Sui L., Liu Y., Yong X., Xiao G., Yuan K., Liu Z., Liu B., Zou B., Yang B. White Photoluminescent Ti3C2 MXene Quantum Dots with Two-Photon Fluorescence. Advaced Sci. 2019;6:1801470. doi: 10.1002/advs.201801470. PubMed DOI PMC

Rafieerad A., Yan W., Amiri A., Dhingra S. Bioactive and trackable MXene quantum dots for subcellular nanomedicine applications. Mater. Des. 2020;196:109091. doi: 10.1016/j.matdes.2020.109091. DOI

Feng Y., Zhou F., Deng Q., Peng C. Solvothermal synthesis of in situ nitrogen-doped Ti3C2 MXene fluorescent quantum dots for selective Cu2+ detection. Ceram. Int. 2020;46:8320–8327. doi: 10.1016/j.ceramint.2019.12.063. DOI

Ai F., Fu C., Cheng G., Zhang H., Feng Y., Yan X., Zheng X. Amino-Functionalized Ti3C2 MXene Quantum Dots as Photoluminescent Sensors for Diagnosing Histidine in Human Serum. ACS Appl. Nano Mater. 2021;4:8192–8199. doi: 10.1021/acsanm.1c01425. DOI

Sun J., Du H., Chen Z., Wang L., Shen G. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 2021;2021:1–7. doi: 10.1007/s12274-021-3967-x. DOI

Chen R., Kan L., Duan F., He L., Wang M., Cui J., Zhang Z., Zhang Z. Surface plasmon resonance aptasensor based on niobium carbide MXene quantum dots for nucleocapsid of SARS-CoV-2 detection. Mikrochim. Acta. 2021;188:316. doi: 10.1007/s00604-021-04974-z. PubMed DOI PMC

Bai Y., He Y., Wang Y., Song G. Nitrogen, boron-doped Ti3C2 MXene quantum dot-based ratiometric fluorescence sensing platform for point-of-care testing of tetracycline using an enhanced antenna effect by Eu3+ Microchim. Acta. 2021;188:401. doi: 10.1007/s00604-021-05064-w. PubMed DOI

Rafieerad A., Yan W., Alagarsamy K.N., Srivastava A., Sareen N., Arora R.C., Dhingra S. Fabrication of Smart Tantalum Carbide MXene Quantum Dots with Intrinsic Immunomodulatory Properties for Treatment of Allograft Vasculopathy. Adv. Funct. Mater. 2021;31:2106786. doi: 10.1002/adfm.202106786. PubMed DOI PMC

Das P., Ganguly S., Margel S., Gedanken A. Tailor made magnetic nanolights: Fabrication to cancer theranostics applications. Nanoscale Adv. 2021;3:6762–6796. doi: 10.1039/D1NA00447F. PubMed DOI PMC

Ahmed S.R., Kumar S., Ortega G.A., Srinivasan S., Rajabzadeh A.R. Target specific aptamer-induced self-assembly of fluorescent graphene quantum dots on palladium nanoparticles for sensitive detection of tetracycline in raw milk. Food Chem. 2021;346:128893. doi: 10.1016/j.foodchem.2020.128893. PubMed DOI

Das P., Ganguly S., Saha A., Noked M., Margel S., Gedanken A. Carbon-Dots-Initiated Photopolymerization: An In Situ Synthetic Approach for MXene/Poly(norepinephrine)/Copper Hybrid and its Application for Mitigating Water Pollution. ACS Appl. Mater. Interfaces. 2021;13:31038–31050. doi: 10.1021/acsami.1c08111. PubMed DOI

Ahmed S.R., Sherazee M., Srinivasan S., Rajabzadeh A.R. Nanozymatic detection of thiocyanate through accelerating the growth of ultra-small gold nanoparticles/graphene quantum dots hybrids. Food Chem. 2022;379:132152. doi: 10.1016/j.foodchem.2022.132152. PubMed DOI

Li X., Liu F., Huang D., Xue N., Dang Y., Zhang M., Zhang L., Li B., Liu D., Wang L., et al. Nonoxidized MXene Quantum Dots Prepared by Microexplosion Method for Cancer Catalytic Therapy. Adv. Funct. Mater. 2020;30:2000308. doi: 10.1002/adfm.202000308. DOI

