MXenes in Cancer Nanotheranostics

. 2022 Sep 27 ; 12 (19) : . [epub] 20220927

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36234487

MXenes encompass attractive properties such as a large surface area, unique chemical structures, stability, elastic mechanical strength, excellent electrical conductivity, hydrophilicity, and ease of surface functionalization/modifications, which make them one of the broadly explored two-dimensional materials in the world. MXene-based micro- and nanocomposites/systems with special optical, mechanical, electronic, and excellent targeting/selectivity features have been explored for cancer nanotheranostics. These materials exhibit great diagnostic and therapeutic potential and offer opportunities for cancer photoacoustic imaging along with photodynamic and photothermal therapy. They can be applied to targeted anticancer drug delivery while being deployed for the imaging/diagnosis of tumors/cancers and malignancies. MXene-based systems functionalized with suitable biocompatible or bioactive agents have suitable cellular uptake features with transferring potential from vascular endothelial cells and specific localization, high stability, and auto-fluorescence benefits at different emission-excitation wavelengths, permitting post-transport examination and tracking. The surface engineering of MXenes can improve their biocompatibility, targeting, bioavailability, and biodegradability along with their optical, mechanical, and electrochemical features to develop multifunctional systems with cancer theranostic applications. However, challenges still persist in terms of their environmentally benign fabrication, up-scalability, functionality improvement, optimization conditions, surface functionalization, biocompatibility, biodegradability, clinical translational studies, and pharmacokinetics. This manuscript delineates the recent advancements, opportunities, and important challenges pertaining to the cancer nanotheranostic potential of MXenes and their derivatives.

Zobrazit více v PubMed

Selestin Raja I., Kang M.S., Kim K.S., Jung Y.J., Han D.-W. Two-Dimensional Theranostic Nanomaterials in Cancer Treatment: State of the Art and Perspectives. Cancers. 2020;12:1657. doi: 10.3390/cancers12061657. PubMed DOI PMC

Yang W., Lyu Q., Zhao J., Cao L., Hao Y., Zhang H. Recent advance in near-infrared/ultrasound-sensitive 2D-nanomaterials for cancer therapeutics. Sci. China Mater. 2020;63:2397–2428. doi: 10.1007/s40843-020-1387-7. DOI

Huang M., Gu Z., Zhang J., Zhang D., Zhang H., Yang Z., Qu J. MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: Progress and perspectives. J. Mater. Chem. B. 2021;9:5195–5220. doi: 10.1039/D1TB00410G. PubMed DOI

Wan L., Zhao Q., Zhao P., He B., Jiang T., Zhang Q., Wang S. Versatile hybrid polyethyleneimine–mesoporous carbon nanoparticles for targeted delivery. Carbon. 2014;79:123–134. doi: 10.1016/j.carbon.2014.07.050. DOI

Senapati S., Mahanta A.K., Kumar S., Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018;3:7. doi: 10.1038/s41392-017-0004-3. PubMed DOI PMC

Chari R.V.J. Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Acc. Chem. Res. 2007;41:98–107. doi: 10.1021/ar700108g. PubMed DOI

Murugan C., Sharma V., Murugan R.K., Malaimegu G., Sundaramurthy A. Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy. J. Control. Release. 2019;299:1–20. doi: 10.1016/j.jconrel.2019.02.015. PubMed DOI

Shi Z., Zhou Y., Fan T., Lin Y., Zhang H., Mei L. Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Mater. Med. 2020;1:32–47. doi: 10.1016/j.smaim.2020.05.002. DOI

Fusco L., Gazzi A., Peng G., Shin Y., Vranic S., Bedognetti D., Vitale F., Yilmazer A., Feng X., Fadeel B., et al. Graphene and other 2D materials: A multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics. 2020;10:5435–5488. doi: 10.7150/thno.40068. PubMed DOI PMC

Jain V., Jain S., Mahajan S.C. Nanomedicines based drug delivery systems for anti-cancer targeting and treatment. Curr. Drug Deliv. 2015;12:177–191. doi: 10.2174/1567201811666140822112516. PubMed DOI

Kumar P., Srivastava R. Nanomedicine for Cancer Therapy: From Chemotherapeutic to Hyperthermia-Based Therapy. Springer; Berlin/Heidelberg, Germany: 2016.

