The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
26538635
PubMed Central
PMC4736033
DOI
10.1242/bio.014084
PII: bio.014084
Knihovny.cz E-zdroje
- Klíčová slova
- Alarm communication, Alarm pheromone, Defence, Isoptera, Nasutitermitinae, Vibroacoustic communication,
- Publikační typ
- časopisecké články MeSH
Alarm signalling is of paramount importance to communication in all social insects. In termites, vibroacoustic and chemical alarm signalling are bound to operate synergistically but have never been studied simultaneously in a single species. Here, we inspected the functional significance of both communication channels in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis that these are not exclusive, but rather complementary processes. In natural situations, the alarm predominantly attracts soldiers, which actively search for the source of a disturbance. Laboratory testing revealed that the frontal gland of soldiers produces a rich mixture of terpenoid compounds including an alarm pheromone. Extensive testing led to identification of the alarm pheromone being composed of abundant monoterpene hydrocarbons (1S)-α-pinene and myrcene, along with a minor component, (E)-β-ocimene. The vibratory alarm signalling consists of vibratory movements evidenced as bursts; a series of beats produced predominantly by soldiers. Exposing termite groups to various mixtures containing the alarm pheromone (crushed soldier heads, frontal gland extracts, mixture of all monoterpenes, and the alarm pheromone mixture made of standards) resulted in significantly higher activity in the tested groups and also increased intensity of the vibratory alarm communication, with the responses clearly dose-dependent. Lower doses of the pheromone provoked higher numbers of vibratory signals compared to higher doses. Higher doses induced long-term running of all termites without stops necessary to perform vibratory behaviour. Surprisingly, even crushed worker heads led to low (but significant) increases in the alarm responses, suggesting that other unknown compound in the worker's head is perceived and answered by termites. Our results demonstrate the existence of different alarm levels in termites, with lower levels being communicated through vibratory signals, and higher levels causing general alarm or retreat being communicated through the alarm pheromone.
Zobrazit více v PubMed
Adams R. P. (2007). Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry (4th ed.). Ilinois, U.S.A: Allured Books.
Azevedo N. R., Ferri P. H., Seraphin J. C. and Brandão D. (2006). Chemical composition and intraspecific variability of the volatile constituents from the defensive secretion of Constrictotermes cyphergaster (Isoptera, Termitidae, Nasutitermitinae). Sociobiology 47, 891-902.
Baker R. and Walmsley S. (1982). Soldier defense secretions of the South American termites Cortaritermes silvestri, Nasutitermes sp N.D. and Nasutitermes kemneri. Tetrahedron 38, 1899-1910. 10.1016/0040-4020(82)80039-2 DOI
Baker R., Coles H. R., Edwards M., Evans D. A., Howse P. E. and Walmsley S. (1981). Chemical composition of the frontal gland secretion of Syntermes soldiers (Isoptera, Termitidae). J. Chem. Ecol. 7, 135-145. 10.1007/BF00988641 PubMed DOI
Baker R., Organ A. J., Prout K. and Jones R. (1984). Isolation of a novel triacetoxysecotrinervitane from the termite Constrictotermes cyphergaster (Termitidae, sub-family Nasutitermitinae). Tetrahedron Lett. 25, 579-580. 10.1016/S0040-4039(00)99943-X DOI
Bartelt R. J., Zilkowski B. W., Cossé A. A., Steelman C. D. and Singh N. (2009). Male-produced aggregation pheromone of the lesser meal-worm beetle Alphitobius diaperinus. J. Chem. Ecol. 35, 422-434. 10.1007/s10886-009-9611-y PubMed DOI
Bell W. J., Roth L. M. and Nalepa C. A. (2007). Cockroaches: Ecology, Behavior, and Natural History, pp. 152-153. Baltimore, USA: The Johns Hopkins University Press.
Blum M. S. (1981). Chemical defenses of arthropods. New York: Academic Press.
Blum M. S. (1969). Alarm pheromones. Annu. Rev. Entomol. 14, 57-80. 10.1146/annurev.en.14.010169.000421 DOI
Blum M. S. (1985). Alarm pheromones. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (ed. Kerkut G. A. and Gilbert L. I.), pp. 193-224. New York, USA: Pergamon Press.
