MXenes in Cancer Nanotheranostics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36234487
PubMed Central
PMC9565327
DOI
10.3390/nano12193360
PII: nano12193360
Knihovny.cz E-zdroje
- Klíčová slova
- MXene-based composites, MXenes, cancer diagnostics, cancer therapeutics, nanotheranostics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
MXenes encompass attractive properties such as a large surface area, unique chemical structures, stability, elastic mechanical strength, excellent electrical conductivity, hydrophilicity, and ease of surface functionalization/modifications, which make them one of the broadly explored two-dimensional materials in the world. MXene-based micro- and nanocomposites/systems with special optical, mechanical, electronic, and excellent targeting/selectivity features have been explored for cancer nanotheranostics. These materials exhibit great diagnostic and therapeutic potential and offer opportunities for cancer photoacoustic imaging along with photodynamic and photothermal therapy. They can be applied to targeted anticancer drug delivery while being deployed for the imaging/diagnosis of tumors/cancers and malignancies. MXene-based systems functionalized with suitable biocompatible or bioactive agents have suitable cellular uptake features with transferring potential from vascular endothelial cells and specific localization, high stability, and auto-fluorescence benefits at different emission-excitation wavelengths, permitting post-transport examination and tracking. The surface engineering of MXenes can improve their biocompatibility, targeting, bioavailability, and biodegradability along with their optical, mechanical, and electrochemical features to develop multifunctional systems with cancer theranostic applications. However, challenges still persist in terms of their environmentally benign fabrication, up-scalability, functionality improvement, optimization conditions, surface functionalization, biocompatibility, biodegradability, clinical translational studies, and pharmacokinetics. This manuscript delineates the recent advancements, opportunities, and important challenges pertaining to the cancer nanotheranostic potential of MXenes and their derivatives.
Zobrazit více v PubMed
Selestin Raja I., Kang M.S., Kim K.S., Jung Y.J., Han D.-W. Two-Dimensional Theranostic Nanomaterials in Cancer Treatment: State of the Art and Perspectives. Cancers. 2020;12:1657. doi: 10.3390/cancers12061657. PubMed DOI PMC
Yang W., Lyu Q., Zhao J., Cao L., Hao Y., Zhang H. Recent advance in near-infrared/ultrasound-sensitive 2D-nanomaterials for cancer therapeutics. Sci. China Mater. 2020;63:2397–2428. doi: 10.1007/s40843-020-1387-7. DOI
Huang M., Gu Z., Zhang J., Zhang D., Zhang H., Yang Z., Qu J. MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: Progress and perspectives. J. Mater. Chem. B. 2021;9:5195–5220. doi: 10.1039/D1TB00410G. PubMed DOI
Wan L., Zhao Q., Zhao P., He B., Jiang T., Zhang Q., Wang S. Versatile hybrid polyethyleneimine–mesoporous carbon nanoparticles for targeted delivery. Carbon. 2014;79:123–134. doi: 10.1016/j.carbon.2014.07.050. DOI
Senapati S., Mahanta A.K., Kumar S., Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018;3:7. doi: 10.1038/s41392-017-0004-3. PubMed DOI PMC
Chari R.V.J. Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Acc. Chem. Res. 2007;41:98–107. doi: 10.1021/ar700108g. PubMed DOI
Murugan C., Sharma V., Murugan R.K., Malaimegu G., Sundaramurthy A. Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy. J. Control. Release. 2019;299:1–20. doi: 10.1016/j.jconrel.2019.02.015. PubMed DOI
Shi Z., Zhou Y., Fan T., Lin Y., Zhang H., Mei L. Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Mater. Med. 2020;1:32–47. doi: 10.1016/j.smaim.2020.05.002. DOI
Fusco L., Gazzi A., Peng G., Shin Y., Vranic S., Bedognetti D., Vitale F., Yilmazer A., Feng X., Fadeel B., et al. Graphene and other 2D materials: A multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics. 2020;10:5435–5488. doi: 10.7150/thno.40068. PubMed DOI PMC
Jain V., Jain S., Mahajan S.C. Nanomedicines based drug delivery systems for anti-cancer targeting and treatment. Curr. Drug Deliv. 2015;12:177–191. doi: 10.2174/1567201811666140822112516. PubMed DOI
Kumar P., Srivastava R. Nanomedicine for Cancer Therapy: From Chemotherapeutic to Hyperthermia-Based Therapy. Springer; Berlin/Heidelberg, Germany: 2016.