Hiremath N., Kumar R., Hwang K.C., Banerjee I., Thangudu S., Vankayala R. Near-Infrared Light Activatable Two-Dimensional Nanomaterials for Theranostic Applications: A Comprehensive Review. ACS Appl. Nano Mater. 2022;5:1719–1733. doi: 10.1021/acsanm.2c00170. DOI

Korupalli C., You K.-L., Getachew G., Rasal A.S., Dirersa W.B., Fahmi M.Z., Chang J.-Y. Engineering the Surface of Ti3C2 MXene Nanosheets for High Stability and Multimodal Anticancer Therapy. Pharmaceutics. 2022;14:304. doi: 10.3390/pharmaceutics14020304. PubMed DOI PMC

Blanco E., Shen H., Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Nanotechnol. 2015;33:941–951. doi: 10.1038/nbt.3330. PubMed DOI PMC

Abbasi Z., Feizi S., Taghipour E., Ghadam P. Green synthesis of silver nanoparticles using aqueous extract of dried Juglans regia green husk and examination of its biological properties. Green Process. Synth. 2017;6:477–485. doi: 10.1515/gps-2016-0108. DOI

Iravani S. MXenes and MXene-based (nano)structures: A perspective on greener synthesis and biomedical prospects. Ceram. Int. 2022;48:24144–24156. doi: 10.1016/j.ceramint.2022.05.137. DOI

Iravani S., Varma R.S. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances. Mater. Adv. 2021;2:2906–2917. doi: 10.1039/D1MA00189B. DOI

Iravani S., Varma R.S. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater. Sci. Eng. 2021;7:1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI

Iravani S., Varma R.S. Bioinspired and biomimetic MXene-based structures with fascinating properties: Recent advances. Mater. Adv. 2022;3:4783–4796. doi: 10.1039/D2MA00151A. DOI

Ni N., Zhang X., Ma Y., Yuan J., Wang D., Ma G., Dong J., Sun X. Biodegradable two-dimensional nanomaterials for cancer theranostics. Coord. Chem. Rev. 2022;458:214415. doi: 10.1016/j.ccr.2022.214415. DOI

Yang B., Chen Y., Shi J. Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. Chem. 2018;4:1284–1313. doi: 10.1016/j.chempr.2018.02.012. DOI

Ibragimova R., Erhart P., Rinke P., Komsa H.-P. Surface Functionalization of 2D MXenes: Trends in Distribution, Composition, and Electronic Properties. J. Phys. Chem. Lett. 2021;12:2377–2384. doi: 10.1021/acs.jpclett.0c03710. PubMed DOI PMC

Mozafari M., Soroush M. Surface functionalization of MXenes. Mater. Adv. 2021;2:7277–7307. doi: 10.1039/D1MA00625H. DOI

Zhang D.-Y., Liu H., Younis M.R., Lei S., Chen Y., Huang P., Lin J. In-situ TiO2−x decoration of titanium carbide MXene for photo/sono-responsive antitumor theranostics. J. Nanobiotechnol. 2022;20:53. doi: 10.1186/s12951-022-01253-8. PubMed DOI PMC

Chitteth Rajan A., Mishra A., Satsangi S., Vaish R., Mizuseki H., Lee K.-R., Singh A.K. Machine-Learning-Assisted Accurate Band Gap Predictions of Functionalized MXene. Chem. Mater. 2018;30:4031–4038. doi: 10.1021/acs.chemmater.8b00686. DOI

Qin L., Tao Q., Liu X., Fahlman M., Halim J., Persson P.O.Å., Rosen J., Zhang F. Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy. 2019;60:734–742. doi: 10.1016/j.nanoen.2019.04.002. DOI

Dong L.M., Ye C., Zheng L.L., Gao Z.F., Xia F. Two-dimensional metal carbides and nitrides (MXenes): Preparation, property, and applications in cancer therapy. Nanophotonics. 2020;9:2125–2145. doi: 10.1515/nanoph-2019-0550. DOI

Shukla V. The tunable electric and magnetic properties of 2D MXenes and their potential applications. Mater. Adv. 2020;1:3104–3121. doi: 10.1039/D0MA00548G. DOI

Zeng Z.-H., Wu N., Wei J.-J., Yang Y.-F., Wu T.-T., Li B., Hauser S.B., Yang W.-D., Liu J.-R., Zhao S.-Y. Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding. Nano-Micro Lett. 2022;14:59. doi: 10.1007/s40820-022-00800-0. PubMed DOI PMC

