Mutual use of trail-following chemical cues by a termite host and its inquiline
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24465533
PubMed Central
PMC3897442
DOI
10.1371/journal.pone.0085315
PII: PONE-D-13-27583
Knihovny.cz E-zdroje
- MeSH
- feromony fyziologie MeSH
- Isoptera fyziologie MeSH
- komunikace zvířat * MeSH
- kooperační chování * MeSH
- podněty * MeSH
- polyeny metabolismus MeSH
- rozšíření zvířat MeSH
- výběrové chování fyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- (3Z,6Z,8E)-dodecatrien-1-ol MeSH Prohlížeč
- feromony MeSH
- polyeny MeSH
Termite nests are often secondarily inhabited by other termite species ( = inquilines) that cohabit with the host. To understand this association, we studied the trail-following behaviour in two Neotropical species, Constrictotermes cyphergaster (Termitidae: Nasutitermitinae) and its obligatory inquiline, Inquilinitermes microcerus (Termitidae: Termitinae). Using behavioural experiments and chemical analyses, we determined that the trail-following pheromone of C. cyphergaster is made of neocembrene and (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol. Although no specific compound was identified in I. microcerus, workers were able to follow the above compounds in behavioural bioassays. Interestingly, in choice tests, C. cyphergaster prefers conspecific over heterospecific trails while I. microcerus shows the converse behaviour. In no-choice tests with whole body extracts, C. cyphergaster showed no preference for, while I. microcerus clearly avoided heterospecific trails. This seems to agree with the hypothesis that trail-following pheromones may shape the cohabitation of C. cyphergaster and I. microcerus and reinforce the idea that their cohabitation is based on conflict-avoiding strategies.
Departamento de Entomologia Universidade Federal de Viçosa Minas Gerais Brazil
Institute of Organic Chemistry and Biochemistry Prague Czech Republic
Zobrazit více v PubMed
Kistner DH (1979) Social and evolutionary significance of social insect symbionts. In: Hermann HR, editor. Social Insects, Vol 1. Academic Press, New York pp 339–413.
Fiegra F, Velicer GJ (2003) Competitive fates of bacterial social parasites: persistence and self-induced extinction of Myxococcus xanthus cheaters. Proc Biol Sci B 270: 1527–1534. PubMed PMC
Jones C (2005) Social parasitism in mammals with particular reference to Neotropical primates. Mastozool Neotrop 12: 19–35.
Ollerton J (2006) “Biological barter”: patterns of specialization compared across different mutualisms. In: Waser NM, Ollerton J, editors. Plant-pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago/London. pp. 411–435.
Shellman-Reeve JS (1997) The spectrum of eusociality in termites. In: Choe JC, Crespi BJ, editors. The evolution of social behavior in insects and arachnids. Cambridge University Press. pp. 52–93.
Kronland WJ (2007) Nest usurpation by red-headed woodpeckers in Southestearn Montana. Wilson J Ornitol 119: 486–489.
Davies NB (2000) Cuckoos, cowbirds and other cheats. T. and A. D. Poyser, London.
Harris RN, Hawes WW, Knight IT, Carreno CA, Vess TJ (1995) An experimental analysis of joint nesting salamander Hemidactylium scatatum (Caudata: Plethodotidae) the effects of population density. Anim Behav 50: 1309–1316.
Wilson EO (1975) Sociobiology. The New Synthesis. Cambridge: Belknap Press of Harvard University Press.
Hughes DP, Pierce NE, Boomsma JJ (2008) Social insects symbionts: evolution in homeostatic fortresses. Trends Ecol Evol 23: 672–677. PubMed
Ortolani I, Turillazi S, Cervo R (2008) Spring usurpation restlessness: A wasp social parasites adapts its seasonal activity to the host cycle. Ethology 114: 782–788.
Tsuneoka Y (2008) Host colony usurpation by the queen of the Japanese pirate ant, Polyergus samurai (Hymenoptera: Formicidae). J Ethol 26: 243–247.
Hines HM, Cameron SA (2010) The phylogenetic position of the bumble bee inquiline Bombus inexspectatus and implications for the evolution of social parasitism. Insectes Soc 57: 379–383.
