HYCO-3, a dual CO-releaser/Nrf2 activator, reduces tissue inflammation in mice challenged with lipopolysaccharide

. 2019 Jan ; 20 () : 334-348. [epub] 20181026

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30391826
Odkazy

PubMed 30391826
PubMed Central PMC6223233
DOI 10.1016/j.redox.2018.10.020
PII: S2213-2317(18)30869-3
Knihovny.cz E-zdroje

Oxidative stress and inflammation are predominant features of several chronic diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a major arbiter in counteracting these insults via up-regulation of several defensive proteins, including heme oxygenase-1 (HO-1). HO-1-derived carbon monoxide (CO) exhibits anti-inflammatory actions and can be delivered to tissues by CO-releasing agents. In this study we assessed the pharmacological and anti-inflammatory properties of HYCO-3, a dual activity compound obtained by conjugating analogues of the CO-releasing molecule CORM-401 and dimethyl fumarate (DMF), an immunomodulatory drug known to activate Nrf2. HYCO-3 induced Nrf2-dependent genes and delivered CO to cells in vitro and tissues in vivo, confirming that the two expected pharmacological properties of this agent are achieved. In mice challenged with lipopolysaccharide, orally administered HYCO-3 reduced the mRNA levels of pro-inflammatory markers (TNF-α, IL-1β and IL-6) while increasing the expression of the anti-inflammatory genes ARG1 and IL-10 in brain, liver, lung and heart. In contrast, DMF or CORM-401 alone or their combination decreased the expression of pro-inflammatory genes but had limited influence on anti-inflammatory markers. Furthermore, HYCO-3 diminished TNF-α and IL-1β in brain and liver but not in lung and heart of Nrf2-/- mice, indicating that the CO-releasing part of this hybrid contributes to reduction of pro-inflammation and that this effect is organ-specific. These data demonstrate that the dual activity of HYCO-3 results in enhanced efficacy compared to the parent compounds indicating the potential exploitation of hybrid compounds in the development of effective anti-inflammatory therapies.

Zobrazit více v PubMed

Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–435. PubMed

Kotas M.E., Medzhitov R. Homeostasis, inflammation, and disease susceptibility. Cell. 2015;160(5):816–827. PubMed PMC

Hotamisligil G.S. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177–185. PubMed

Hamidzadeh K., Christensen S.M., Dalby E., Chandrasekaran P., Mosser D.M. Macrophages and the recovery from acute and chronic inflammation. Annu. Rev. Physiol. 2017;79:567–592. PubMed PMC

Paine A., Eiz-Vesper B., Blasczyk R., Immenschuh S. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem. Pharmacol. 2010;80(12):1895–1903. PubMed

Kim J., Cha Y.N., Surh Y.J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res. 2010;690(1–2):12–23. PubMed

Alam J., Stewart D., Touchard C., Boinapally S., Choi A.M., Cook J.L. Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J. Biol. Chem. 1999;274(37):26071–26078. PubMed

Ishii T., Itoh K., Takahashi S., Sato H., Yanagawa T., Katoh Y., Bannai S., Yamamoto M. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J. Biol. Chem. 2000;275(21):16023–16029. PubMed

Wardyn J.D., Ponsford A.H., Sanderson C.M. Dissecting molecular cross-talk between Nrf2 and NF-kappaB response pathways. Biochem. Soc. Trans. 2015;43(4):621–626. PubMed PMC

Niture S.K., Kaspar J.W., Shen J., Jaiswal A.K. Nrf2 signaling and cell survival. Toxicol. Appl. Pharmacol. 2010;244(1):37–42. PubMed PMC

Motohashi H., Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 2004;10(11):549–557. PubMed

Jaiswal A.K. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic. Biol. Med. 2004;36(10):1199–1207. PubMed

Motterlini R., Foresti R. Heme oxygenase-1 as a target for drug discovery. Antioxid. Redox Signal. 2014;20(11):1810–1826. PubMed

Naito Y., Takagi T., Higashimura Y. Heme oxygenase-1 and anti-inflammatory M2 macrophages. Arch. Biochem. Biophys. 2014;564:83–88. PubMed

Sierra-Filardi E., Vega M.A., Sanchez-Mateos P., Corbi A.L., Puig-Kroger A. Heme Oxygenase-1 expression in M-CSF-polarized M2 macrophages contributes to LPS-induced IL-10 release. Immunobiology. 2010;215(9–10):788–795. PubMed