Yang Y., Han M., Liu W., Wu N., Liu J. Hydrogel-based composites beyond the porous architectures for electromagnetic interference shielding. Nano Res. 2022 doi: 10.1007/s12274-022-4817-1. in press . DOI

Shukla V. Observation of critical magnetic behavior in 2D carbon based composites. Nanoscale Adv. 2020;2:962–990. doi: 10.1039/C9NA00663J. PubMed DOI PMC

Shukla V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 2019;1:1640–1671. doi: 10.1039/C9NA00108E. PubMed DOI PMC

Chen L., Dai X., Feng W., Chen Y. Biomedical Applications of MXenes: From Nanomedicine to Biomaterials. Acc. Mater. Res. 2022;3:785–798. doi: 10.1021/accountsmr.2c00025. DOI

Sadiq M., Pang L., Johnson M., Sathish V., Zhang Q., Wang D. 2D Nanomaterial, Ti3C2 MXene-Based Sensor to Guide Lung Cancer Therapy and Management. Biosensors. 2021;11:40. doi: 10.3390/bios11020040. PubMed DOI PMC

Sharifuzzaman M., Barman S.C., Zahed M.A., Sharma S., Yoon H., Nah J.S., Kim H., Park J.Y. An Electrodeposited MXene-Ti3C2Tx Nanosheets Functionalized by Task-Specific Ionic Liquid for Simultaneous and Multiplexed Detection of Bladder Cancer Biomarkers. Small. 2020;16:2002517. doi: 10.1002/smll.202002517. PubMed DOI

Sundaram A., Ponraj J.S., Wang C., Peng W.K., Manavalan R.K., Dhanabalan S.C., Zhang H., Gaspar J. Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics. J. Mater. Chem. B. 2020;8:4990–5013. doi: 10.1039/D0TB00251H. PubMed DOI

Xing C., Chen S., Liang X., Liu Q., Qu M., Zou Q., Li J., Tan H., Liu L., Fan D., et al. Two-Dimensional MXene (Ti3C2)-Integrated Cellulose Hydrogels: Toward Smart Three-Dimensional Network Nanoplatforms Exhibiting Light-Induced Swelling and Bimodal Photothermal/Chemotherapy Anticancer Activity. ACS Appl. Mater. Interfaces. 2018;10:27631–27643. doi: 10.1021/acsami.8b08314. PubMed DOI

Zamhuri A., Lim G.P., Ma N.L., Tee K.S., Soon C.F. MXene in the lens of biomedical engineering: Synthesis, applications and future outlook. BioMed Eng. OnLine. 2021;20:33. doi: 10.1186/s12938-021-00873-9. PubMed DOI PMC

Hendijani F. Human mesenchymal stromal cell therapy for prevention and recovery of chemo/radiotherapy adverse reactions. Cytotherapy. 2015;17:509–525. doi: 10.1016/j.jcyt.2014.10.015. PubMed DOI

Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012;12:252. doi: 10.1038/nrc3239. PubMed DOI PMC

Jamalipour Soufi G., Iravani S. Eco-friendly and sustainable synthesis of biocompatible nanomaterials for diagnostic imaging: Current challenges and future perspectives. Green Chem. 2020;22:2662–2687. doi: 10.1039/D0GC00734J. DOI

Zhu W., Li H., Luo P. Emerging 2D Nanomaterials for Multimodel Theranostics of Cancer. Front. Bioeng. Biotechnol. 2021;9:769178. doi: 10.3389/fbioe.2021.769178. PubMed DOI PMC

Dong X., Mumper R.J. Nanomedicinal strategies to treat multidrug-resistant tumors: Current progress. Nanomedicine. 2010;5:597–615. doi: 10.2217/nnm.10.35. PubMed DOI PMC

Nasrollahzadeh M., Sajjadi M., Iravani S., Varma R.S. Trimetallic Nanoparticles: Greener Synthesis and Their Applications. Nanomaterials. 2020;10:1784. doi: 10.3390/nano10091784. PubMed DOI PMC

Iravani S., Varma R.S. Plants and plant-based polymers as scaffolds for tissue engineering. Green Chem. 2019;21:4839–4867. doi: 10.1039/C9GC02391G. DOI

Iravani S., Varma R.S. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ. Chem. Lett. 2020;18:703–727. doi: 10.1007/s10311-020-00984-0. PubMed DOI PMC