Shao J., Zhang J., Jiang C., Lin J., Huang P. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem. Eng. J. 2020;400:126009. doi: 10.1016/j.cej.2020.126009. DOI

Jiang X., Wang H., Shen Y., Hu N., Shi W. Nitrogen-doped Ti3C2 MXene quantum dots as novel high-efficiency electrochemiluminescent emitters for sensitive mucin 1 detection. Sens. Actuators B Chem. 2022;350:130891. doi: 10.1016/j.snb.2021.130891. DOI

Wang L., Zhang N., Li Y., Kong W., Gou J., Zhang Y., Wang L.-N., Yu G., Zhang P., Cheng H., et al. Mechanism of Nitrogen-Doped Ti3C2 Quantum Dots for Free-Radical Scavenging and the Ultrasensitive H2O2 Detection Performance. ACS Appl. Mater. Interfaces. 2021;13:42442–42450. doi: 10.1021/acsami.1c11242. PubMed DOI

Zhao L., Wang Z., Li Y., Wang S., Wang L., Qi Z., Ge Q., Liu X., Zhang J.Z. Designed synthesis of chlorine and nitrogen co-doped Ti3C2 MXene quantum dots and their outstanding hydroxyl radical scavenging properties. J. Mater. Sci. Technol. 2021;78:30–37. doi: 10.1016/j.jmst.2020.10.048. DOI

Qi Z., Wang S., Li Y., Wang L., Zhao L., Ge Q., Zhang J.Z. Scavenging activity and reaction mechanism of Ti3C2Tx MXene as a novel free radical scavenger. Ceram. Int. 2021;47:16555–16561. doi: 10.1016/j.ceramint.2021.02.226. DOI

Zhao X., Wang L.-Y., Li J.-M., Peng L.-M., Tang C.-Y., Zha X.-J., Ke K., Yang M.-B., Su B.-H., Yang W. Redox-Mediated Artificial Non-Enzymatic Antioxidant MXene Nanoplatforms for Acute Kidney Injury Alleviation. Adv. Sci. 2021;8:2101498. doi: 10.1002/advs.202101498. PubMed DOI PMC

Zamhuri A., Lim G.P., Ma N.L., Tee K.S., Soon C.F. MXene in the lens of biomedical engineering: Synthesis, applications and future outlook. BioMed. Eng. OnLine. 2021;20:1–24. doi: 10.1186/s12938-021-00873-9. PubMed DOI PMC

Kong Q., An X., Huang L., Wang X., Feng W., Qiu S., Wang Q., Sun C. A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure an hydrogen evolution performance. Front. Phys. 2021;16:53506. doi: 10.1007/s11467-021-1066-9. DOI

Bhardwaj S.K., Singh H., Khatri M., Kim K.-H., Bhardwaj N. Advances in MXenes-based optical biosensors: A review. Biosens. Bioelectron. 2022;202:113995. doi: 10.1016/j.bios.2022.113995. PubMed DOI

Zhou S., Gu C., Li Z., Yang L., He L., Wang M., Huang X., Zhou N., Zhang Z. Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: Ultra-sensitive platform for the detection of osteopontin. Appl. Surf. Sci. 2019;498:143889. doi: 10.1016/j.apsusc.2019.143889. DOI

Champagne A., Charlier J.-C. Physical properties of 2D MXenes: From a theoretical perspective. J. Phys. Mater. 2021;3:032006. doi: 10.1088/2515-7639/ab97ee. DOI

Dwivedi N., Dhand C., Kumar P., Srivastava A.K. Emergent 2D materials for combating infectious diseases: The potential of MXenes and MXene–graphene composites to fight against pandemics. Mater. Adv. 2021;2:2892–2905. doi: 10.1039/D1MA00003A. DOI

Wu Q., Li N., Wang Y., Liu Y., Xu Y., Wei S., Wu J., Jia G., Fang X., Chen F., et al. A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection. Biosens. Bioelectron. 2019;144:111697. doi: 10.1016/j.bios.2019.111697. PubMed DOI

Mohammadniaei M., Koyappayil A., Sun Y., Min J., Lee M.-H. Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosens. Bioelectron. 2020;159:112208. doi: 10.1016/j.bios.2020.112208. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

MXenes in Cancer Nanotheranostics

. 2022 Sep 27 ; 12 (19) : . [epub] 20220927

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...