Satoh T., Lipton S.A. Redox regulation of neuronal survival mediated by electrophilic compounds. Trends Neurosci. 2007;30(1):37–45. PubMed

Satoh T., McKercher S.R., Lipton S.A. Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs. Free Radic. Biol. Med. 2013;65:645–657. PubMed PMC

Surh Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer. 2003;3(10):768–780. PubMed

Linker R.A., Lee D.H., Stangel M., Gold R. Fumarates for the treatment of multiple sclerosis: potential mechanisms of action and clinical studies. Expert. Rev. Neurother. 2008;8(11):1683–1690. PubMed

Brennan M.S., Patel H., Allaire N., Thai A., Cullen P., Ryan S., Lukashev M., Bista P., Huang R., Rhodes K.J., Scannevin R.H. Pharmacodynamics of Dimethyl Fumarate are Tissue-specific and Involve NRF2-dependent and -independent mechanisms. Antioxid. Redox Signal. 2016;24(18):1058–1071. PubMed

Zhang F., Wang S., Zhang M., Weng Z., Li P., Gan Y., Zhang L., Cao G., Gao Y., Leak R.K., Sporn M.B., Chen J. Pharmacological induction of heme oxygenase-1 by a triterpenoid protects neurons against ischemic injury. Stroke. 2012;43(5):1390–1397. PubMed PMC

Dinkova-Kostova A.T., Liby K.T., Stephenson K.K., Holtzclaw W.D., Gao X., Suh N., Williams C., Risingsong R., Honda T., Gribble G.W., Sporn M.B., Talalay P. Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc. Natl. Acad. Sci. USA. 2005;102(12):4584–4589. PubMed PMC

Motterlini R., Clark J.E., Foresti R., Sarathchandra P., Mann B.E., Green C.J. Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ. Res. 2002;90(2):e17–e24. PubMed

Clark J.E., Naughton P., Shurey S., Green C.J., Johnson T.R., Mann B.E., Foresti R., Motterlini R. Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ. Res. 2003;93(2):e2–e8. PubMed

Motterlini R., Otterbein L.E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 2010;9(9):728–743. PubMed

Wilson J.L., Fayad-Kobeissi S., Oudir S., Haas B., Michel B.W., Dubois-Rande J.L., Ollivier A., Martens T., Rivard M., Motterlini R., Foresti R. Design and synthesis of novel hybrid molecules that activate the transcription factor Nrf2 and simultaneously release carbon monoxide. Chemistry. 2014;20(45):14698–14704. PubMed

Nikam A., Ollivier A., Rivard M., Wilson J.L., Mebarki K., Martens T., Dubois-Rande J.L., Motterlini R., Foresti R. Diverse Nrf2 activators coordinated to cobalt carbonyls induce heme oxygenase-1 and release carbon monoxide in vitro and in vivo. J. Med. Chem. 2016;59(2):756–762. PubMed

Crook S.H., Mann B.E., Meijer J.A.H.M., Adams H., Sawle P., Scapens D., Motterlini R. [Mn(CO)4{S2CNMe(CH2CO2H)}], a new water-soluble CO-releasing molecule. Dalton Trans. 2011;40(16):4230–4235. PubMed

Kaczara P., Motterlini R., Rosen G.M., Augustynek B., Bednarczyk P., Szewczyk A., Foresti R., Chlopicki S. Carbon monoxide released by CORM-401 uncouples mitochondrial respiration and inhibits glycolysis in endothelial cells: a role for mitoBK channels. Biochim. Biophys. Acta. 2015;1847(10):1297–1309. PubMed

Fayad-Kobeissi S., Ratovonantenaina J., Dabire H., Wilson J.L., Rodriguez A.M., Berdeaux A., Dubois-Rande J.L., Mann B.E., Motterlini R., Foresti R. Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule. Biochem. Pharmacol. 2016;102:64–77. PubMed

Michel B.W., Lippert A.R., Chang C.J. A reaction-based fluorescent probe for selective imaging of carbon monoxide in living cells using a palladium-mediated carbonylation. J. Am. Chem. Soc. 2012;134(38):15668–15671. PubMed

Kuninobu Y., Nishina Y., Takeuchi T., Takai K. Manganese-catalyzed insertion of aldehydes into a C-H bond. Angew. Chem. Int. Ed. Engl. 2007;46(34):6518–6520. PubMed

Denmark S.E., Thorarensen A., Middleton D.S. Tandem [4 + 2]/[3 + 2] Cycloadditions of Nitroalkenes. 9. Synthesis of (-)-Rosmarinecine. J. Am. Chem. Soc. 1996;118(35):8266–8277.