Zhu B., Shi J., Liu C., Li J., Cao S. In-situ self-assembly of sandwich-like Ti3C2 MXene/gold nanorods nanosheets for synergistically enhanced near-infrared responsive drug delivery. Ceram. Int. 2021;47:24252–24261. doi: 10.1016/j.ceramint.2021.05.136. DOI

Shurbaji S., Abdul Manaph N.P., Ltaief S.M., Al-Shammari A.R., Elzatahry A., Yalcin H.C. Characterization of MXene as a Cancer Photothermal Agent Under Physiological Conditions. Front. Nanotechnol. 2021;3:689718. doi: 10.3389/fnano.2021.689718. DOI

Feng W., Wang R., Zhou Y., Ding L., Gao X., Zhou B., Hu P., Chen Y. Ultrathin Molybdenum Carbide MXene with Fast Biodegradability for Highly Efficient Theory-Oriented Photonic Tumor Hyperthermia. Adv. Funct. Mater. 2019;29:1901942. doi: 10.1002/adfm.201901942. DOI

Han X., Huang J., Lin H., Wang Z., Li P., Chen Y. 2D Ultrathin MXene-Based Drug-Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Adv. Healthc. Mater. 2018;7:1701394. doi: 10.1002/adhm.201701394. PubMed DOI

Mohammadpour Z., Majidzadeh-A K. Applications of Two-Dimensional Nanomaterials in Breast Cancer Theranostics. ACS Biomater. Sci. Eng. 2020;6:1852–1873. doi: 10.1021/acsbiomaterials.9b01894. PubMed DOI

Lin H., Wang Y., Gao S., Chen Y., Shi J. Theranostic 2D Tantalum Carbide (MXene) Adv. Mater. 2018;30:1703284. doi: 10.1002/adma.201703284. PubMed DOI

Liu Z., Zhao M., Lin H., Dai C., Ren C., Zhang S., Peng W., Chen Y. 2D magnetic titanium carbide MXene for cancer theranostics. J. Mater. Chem. B. 2018;6:3541–3548. doi: 10.1039/C8TB00754C. PubMed DOI

Zong L., Wu H., Lin H., Chen Y. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Res. 2018;11:4149–4168. doi: 10.1007/s12274-018-2002-3. DOI

Dai C., Lin H., Xu G., Liu Z., Wu R., Chen Y. Biocompatible 2D Titanium Carbide (MXenes) Composite Nanosheets for pH-Responsive MRI-Guided Tumor Hyperthermia. Chem. Mater. 2017;29:8637–8652. doi: 10.1021/acs.chemmater.7b02441. DOI

Pan J., Zhang M., Fu G., Zhang L., Yu H., Yan X., Liu F., Sun P., Jia X., Liu X., et al. Ti3C2 MXene Nanosheets Functionalized with NaErF4:0.5%Tm@NaLuF4 Nanoparticles for Dual-Modal Near-Infrared IIb/Magnetic Resonance Imaging-Guided Tumor Hyperthermia. ACS Appl. Nano Mater. 2022;5:8142–8153. doi: 10.1021/acsanm.2c01251. DOI

Zhu Y., Wang Z., Zhao R., Zhou Y., Feng L., Gai S., Yang P. Pt Decorated Ti3C2Tx MXene with NIR-II Light Amplified Nanozyme Catalytic Activity for Efficient Phototheranostics. ACS Nano. 2022;16:3105–3118. doi: 10.1021/acsnano.1c10732. PubMed DOI

Zhang Q., Huang W., Yang C., Wang F., Song C., Gao Y., Qiu Y., Yan M., Yang B., Guo C. The theranostic nanoagent Mo2C for multi-modal imaging-guided cancer synergistic phototherapy. Biomater. Sci. 2019;7:2729–2739. doi: 10.1039/C9BM00239A. PubMed DOI

Han X., Jing X., Yang D., Lin H., Wang Z., Ran H., Li P., Chen Y. Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics. 2018;8:4491–4508. doi: 10.7150/thno.26291. PubMed DOI PMC

Dai C., Chen Y., Jing X., Xiang L., Yang D., Lin H., Liu Z., Han X., Wu R. Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided Photothermal Tumor Ablation. ACS Nano. 2017;11:12696–12712. doi: 10.1021/acsnano.7b07241. PubMed DOI