Cristaldo PF, Rosa CS, Florencio DF, Marins A, DeSouza O (2012) Termitarium volume as a determinant of invasion by obligatory termitophiles and inquilines in the nests of Constrictotermes cyphergaster (Termitidae, Nasutitermitinae). Insectes Soc 59: 541–548.
Buschinger A (2009) Social parasites among ants: a review (Hymenoptera: Formicidae). Myrmecol News 12: 219–235.
Grassé PP (1986) Termitologia. Vol I. Paris: Masson.
Mathews AGA (1977) Studies on termites from the Mato Grosso State, Brazil. Rio de Janeiro. Academia Brasileira de Ciências.
Noirot CH (1970) The nests of termites. In: Krishna K, Weesner F, editors. Biology of Termites, New York and London: Academic Press, Vol 2. pp. 73–125.
Bourguignon T, Šobotník J, Lepoint G, Martin JM, Hardy OJ, et al. (2011) Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol Entomol 36: 261–269.
Florencio DF, Marins A, Rosa CS, Cristaldo PF, Araújo APA, et al. (2013) Diet segregation between cohabiting host and inquiline termite species. PLoS One 8(6): e66535. PubMed PMC
Kilner RM, Langmore NE (2011) Cuckoos versus hosts in insects and birds: adaptations, counter-adaptations and outcomes. Biol Rev 86: 836–852. PubMed
Bordereau C, Pasteels JM (2011) Pheromones and chemical ecology of dispersal and foraging in termites. In: Bignell DE, Roisin Y, Lo N, editors. Biology of Termites, a Modern Synthesis. Dordrecht: Springer. pp. 279–320.
Sillam-Dussès D (2011) Trail Pheromones and sex pheromones in termites: Glandular origin, chemical nature, and potential use in pest management. In: Gregory IM, editor. Pheromones: Theories, Types and Uses. Nova Publishers. pp. 39–92.
Hanus R, Šobotník J, Krasulová J, Jiroš P, Žáček P, et al. (2012) Nonadecadienone, a new termite trail-following pheromone identified in Glossotermes oculatus (Serritermitidae). Chem Senses 37: 55–63. PubMed
Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): Their phylogeny, classification, and rise to ecological dominance. Am Mus Nat Hist 3650: 1–27.
Sillam-Dussès D, Kalinová B, Jiroš P, Březinová A, Cvačka J, et al. (2009) Identification by GC-EAD of the two-component trail-following pheromone of Prorhinotermes simplex (Isoptera, Rhinotermitidae, Prorhinotermitinae). J Insect Physiol 55: 751–757. PubMed
Sillam-Dussès D, Sémon E, Robert A, Cancello E, Lenz M, et al. (2010) Identification of multi-component trail pheromones in the most evolutionarily derived termites, the Nasutitermitinae (Termitidae). Biol J Linn Soc 99: 20–27.
Kotoklo EA, Sillam-Dussès D, Kétoh G, Sémon E, Robert A, et al. (2010) Identification of the trail-following pheromone of the pest termite Amitermes evuncifer (Isoptera: Termitidae). Sociobiology 55: 579–588.
Moura FMS, Vasconcellos A, Araújo VFP, Bandeira AG (2006) Feeding habitat of Constrictotermes cyphergaster (Isoptera, Termitidae) in an area of Caatinga, Northeast Brazil. Sociobiology 48: 21–26.
Moura FMS, Vasconcellos A, Araújo VFP, Bandeira AG (2006) Seasonality on foraging behaviour of Constrictotermes cyphergaster (Termitidae, Nasutitermitinae) in the Caatinga of Northeastern Brazil. Insectes Soc 53: 472–479.
Vasconcelos A, Araújo VFP, Moura FMS, Bandeira AG (2007) Biomass and population structure of Constrictotermes cyphergaster (Silvestri) (Isoptera: Termitidae) in the Dry Forest of Caatinga, Northeastern Brazil. Neotrop Entomol 36: 693–698. PubMed
Cunha HF, Costa DA, Santo-Filho K, Brandão D (2003) Relationship between Constrictotermes cyphergaster and inquiline termites in the Cerrado (Isoptera: Termitidae). Sociobiology 42: 761–770.