Bani-Hani M.G., Greenstein D., Mann B.E., Green C.J., Motterlini R. Modulation of thrombin-induced neuroinflammation in BV-2 microglia by a carbon monoxide-releasing molecule (CORM-3) J. Pharmacol. Exp. Ther. 2006;318(3):1315–1322. PubMed

Wilson J.L., Bouillaud F., Almeida A.S., Vieira H.L., Ouidja M.O., Dubois-Rande J.L., Foresti R., Motterlini R. Carbon monoxide reverses the metabolic adaptation of microglia cells to an inflammatory stimulus. Free Rad. Biol. Med. 2017;104:311–323. PubMed

Abuarqoub H., Foresti R., Green C.J., Motterlini R. Heme oxygenase-1 mediates the anti-inflammatory actions of 2'-hydroxychalcone in RAW 264.7 murine macrophages. Am. J. Physiol. Cell Physiol. 2006;290(4):C1092–C1099. PubMed

Itoh K., Chiba T., Takahashi S., Ishii T., Igarashi K., Katoh Y., Oyake T., Hayashi N., Satoh K., Hatayama I., Yamamoto M., Nabeshima Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 1997;236(2):313–322. PubMed

Rodkey F.L., Hill T.A., Pitts L.L., Robertson R.F. Spectrophotometric measurement of carboxyhemoglobin and methemoglobin in blood. Clin. Chem. 1979;25(8):1388–1393. PubMed

Vreman H.J., Wong R.J., Kadotani T., Stevenson D.K. Determination of carbon monoxide (CO) in rodent tissue: effect of heme administration and environmental CO exposure. Anal. Biochem. 2005;341(2):280–289. PubMed

Spencer S.R., Wilczak C.A., Talalay P. Induction of glutathione transferases and NAD(P)H:quinone reductase by fumaric acid derivatives in rodent cells and tissues. Cancer Res. 1990;50(24):7871–7875. PubMed

Lehmann J.C., Listopad J.J., Rentzsch C.U., Igney F.H., von Bonin A., Hennekes H.H., Asadullah K., Docke W.D. Dimethylfumarate induces immunosuppression via glutathione depletion and subsequent induction of heme oxygenase 1. J. Investig. Dermatol. 2007;127(4):835–845. PubMed

Thimmulappa R.K., Lee H., Rangasamy T., Reddy S.P., Yamamoto M., Kensler T.W., Biswal S. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Investig. 2006;116(4):984–995. PubMed PMC

Motterlini R., Foresti R. Biological signaling by carbon monoxide and carbon monoxide-releasing molecules (CO-RMs) Am. J. Physiol. Cell Physiol. 2017;312(3):C302–C313. PubMed

Kappos L., Gold R., Miller D.H., Macmanus D.G., Havrdova E., Limmroth V., Polman C.H., Schmierer K., Yousry T.A., Yang M., Eraksoy M., Meluzinova E., Rektor I., Dawson K.T., Sandrock A.W., O'Neill G.N. Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet. 2008;372(9648):1463–1472. PubMed

Kitagishi H., Negi S., Kiriyama A., Honbo A., Sugiura Y., Kawaguchi A.T., Kano K. A diatomic molecule receptor that removes CO in a living organism. Angew. Chem. Int. Ed. Engl. 2010;49(7):1312–1315. PubMed

Minegishi S., Yumura A., Miyoshi H., Negi S., Taketani S., Motterlini R., Foresti R., Kano K., Kitagishi H. Detection and removal of endogenous carbon monoxide by selective and cell permeable hemoprotein-model complexes. J. Am. Chem. Soc. 2017;139(16):5984–5991. PubMed

Vreman H.J., Wong R.J., Sanesi C.A., Dennery P.A., Stevenson D.K. Simultaneous production of carbon monoxide and thiobarbituric acid reactive substances in rat tissue preparations by an iron-ascorbate system. Can. J. Physiol. Pharmacol. 1998;76(12):1057–1065. PubMed

Muchova L., Vanova K., Zelenka J., Lenicek M., Petr T., Vejrazka M., Sticova E., Vreman H.J., Wong R.J., Vitek L. Bile acids decrease intracellular bilirubin levels in the cholestatic liver: implications for bile acid-mediated oxidative stress. J. Cell Mol. Med. 2011;15(5):1156–1165. PubMed PMC