Liu Z., Lin H., Zhao M., Dai C., Zhang S., Peng W., Chen Y. 2D Superparamagnetic Tantalum Carbide Composite MXenes for Efficient Breast-Cancer Theranostics. Theranostics. 2018;8:1648–1664. doi: 10.7150/thno.23369. PubMed DOI PMC

Yu X., Cai X., Cui H., Lee S.-W., Yu X.-F., Liu B. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale. 2017;9:17859–17864. doi: 10.1039/C7NR05997C. PubMed DOI

Cao Y., Wu T., Zhang K., Meng X., Dai W., Wang D., Dong H., Zhang X. Engineered Exosome-Mediated Near-Infrared-II Region V2C Quantum Dot Delivery for Nucleus-Target Low-Temperature Photothermal Therapy. ACS Nano. 2019;13:1499–1510. doi: 10.1021/acsnano.8b07224. PubMed DOI

Zada S., Dai W., Kai Z., Lu H., Meng X., Zhang Y., Cheng Y., Yan F., Fu P., Zhang X., et al. Algae Extraction Controllable Delamination of Vanadium Carbide Nanosheets with Enhanced Near-Infrared Photothermal Performance. Angew. Chem. Int. Ed. 2020;59:6601–6606. doi: 10.1002/anie.201916748. PubMed DOI

Tang W., Dong Z., Zhang R., Yi X., Yang K., Jin M., Yuan C., Xiao Z., Liu Z., Cheng L. Multifunctional Two-Dimensional Core–Shell MXene@Gold Nanocomposites for Enhanced Photo–Radio Combined Therapy in the Second Biological Window. ACS Nano. 2019;13:284–294. doi: 10.1021/acsnano.8b05982. PubMed DOI

Anasori B., Lukatskaya M.R., Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017;2:16098. doi: 10.1038/natrevmats.2016.98. DOI

Assad H., Fatma I., Kumar A., Kaya S., Vo D.-V.N., Al-Gheethi A., Sharma A. An overview of MXene-Based nanomaterials and their potential applications towards hazardous pollutant adsorption. Chemosphere. 2022;298:134221. doi: 10.1016/j.chemosphere.2022.134221. PubMed DOI

Awasthi G.P., Maharjan B., Shrestha S., Bhattarai D.P., Yoon D., Park C.H., Kim C.S. Synthesis, characterizations, and biocompatibility evaluation of polycaprolactone–MXene electrospun fibers. Colloids Surf. A Physicochem. Eng. Asp. 2020;586:124282. doi: 10.1016/j.colsurfa.2019.124282. DOI

Carey M., Barsoum M.W. MXene polymer nanocomposites: A review. Mater. Today Adv. 2021;9:100120. doi: 10.1016/j.mtadv.2020.100120. DOI

Fu B., Sun J., Wang C., Shang C., Xu L., Li J., Zhang H. MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. Small. 2021;17:2006054. doi: 10.1002/smll.202006054. PubMed DOI

Fu Y., Zhang J., Lin H., Mo A. 2D titanium carbide(MXene) nanosheets and 1D hydroxyapatite nanowires into free standing nanocomposite membrane: In vitro and in vivo evaluations for bone regeneration. Mater. Sci. Eng. C. 2021;118:111367. doi: 10.1016/j.msec.2020.111367. PubMed DOI

Soleymaniha M., Shahbazi M.-A., Rafieerad A.R., Maleki A., Amir A. Promoting Role of MXene Nanosheets in Biomedical Sciences: Therapeutic and Biosensing Innovations. Adv. Healthc. Mater. 2019;8:1801137. doi: 10.1002/adhm.201801137. PubMed DOI

Xie Z., Chen S., Duo Y., Zhu Y., Fan T., Zou Q., Qu M., Lin Z., Zhao J., Li Y., et al. Biocompatible Two-Dimensional Titanium Nanosheets for Multimodal Imaging-Guided Cancer Theranostics. ACS Appl. Mater. Interfaces. 2019;11:22129–22140. doi: 10.1021/acsami.9b04628. PubMed DOI

Iravani P., Iravani S., Varma R.S. MXene-Chitosan Composites and Their Biomedical Potentials. Micromachines. 2022;13:1383. doi: 10.3390/mi13091383. PubMed DOI PMC

Jamalipour Soufi G., Iravani P., Hekmatnia A., Mostafavi E., Khatami M., Iravani S. MXenes and MXene-based Materials with Cancer Diagnostic Applications: Challenges and Opportunities. Comments Inorg. Chem. 2022;42:174–207. doi: 10.1080/02603594.2021.1990890. DOI