Hiremath N., Kumar R., Hwang K.C., Banerjee I., Thangudu S., Vankayala R. Near-Infrared Light Activatable Two-Dimensional Nanomaterials for Theranostic Applications: A Comprehensive Review. ACS Appl. Nano Mater. 2022;5:1719–1733. doi: 10.1021/acsanm.2c00170. DOI
Korupalli C., You K.-L., Getachew G., Rasal A.S., Dirersa W.B., Fahmi M.Z., Chang J.-Y. Engineering the Surface of Ti3C2 MXene Nanosheets for High Stability and Multimodal Anticancer Therapy. Pharmaceutics. 2022;14:304. doi: 10.3390/pharmaceutics14020304. PubMed DOI PMC
Blanco E., Shen H., Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Nanotechnol. 2015;33:941–951. doi: 10.1038/nbt.3330. PubMed DOI PMC
Abbasi Z., Feizi S., Taghipour E., Ghadam P. Green synthesis of silver nanoparticles using aqueous extract of dried Juglans regia green husk and examination of its biological properties. Green Process. Synth. 2017;6:477–485. doi: 10.1515/gps-2016-0108. DOI
Iravani S. MXenes and MXene-based (nano)structures: A perspective on greener synthesis and biomedical prospects. Ceram. Int. 2022;48:24144–24156. doi: 10.1016/j.ceramint.2022.05.137. DOI
Iravani S., Varma R.S. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances. Mater. Adv. 2021;2:2906–2917. doi: 10.1039/D1MA00189B. DOI
Iravani S., Varma R.S. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater. Sci. Eng. 2021;7:1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI
Iravani S., Varma R.S. Bioinspired and biomimetic MXene-based structures with fascinating properties: Recent advances. Mater. Adv. 2022;3:4783–4796. doi: 10.1039/D2MA00151A. DOI
Ni N., Zhang X., Ma Y., Yuan J., Wang D., Ma G., Dong J., Sun X. Biodegradable two-dimensional nanomaterials for cancer theranostics. Coord. Chem. Rev. 2022;458:214415. doi: 10.1016/j.ccr.2022.214415. DOI
Yang B., Chen Y., Shi J. Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. Chem. 2018;4:1284–1313. doi: 10.1016/j.chempr.2018.02.012. DOI
Ibragimova R., Erhart P., Rinke P., Komsa H.-P. Surface Functionalization of 2D MXenes: Trends in Distribution, Composition, and Electronic Properties. J. Phys. Chem. Lett. 2021;12:2377–2384. doi: 10.1021/acs.jpclett.0c03710. PubMed DOI PMC
Mozafari M., Soroush M. Surface functionalization of MXenes. Mater. Adv. 2021;2:7277–7307. doi: 10.1039/D1MA00625H. DOI
Zhang D.-Y., Liu H., Younis M.R., Lei S., Chen Y., Huang P., Lin J. In-situ TiO2−x decoration of titanium carbide MXene for photo/sono-responsive antitumor theranostics. J. Nanobiotechnol. 2022;20:53. doi: 10.1186/s12951-022-01253-8. PubMed DOI PMC
Chitteth Rajan A., Mishra A., Satsangi S., Vaish R., Mizuseki H., Lee K.-R., Singh A.K. Machine-Learning-Assisted Accurate Band Gap Predictions of Functionalized MXene. Chem. Mater. 2018;30:4031–4038. doi: 10.1021/acs.chemmater.8b00686. DOI
Qin L., Tao Q., Liu X., Fahlman M., Halim J., Persson P.O.Å., Rosen J., Zhang F. Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy. 2019;60:734–742. doi: 10.1016/j.nanoen.2019.04.002. DOI
Dong L.M., Ye C., Zheng L.L., Gao Z.F., Xia F. Two-dimensional metal carbides and nitrides (MXenes): Preparation, property, and applications in cancer therapy. Nanophotonics. 2020;9:2125–2145. doi: 10.1515/nanoph-2019-0550. DOI
Shukla V. The tunable electric and magnetic properties of 2D MXenes and their potential applications. Mater. Adv. 2020;1:3104–3121. doi: 10.1039/D0MA00548G. DOI