Bourguignon T., Šobotník J., Lepoint G., Martin J.-M., Hardy O. J., Dejean A. and Roisin Y. (2011). Feeding ecology and phylogenetic structure of a complex Neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol. Entomol. 36, 261-269. 10.1111/j.1365-2311.2011.01265.x DOI
Bourguignon T., Lo N., Cameron S. L., Šobotník J., Hayashi Y., Shigenobu S., Watanabe D., Roisin Y., Miura T. and Evans T. A. (2015). The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32, 406-421. 10.1093/molbev/msu308 PubMed DOI
Cameron S. L., Lo N., Bourguignon T., Svenson G. J. and Evans T. A. (2012). A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades. Mol. Phylogenet. Evol. 65, 163-173. 10.1016/j.ympev.2012.05.034 PubMed DOI
Connétable S., Robert A. and Bordereau C. (1998). Role of head-banging in alarm communication in two fungus-growing termites: Pseudacanthotermes spiniger and P. militaris. Act. Colloq. Insect. S. 11, 117-124.
Connétable S., Robert A., Bouffault F. and Bordereau C. (1999). Vibratory alarm signals in two sympatric higher termite species: Pseudacanthotermes spiniger and P. militaris. J. Insect. Behav. 12, 329-342. 10.1023/A:1020887421551 DOI
Costa-Leonardo A. M. and Shields K. S. (1990). Morphology of the mandibular glands in workers of Constrictotermes cyphergaster (Silvestri) (Isoptera: Termitidae). Int. J. Insect. Morphol. Embryol. 19, 61-64. 10.1016/0020-7322(90)90030-S DOI
Crawley M. J. (2007). The R Book. London, U.K: John Wiley & Sons.
Cristaldo P. F., DeSouza O. Krasulová J., Jirošová A., Kutalová K., Lima E. R., Šobotník J. and Sillam-Dussès D. (2014). Mutual use of trail-following chemical cues by a termite host and its inquiline. PLoS ONE 9, e85315 10.1371/journal.pone.0085315 PubMed DOI PMC
Cunha H. F., Costa D. A., Espírito Santo-Filho K., Silva L. O. and Brandão D. (2003). Relationship between Constrictotermes cyphergaster and inquiline termites in the Cerrado (Isoptera: Termitidae). Sociobiology 42, 1-10.
Dani F. R., Morgan E. D., Jones G. R., Turillazzi S., Cervo R. and Francke W. (1998). Species-specific volatile substances in the venom sac of hover wasps. J. Chem. Ecol. 24, 1091-1104. 10.1023/A:1022358604352 DOI
Delattre O., Sillam-Dussès D., Jandák V., Brothánek M., Rücker K., Bourguignon T., Vytisková B., Cvačka J., Jiřiček O. and Šobotník J. (2015). Complex alarm strategy in the most basal termite species. Behav. Ecol. Sociobiol. (in press). 10.1007/s00265-015-2007-9 DOI
Deligne J., Quennedey A. and Blum M. (1981). The enemies and defence mechanisms of termites. In Social Insects (ed. Hermann H.), pp. 1-76. London, UK: Academic Press.
Donovan S. E., Eggleton P. and Bignell D. E. (2001). Gut content analysis and a new feeding group classification of termites. Ecol. Entomol. 26, 356-366. 10.1046/j.1365-2311.2001.00342.x DOI
Evans T. A., Lai J. C. S., Toledano E., McDowall L., Rakotonarivo S. and Lenz M. (2005). Termites assess wood size by using vibration signals. Proc. Natl. Acad. Sci. USA 102, 3732-3737. 10.1073/pnas.0408649102 PubMed DOI PMC
Evans T. A., Inta R., Lai J. C. S. and Lenz M. (2007). Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insect. Soc. 54, 374-382. 10.1007/s00040-007-0958-1 DOI
Evans T. A., Inta R., Lai J. C. S., Prueger S., Foo N. W., Fu E. W. and Lenz M. (2009). Termites eavesdrop to avoid competitors. Proc. R. Soc. B. Biol. Sci. 276, 4035-4041. 10.1098/rspb.2009.1147 PubMed DOI PMC
Goh S. H., Chuah C. H., Tho Y. P. and Prestwich G. D. (1984). Extreme intraspecific chemical variability in soldier defense secretions of allopatric and sympatric colonies of Longipeditermes longiceps. J. Chem. Ecol. 10, 929-944. 10.1007/BF00987974 PubMed DOI
Hager F. A. and Kirchner W. H. (2013). Vibrational and long-distance communication in the termites Macrotermes natalensis and Odontotermes sp. J. Exp. Biol. 216, 3249-3256. 10.1242/jeb.086991 PubMed DOI
Hertel H., Hanspach A. and Plarre R. (2011). Differences in alarm responses in drywood and subterranean termites (Isoptera: Kalotermitidae and Rhinotermitidae) to physical stimuli. J. Insect Behav. 24, 106-115. 10.1007/s10905-010-9240-x DOI
Hölldobler B. (1999). Multimodal signals in ant communication. J. Comp. Phisiol. A Sens. Neural Behav. Physiol. 184, 129-141. 10.1007/s003590050313 DOI
Hölldobler B. and Wilson E. O. (2009). The Superorganism. London, UK: WW Norton.