Šobotník J, Bourguignon T, Hanus R, Sillam-Dussès D, Pflegerová J, et al. (2010) Not only soldiers have weapons: evolution of the frontal gland in imagoes of the termite families Rhinotermitidae and Serritermitidae. PLoS One 5: e15761. PubMed PMC
Sillam-Dussès D, Sémon E, Moreau C, Valterová I, Šobotník J, et al. (2005) Neocembrene A, a major component of trail-following pheromone in the genus Prorhinotermes (Insecta, Isoptera, Rhinotermitidae). Chemoecology 15: 1–6.
Sillam-Dussès D, Sémon E, Robert A, Bordereau C (2009) (Z)-Dodec-3-en-1-ol, a common major component of the trail-following pheromone in the termites Kalotermitidae. Chemoecology 19: 103–108.
Crawley MJ (2007). The R Book. John Wiley & Sons, Ltd. 942 pp.
R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.ISBN 3-900051-07-0. Available: http://www.R-project.org.
Menzel F, Pokorny T, Blüthgen N, Schmitt T (2010) Trail-sharing among tropical ants: interspecific use of trail pheromones? Ecol Entomol 35: 495–503.
Pasteels JM, Bordereau C (1998) Releaser pheromones in termites. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML, editors. Pheromones communication in social insects. Boulder: Westview Press. pp. 193–215.
Lo N, Kitade O, Miura T, Constantino R, Matsumoto T (2004) Molecular phylogeny of the Rhinotermitidae. Insectes Soc 51: 365–371.
Inward DJG, Vogler AP, Eggleton P (2008) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol 44: 953–967. PubMed
Legendre F, Whiting MF, Bordereau C, Cancello EM, Evans TA, et al. (2008) The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear genes: implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol Phylogenet Evol 48: 615–627. PubMed
Abe T (1987) Evolution of life types in termites. In: Connell JH, Hidaka T, editors. Evolution and coadaptation in biotic communities. Tokyo: Tokyo University Press. pp 125–148.
Traniello JFA, Leuthold RH (2000) Behavior and ecology of foraging in termites. In: Abe T, Bignell DE, Higashi M, editors. Termites: evolution, sociality, symbioses, ecology. London: Kluwer Academic. pp. 141–168.
Stuart AM (1961) Mechanism of trail-laying in two species of termites. Nature 189: 419.
Sillam-Dussès D, Sémon E, Lacey MJ, Robert A, Lenz M, Bordereau C (2007) Trail-following pheromones in ancestral termites, with special reference to Mastotermes darwiniensis . J Chem Ecol 33: 1960–1977. PubMed
Rupf T, Roisin Y (2008) Coming out of the woods: do termites need a specialized worker caste to search for new food sources? Naturwissenschaften 95: 811–819. PubMed
Dejean A, Beugnon G (1996) Host-ant trail following by myrmecophilous larvae of Liphyrinae (Lepidoptera, Lycaenidae). Oecologia 106: 57–62. PubMed
Howard R (1980) Trail following by termitophiles. Ann Entomoll Soc Am 73: 36–38.
Costa-Leonardo AM, Shields KS (1990) Morphology of the mandibular glands in workers of Constrictotermes cyphergaster (Silvestri) (Isoptera: Termitidae). J Insect Morphol Embryol 19: 61–64.
Grassé PP, Noirot C (1951) Orientation et routes chez les termites. Le « balisage » des pistes. Annu Rev Psychol 50: 273–280.
Souto L, Kitayama K (2000) Constrictotermes cyphergaster (Isoptera: Termitidae: Nasutitermitinae) maintain foraging trails for a longer period by means of fecal droplets. Sociobiology 35: 367–372.
Redford KH (1984) Mammalian predation on termites: test with the burrowing mouse Oxymycterus robertii and its prey. Oecologia 65: 145–152. PubMed
Smells Like Home: Chemically Mediated Co-Habitation of Two Termite Species in a Single Nest