Zeng Z.-H., Wu N., Wei J.-J., Yang Y.-F., Wu T.-T., Li B., Hauser S.B., Yang W.-D., Liu J.-R., Zhao S.-Y. Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding. Nano-Micro Lett. 2022;14:59. doi: 10.1007/s40820-022-00800-0. PubMed DOI PMC
Yang Y., Han M., Liu W., Wu N., Liu J. Hydrogel-based composites beyond the porous architectures for electromagnetic interference shielding. Nano Res. 2022 doi: 10.1007/s12274-022-4817-1. in press . DOI
Shukla V. Observation of critical magnetic behavior in 2D carbon based composites. Nanoscale Adv. 2020;2:962–990. doi: 10.1039/C9NA00663J. PubMed DOI PMC
Shukla V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 2019;1:1640–1671. doi: 10.1039/C9NA00108E. PubMed DOI PMC
Chen L., Dai X., Feng W., Chen Y. Biomedical Applications of MXenes: From Nanomedicine to Biomaterials. Acc. Mater. Res. 2022;3:785–798. doi: 10.1021/accountsmr.2c00025. DOI
Sadiq M., Pang L., Johnson M., Sathish V., Zhang Q., Wang D. 2D Nanomaterial, Ti3C2 MXene-Based Sensor to Guide Lung Cancer Therapy and Management. Biosensors. 2021;11:40. doi: 10.3390/bios11020040. PubMed DOI PMC
Sharifuzzaman M., Barman S.C., Zahed M.A., Sharma S., Yoon H., Nah J.S., Kim H., Park J.Y. An Electrodeposited MXene-Ti3C2Tx Nanosheets Functionalized by Task-Specific Ionic Liquid for Simultaneous and Multiplexed Detection of Bladder Cancer Biomarkers. Small. 2020;16:2002517. doi: 10.1002/smll.202002517. PubMed DOI
Sundaram A., Ponraj J.S., Wang C., Peng W.K., Manavalan R.K., Dhanabalan S.C., Zhang H., Gaspar J. Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics. J. Mater. Chem. B. 2020;8:4990–5013. doi: 10.1039/D0TB00251H. PubMed DOI
Xing C., Chen S., Liang X., Liu Q., Qu M., Zou Q., Li J., Tan H., Liu L., Fan D., et al. Two-Dimensional MXene (Ti3C2)-Integrated Cellulose Hydrogels: Toward Smart Three-Dimensional Network Nanoplatforms Exhibiting Light-Induced Swelling and Bimodal Photothermal/Chemotherapy Anticancer Activity. ACS Appl. Mater. Interfaces. 2018;10:27631–27643. doi: 10.1021/acsami.8b08314. PubMed DOI
Zamhuri A., Lim G.P., Ma N.L., Tee K.S., Soon C.F. MXene in the lens of biomedical engineering: Synthesis, applications and future outlook. BioMed Eng. OnLine. 2021;20:33. doi: 10.1186/s12938-021-00873-9. PubMed DOI PMC
Hendijani F. Human mesenchymal stromal cell therapy for prevention and recovery of chemo/radiotherapy adverse reactions. Cytotherapy. 2015;17:509–525. doi: 10.1016/j.jcyt.2014.10.015. PubMed DOI
Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012;12:252. doi: 10.1038/nrc3239. PubMed DOI PMC
Jamalipour Soufi G., Iravani S. Eco-friendly and sustainable synthesis of biocompatible nanomaterials for diagnostic imaging: Current challenges and future perspectives. Green Chem. 2020;22:2662–2687. doi: 10.1039/D0GC00734J. DOI
Zhu W., Li H., Luo P. Emerging 2D Nanomaterials for Multimodel Theranostics of Cancer. Front. Bioeng. Biotechnol. 2021;9:769178. doi: 10.3389/fbioe.2021.769178. PubMed DOI PMC
Dong X., Mumper R.J. Nanomedicinal strategies to treat multidrug-resistant tumors: Current progress. Nanomedicine. 2010;5:597–615. doi: 10.2217/nnm.10.35. PubMed DOI PMC
Nasrollahzadeh M., Sajjadi M., Iravani S., Varma R.S. Trimetallic Nanoparticles: Greener Synthesis and Their Applications. Nanomaterials. 2020;10:1784. doi: 10.3390/nano10091784. PubMed DOI PMC
Iravani S., Varma R.S. Plants and plant-based polymers as scaffolds for tissue engineering. Green Chem. 2019;21:4839–4867. doi: 10.1039/C9GC02391G. DOI