Mostafavi E., Iravani S. MXene-Graphene Composites: A Perspective on Biomedical Potentials. Nano-Micro Lett. 2022;14:130. doi: 10.1007/s40820-022-00880-y. PubMed DOI PMC

Zhou B., Yin H., Dong C., Sun L., Feng W., Pu Y., Han X., Li X., Du D., Xu H., et al. Biodegradable and Excretable 2D W1.33C i-MXene with Vacancy Ordering for Theory-Oriented Cancer Nanotheranostics in Near-Infrared Biowindow. Adv. Sci. 2021;8:2101043. doi: 10.1002/advs.202101043. PubMed DOI PMC

Gazzi A., Fusco L., Khan A., Bedognetti D., Zavan B., Vitale F., Yilmazer A., Delogu L.G. Photodynamic Therapy Based on Graphene and MXene in Cancer Theranostics. Front. Bioeng. Biotechnol. 2019;7:295. doi: 10.3389/fbioe.2019.00295. PubMed DOI PMC

Wang Y., Feng W., Chen Y. Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine. Chin. Chem. Lett. 2020;31:937–946. doi: 10.1016/j.cclet.2019.11.016. DOI

Sivasankarapillai V.S., Somakumar A.K., Joseph J., Nikazar S., Rahdar A., Kyzas G. Cancer theranostic applications of MXene nanomaterials: Recent updates. Nano-Struct. Nano-Objects. 2020;22:100457. doi: 10.1016/j.nanoso.2020.100457. DOI

Iravani S., Varma R.S. MXenes in photomedicine: Advances and prospects. Chem. Commun. 2022;58:7336–7350. doi: 10.1039/D2CC01694J. PubMed DOI

Liu Z., Zhao M., Yu L., Peng W., Chen Y., Zhang S. Redox chemistry-enabled stepwise surface dual nanoparticle engineering of 2D MXenes for tumor-sensitive T1 and T2 MRI-guided photonic breast-cancer hyperthermia in the NIR-II biowindow. Biomater. Sci. 2022;10:1562–1574. doi: 10.1039/D1BM01957K. PubMed DOI

Liu G., Zou J., Tang Q., Yang X., Zhang Y.-W., Zhang Q., Huang W., Chen P., Shao J., Dong X. Surface Modified Ti3C2 MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. ACS Appl. Mater. Interfaces. 2017;9:40077–40086. doi: 10.1021/acsami.7b13421. PubMed DOI

Iravani S., Varma R.S. Smart MXene quantum dot-based nanosystems for biomedical applications. Nanomaterials. 2022;12:1200. doi: 10.3390/nano12071200. PubMed DOI PMC

Shao J., Zhang J., Jiang C., Lin J., Huang P. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem. Eng. J. 2020;400:126009. doi: 10.1016/j.cej.2020.126009. DOI

Lim G.P., Soon C.F., Ma N.L., Morsin M., Nayan N., Ahmad M.K., Tee K.S. Cytotoxicity of MXene-based nanomaterials for biomedical applications: A mini review. Environ. Res. 2021;201:111592. doi: 10.1016/j.envres.2021.111592. PubMed DOI

Johnson K.K., Koshy P., Yang J.-L., Sorrell C.C. Preclinical Cancer Theranostics-From Nanomaterials to Clinic: The Missing Link. Adv. Funct. Mater. 2021;31:2104199. doi: 10.1002/adfm.202104199. DOI

Lin H., Gao S., Dai C., Chen Y., Shi J. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017;139:16235–16247. doi: 10.1021/jacs.7b07818. PubMed DOI

Zhao X., Wang L.-Y., Li J.-M., Peng L.-M., Tang C.-Y., Zha X.-J., Ke K., Yang M.-B., Su B.-H., Yang W. Redox-Mediated Artificial Non-Enzymatic Antioxidant MXene Nanoplatforms for Acute Kidney Injury Alleviation. Adv. Sci. 2021;8:2101498. doi: 10.1002/advs.202101498. PubMed DOI PMC

Liang R., Li Y., Huo M., Lin H., Chen Y. Triggering Sequential Catalytic Fenton Reaction on 2D MXenes for Hyperthermia-Augmented Synergistic Nanocatalytic Cancer Therapy. ACS Appl. Mater. Interfaces. 2019;11:42917–42931. doi: 10.1021/acsami.9b13598. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...