Bhattacharjee R.N., Richard-Mohamed M., Sun Q., Haig A., Aboalsamh G., Barrett P., Mayer R., Alhasan I., Pineda-Solis K., Jiang L., Alharbi H., Saha M., Patterson E., Sener A., Cepinskas G., Jevnikar A.M., Luke P.P.W. CORM-401 reduces ischemia reperfusion injury in an ex vivo renal porcine model of the donation after circulatory death. Transplantation. 2018;102(7):1066–1074. PubMed PMC

Lancel S., Hassoun S.M., Favory R., Decoster B., Motterlini R., Neviere R. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J. Pharmacol. Exp. Ther. 2009;1329(2):641–648. PubMed

Urquhart P., Rosignoli G., Cooper D., Motterlini R., Perretti M. Carbon monoxide-releasing molecules modulate leukocyte-endothelial interactions under flow. J. Pharmacol. Exp. Ther. 2007;321(2):656–662. PubMed

Yabluchanskiy A., Sawle P., Homer-Vanniasinkam S., Green C.J., Foresti R., Motterlini R. CORM-3, a carbon monoxide-releasing molecule, alters the inflammatory response and reduces brain damage in a rat model of hemorrhagic stroke. Crit. Care Med. 2012;40(2):544–552. PubMed

Inoue K., Patterson E.K., Capretta A., Lawendy A.R., Fraser D.D., Cepinskas G. Carbon monoxide-releasing molecule-401 suppresses polymorphonuclear leukocyte migratory potential by modulating F-actin dynamics. Am. J. Pathol. 2017;187(5):1121–1133. PubMed

Haas B., Chrusciel S., Fayad-Kobeissi S., Dubois-Rande J.L., Azuaje F., Boczkowski J., Motterlini R., Foresti R. Permanent culture of macrophages at physiological oxygen attenuates the antioxidant and immunomodulatory properties of dimethyl fumarate. J. Cell Physiol. 2015;230(5):1128–1138. PubMed

Schulze-Topphoff U., Varrin-Doyer M., Pekarek K., Spencer C.M., Shetty A., Sagan S.A., Cree B.A., Sobel R.A., Wipke B.T., Steinman L., Scannevin R.H., Zamvil S.S. Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proc. Natl. Acad. Sci. USA. 2016;113(17):4777–4782. PubMed PMC

Cepinskas G., Katada K., Bihari A., Potter R.F. Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2008;294(1):G184–G191. PubMed

Zhang X., Mosser D.M. Macrophage activation by endogenous danger signals. J. Pathol. 2008;214(2):161–178. PubMed PMC

Kubben N., Zhang W., Wang L., Voss T.C., Yang J., Qu J., Liu G.H., Misteli T. Repression of the antioxidant NRF2 pathway in premature aging. Cell. 2016;165(6):1361–1374. PubMed PMC

Kerns M.L., Hakim J.M., Lu R.G., Guo Y., Berroth A., Kaspar R.L., Coulombe P.A. Oxidative stress and dysfunctional NRF2 underlie pachyonychia congenita phenotypes. J. Clin. Investig. 2016;126(6):2356–2366. PubMed PMC

Paraiso H.C., Kuo P.C., Curfman E.T., Moon H.J., Sweazey R.D., Yen J.H., Chang F.L., Yu I.C. Dimethyl fumarate attenuates reactive microglia and long-term memory deficits following systemic immune challenge. J. Neuroinflamm. 2018;15(1):100. PubMed PMC

Chora A.A., Fontoura P., Cunha A., Pais T.F., Cardoso S., Ho P.P., Lee L.Y., Sobel R.A., Steinman L., Soares M.P. Heme oxygenase-1 and carbon monoxide suppress autoimmune neuroinflammation. J. Clin. Investig. 2007;117(2):438–447. PubMed PMC

Fagone P., Mangano K., Quattrocchi C., Motterlini R., Di Marco R., Magro G., Penacho N., Romao C.C., Nicoletti F. Prevention of clinical and histological signs of proteolipid protein (PLP)-induced experimental allergic encephalomyelitis (EAE) in mice by the water-soluble carbon monoxide-releasing molecule (CORM)-A1. Clin. Exp. Immunol. 2011;163(3):368–374. PubMed PMC

Wang Y., Huang Y., Xu Y., Ruan W., Wang H., Zhang Y., Saavedra J.M., Zhang L., Huang Z., Pang T. A dual AMPK/Nrf2 activator reduces brain inflammation After stroke by enhancing microglia M2 polarization. Antioxid. Redox Signal. 2018;28(2):141–163. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...