Iravani S., Varma R.S. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ. Chem. Lett. 2020;18:703–727. doi: 10.1007/s10311-020-00984-0. PubMed DOI PMC
Zhu B., Shi J., Liu C., Li J., Cao S. In-situ self-assembly of sandwich-like Ti3C2 MXene/gold nanorods nanosheets for synergistically enhanced near-infrared responsive drug delivery. Ceram. Int. 2021;47:24252–24261. doi: 10.1016/j.ceramint.2021.05.136. DOI
Shurbaji S., Abdul Manaph N.P., Ltaief S.M., Al-Shammari A.R., Elzatahry A., Yalcin H.C. Characterization of MXene as a Cancer Photothermal Agent Under Physiological Conditions. Front. Nanotechnol. 2021;3:689718. doi: 10.3389/fnano.2021.689718. DOI
Feng W., Wang R., Zhou Y., Ding L., Gao X., Zhou B., Hu P., Chen Y. Ultrathin Molybdenum Carbide MXene with Fast Biodegradability for Highly Efficient Theory-Oriented Photonic Tumor Hyperthermia. Adv. Funct. Mater. 2019;29:1901942. doi: 10.1002/adfm.201901942. DOI
Han X., Huang J., Lin H., Wang Z., Li P., Chen Y. 2D Ultrathin MXene-Based Drug-Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Adv. Healthc. Mater. 2018;7:1701394. doi: 10.1002/adhm.201701394. PubMed DOI
Mohammadpour Z., Majidzadeh-A K. Applications of Two-Dimensional Nanomaterials in Breast Cancer Theranostics. ACS Biomater. Sci. Eng. 2020;6:1852–1873. doi: 10.1021/acsbiomaterials.9b01894. PubMed DOI
Lin H., Wang Y., Gao S., Chen Y., Shi J. Theranostic 2D Tantalum Carbide (MXene) Adv. Mater. 2018;30:1703284. doi: 10.1002/adma.201703284. PubMed DOI
Liu Z., Zhao M., Lin H., Dai C., Ren C., Zhang S., Peng W., Chen Y. 2D magnetic titanium carbide MXene for cancer theranostics. J. Mater. Chem. B. 2018;6:3541–3548. doi: 10.1039/C8TB00754C. PubMed DOI
Zong L., Wu H., Lin H., Chen Y. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Res. 2018;11:4149–4168. doi: 10.1007/s12274-018-2002-3. DOI
Dai C., Lin H., Xu G., Liu Z., Wu R., Chen Y. Biocompatible 2D Titanium Carbide (MXenes) Composite Nanosheets for pH-Responsive MRI-Guided Tumor Hyperthermia. Chem. Mater. 2017;29:8637–8652. doi: 10.1021/acs.chemmater.7b02441. DOI
Pan J., Zhang M., Fu G., Zhang L., Yu H., Yan X., Liu F., Sun P., Jia X., Liu X., et al. Ti3C2 MXene Nanosheets Functionalized with NaErF4:0.5%Tm@NaLuF4 Nanoparticles for Dual-Modal Near-Infrared IIb/Magnetic Resonance Imaging-Guided Tumor Hyperthermia. ACS Appl. Nano Mater. 2022;5:8142–8153. doi: 10.1021/acsanm.2c01251. DOI
Zhu Y., Wang Z., Zhao R., Zhou Y., Feng L., Gai S., Yang P. Pt Decorated Ti3C2Tx MXene with NIR-II Light Amplified Nanozyme Catalytic Activity for Efficient Phototheranostics. ACS Nano. 2022;16:3105–3118. doi: 10.1021/acsnano.1c10732. PubMed DOI
Zhang Q., Huang W., Yang C., Wang F., Song C., Gao Y., Qiu Y., Yan M., Yang B., Guo C. The theranostic nanoagent Mo2C for multi-modal imaging-guided cancer synergistic phototherapy. Biomater. Sci. 2019;7:2729–2739. doi: 10.1039/C9BM00239A. PubMed DOI
Han X., Jing X., Yang D., Lin H., Wang Z., Ran H., Li P., Chen Y. Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics. 2018;8:4491–4508. doi: 10.7150/thno.26291. PubMed DOI PMC
Dai C., Chen Y., Jing X., Xiang L., Yang D., Lin H., Liu Z., Han X., Wu R. Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided Photothermal Tumor Ablation. ACS Nano. 2017;11:12696–12712. doi: 10.1021/acsnano.7b07241. PubMed DOI
Liu Z., Lin H., Zhao M., Dai C., Zhang S., Peng W., Chen Y. 2D Superparamagnetic Tantalum Carbide Composite MXenes for Efficient Breast-Cancer Theranostics. Theranostics. 2018;8:1648–1664. doi: 10.7150/thno.23369. PubMed DOI PMC
Yu X., Cai X., Cui H., Lee S.-W., Yu X.-F., Liu B. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale. 2017;9:17859–17864. doi: 10.1039/C7NR05997C. PubMed DOI
Cao Y., Wu T., Zhang K., Meng X., Dai W., Wang D., Dong H., Zhang X. Engineered Exosome-Mediated Near-Infrared-II Region V2C Quantum Dot Delivery for Nucleus-Target Low-Temperature Photothermal Therapy. ACS Nano. 2019;13:1499–1510. doi: 10.1021/acsnano.8b07224. PubMed DOI
Zada S., Dai W., Kai Z., Lu H., Meng X., Zhang Y., Cheng Y., Yan F., Fu P., Zhang X., et al. Algae Extraction Controllable Delamination of Vanadium Carbide Nanosheets with Enhanced Near-Infrared Photothermal Performance. Angew. Chem. Int. Ed. 2020;59:6601–6606. doi: 10.1002/anie.201916748. PubMed DOI
Tang W., Dong Z., Zhang R., Yi X., Yang K., Jin M., Yuan C., Xiao Z., Liu Z., Cheng L. Multifunctional Two-Dimensional Core–Shell MXene@Gold Nanocomposites for Enhanced Photo–Radio Combined Therapy in the Second Biological Window. ACS Nano. 2019;13:284–294. doi: 10.1021/acsnano.8b05982. PubMed DOI
Anasori B., Lukatskaya M.R., Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017;2:16098. doi: 10.1038/natrevmats.2016.98. DOI
Assad H., Fatma I., Kumar A., Kaya S., Vo D.-V.N., Al-Gheethi A., Sharma A. An overview of MXene-Based nanomaterials and their potential applications towards hazardous pollutant adsorption. Chemosphere. 2022;298:134221. doi: 10.1016/j.chemosphere.2022.134221. PubMed DOI
Awasthi G.P., Maharjan B., Shrestha S., Bhattarai D.P., Yoon D., Park C.H., Kim C.S. Synthesis, characterizations, and biocompatibility evaluation of polycaprolactone–MXene electrospun fibers. Colloids Surf. A Physicochem. Eng. Asp. 2020;586:124282. doi: 10.1016/j.colsurfa.2019.124282. DOI
Carey M., Barsoum M.W. MXene polymer nanocomposites: A review. Mater. Today Adv. 2021;9:100120. doi: 10.1016/j.mtadv.2020.100120. DOI
Fu B., Sun J., Wang C., Shang C., Xu L., Li J., Zhang H. MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. Small. 2021;17:2006054. doi: 10.1002/smll.202006054. PubMed DOI
Fu Y., Zhang J., Lin H., Mo A. 2D titanium carbide(MXene) nanosheets and 1D hydroxyapatite nanowires into free standing nanocomposite membrane: In vitro and in vivo evaluations for bone regeneration. Mater. Sci. Eng. C. 2021;118:111367. doi: 10.1016/j.msec.2020.111367. PubMed DOI
Soleymaniha M., Shahbazi M.-A., Rafieerad A.R., Maleki A., Amir A. Promoting Role of MXene Nanosheets in Biomedical Sciences: Therapeutic and Biosensing Innovations. Adv. Healthc. Mater. 2019;8:1801137. doi: 10.1002/adhm.201801137. PubMed DOI
Xie Z., Chen S., Duo Y., Zhu Y., Fan T., Zou Q., Qu M., Lin Z., Zhao J., Li Y., et al. Biocompatible Two-Dimensional Titanium Nanosheets for Multimodal Imaging-Guided Cancer Theranostics. ACS Appl. Mater. Interfaces. 2019;11:22129–22140. doi: 10.1021/acsami.9b04628. PubMed DOI
Iravani P., Iravani S., Varma R.S. MXene-Chitosan Composites and Their Biomedical Potentials. Micromachines. 2022;13:1383. doi: 10.3390/mi13091383. PubMed DOI PMC
Jamalipour Soufi G., Iravani P., Hekmatnia A., Mostafavi E., Khatami M., Iravani S. MXenes and MXene-based Materials with Cancer Diagnostic Applications: Challenges and Opportunities. Comments Inorg. Chem. 2022;42:174–207. doi: 10.1080/02603594.2021.1990890. DOI
Mostafavi E., Iravani S. MXene-Graphene Composites: A Perspective on Biomedical Potentials. Nano-Micro Lett. 2022;14:130. doi: 10.1007/s40820-022-00880-y. PubMed DOI PMC
Zhou B., Yin H., Dong C., Sun L., Feng W., Pu Y., Han X., Li X., Du D., Xu H., et al. Biodegradable and Excretable 2D W1.33C i-MXene with Vacancy Ordering for Theory-Oriented Cancer Nanotheranostics in Near-Infrared Biowindow. Adv. Sci. 2021;8:2101043. doi: 10.1002/advs.202101043. PubMed DOI PMC
Gazzi A., Fusco L., Khan A., Bedognetti D., Zavan B., Vitale F., Yilmazer A., Delogu L.G. Photodynamic Therapy Based on Graphene and MXene in Cancer Theranostics. Front. Bioeng. Biotechnol. 2019;7:295. doi: 10.3389/fbioe.2019.00295. PubMed DOI PMC
Wang Y., Feng W., Chen Y. Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine. Chin. Chem. Lett. 2020;31:937–946. doi: 10.1016/j.cclet.2019.11.016. DOI
Sivasankarapillai V.S., Somakumar A.K., Joseph J., Nikazar S., Rahdar A., Kyzas G. Cancer theranostic applications of MXene nanomaterials: Recent updates. Nano-Struct. Nano-Objects. 2020;22:100457. doi: 10.1016/j.nanoso.2020.100457. DOI
Iravani S., Varma R.S. MXenes in photomedicine: Advances and prospects. Chem. Commun. 2022;58:7336–7350. doi: 10.1039/D2CC01694J. PubMed DOI
Liu Z., Zhao M., Yu L., Peng W., Chen Y., Zhang S. Redox chemistry-enabled stepwise surface dual nanoparticle engineering of 2D MXenes for tumor-sensitive T1 and T2 MRI-guided photonic breast-cancer hyperthermia in the NIR-II biowindow. Biomater. Sci. 2022;10:1562–1574. doi: 10.1039/D1BM01957K. PubMed DOI
Liu G., Zou J., Tang Q., Yang X., Zhang Y.-W., Zhang Q., Huang W., Chen P., Shao J., Dong X. Surface Modified Ti3C2 MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. ACS Appl. Mater. Interfaces. 2017;9:40077–40086. doi: 10.1021/acsami.7b13421. PubMed DOI
Iravani S., Varma R.S. Smart MXene quantum dot-based nanosystems for biomedical applications. Nanomaterials. 2022;12:1200. doi: 10.3390/nano12071200. PubMed DOI PMC
Shao J., Zhang J., Jiang C., Lin J., Huang P. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem. Eng. J. 2020;400:126009. doi: 10.1016/j.cej.2020.126009. DOI
Lim G.P., Soon C.F., Ma N.L., Morsin M., Nayan N., Ahmad M.K., Tee K.S. Cytotoxicity of MXene-based nanomaterials for biomedical applications: A mini review. Environ. Res. 2021;201:111592. doi: 10.1016/j.envres.2021.111592. PubMed DOI
Johnson K.K., Koshy P., Yang J.-L., Sorrell C.C. Preclinical Cancer Theranostics-From Nanomaterials to Clinic: The Missing Link. Adv. Funct. Mater. 2021;31:2104199. doi: 10.1002/adfm.202104199. DOI
Lin H., Gao S., Dai C., Chen Y., Shi J. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017;139:16235–16247. doi: 10.1021/jacs.7b07818. PubMed DOI
Zhao X., Wang L.-Y., Li J.-M., Peng L.-M., Tang C.-Y., Zha X.-J., Ke K., Yang M.-B., Su B.-H., Yang W. Redox-Mediated Artificial Non-Enzymatic Antioxidant MXene Nanoplatforms for Acute Kidney Injury Alleviation. Adv. Sci. 2021;8:2101498. doi: 10.1002/advs.202101498. PubMed DOI PMC
Liang R., Li Y., Huo M., Lin H., Chen Y. Triggering Sequential Catalytic Fenton Reaction on 2D MXenes for Hyperthermia-Augmented Synergistic Nanocatalytic Cancer Therapy. ACS Appl. Mater. Interfaces. 2019;11:42917–42931. doi: 10.1021/acsami.9b13598. PubMed DOI
MXene-Carbon Nanotube Composites: Properties and Applications
Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy
MXene-Based Photocatalysts in Degradation of Organic and Pharmaceutical Pollutants