Holmgren N. (1909). Termitenstudien: 1. Anatomische Untersuchungen. K. Sven. Vetenskapsakad. Handl. 44, 31-215.
Howse P. E. (1962). The perception of vibration by the subgenual organ in Zootermopsis angusticollis Emerson and Periplaneta americana. Experientia 18, 457-458. 10.1007/BF02175857 DOI
Howse P. E. (1964). The significance of the sound produced by the termite Zootermopsis angusticollis (Hagen). Anim. Behav. 12, 284-300. 10.1016/0003-3472(64)90015-6 DOI
Howse P. E. (1965). On the significance of certain oscillatory movements of termites. Insect. Soc. 12, 335-345. 10.1007/BF02222723 DOI
Inta R., Lai J. C. S., Fu E. W. and Evans T. A. (2007). Termites live in a material world: exploration of their ability to differentiate between food sources. J. R. Soc. Interface 4, 735-744. 10.1098/rsif.2007.0223 PubMed DOI PMC
Inward D. J. G., Vogler A. P. and Eggleton P. (2007). A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol. 44, 953-967. 10.1016/j.ympev.2007.05.014 PubMed DOI
Keegans S. J., Billen J., Morgan E. D. and Gökcen O. A. (1993). Volatile glandular secretions of three species of new world army ants, Eciton burchelli, Labidus coecus, and Labidus praedator. J. Chem. Ecol. 19, 2705-2719. 10.1007/BF00980702 PubMed DOI
Kirchner W. H., Broecker I. and Tautz J. (1994). Vibrational alarm communication in the dampwood termite Zootermopsis nevadensis. Physiol. Entomol. 19, 187-190. 10.1111/j.1365-3032.1994.tb01041.x DOI
Krasulová J., Hanus R., Kutalová K., Šobotník J., Sillam-Dussès D., Tichý M. and Valterová I. (2012). Chemistry and anatomy of the frontal gland in soldiers of the Sand termite Psammotermes hybostoma. J. Chem. Ecol. 38, 557-565. 10.1007/s10886-012-0123-9 PubMed DOI
Kutalová K., Bourguignon T., Sillam-Dussès D., Hanus R., Roisin Y. and Šobotník J. (2013). Armed reproductives: evolution of the frontal gland in imagoes of Termitidae. Arthropod. Struct. Dev. 42, 339-348. 10.1016/j.asd.2013.04.001 PubMed DOI
Leis M., Angelini I., Sbrenna-Micciarelli A. and Sbrenna G. (1994). Further observations on intercaste communication in Kalotermes flavicollis: frequence of vibratory movements under different experimental conditions. Ethol. Ecol. Evol. 6, 11-16. 10.1080/03949370.1994.10721966 DOI
Lo N., Tokuda H., Watanabe H., Rose M., Slaytor K., Maekawa C., Bandi C. and Noda H. (2000). Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr. Biol. 10, 801-804. 10.1016/S0960-9822(00)00561-3 PubMed DOI
Lubin Y. D. and Montgomery G. G. (1981). Defenses of Nasutitermes termites (Isoptera, Termitidae) against Tamandua anteaters (Edenata, Myrmecophagidae). Biotropica 13, 66-76. 10.2307/2387872 DOI
Manser M. B. (2001). The acoustic structure of suricates’ alarm calls varies with predator type and the level of response urgency. Proc. R. Soc. B Biol. Sci. 268, 2315-2324. 10.1098/rspb.2001.1773 PubMed DOI PMC
Manser M. B. (2013). Semantic communication in vervet monkeys and other animals. Anim. Behav. 86, 491-496. 10.1016/j.anbehav.2013.07.006 DOI
Mathews A.G.A. (1977). Studies of termites from Mato Grosso State, Brazil. Rio de Janeiro, Brazil: Academia Brasileira de Ciências.
Miramontes O. and DeSouza O. (1996). The nonlinear dynamics of survival and social facilitation in Nasutitermes termites. J. Theor. Biol. 181, 373-380. 10.1006/jtbi.1996.0138 DOI
Moura F. M. S., Vasoncellos A., Araújo V. F. P. and Bandeira A. (2006). Feeding habitat of Constrictotermes cyphergaster (Isoptera, Termitidae) in an area of Caatinga, Notheast Brazil. Sociobiology 48, 373-380.
Noirot C. (1969). Glands and secretions. In Biology of Termites (ed. Krishna K. and Weesner F. M.), pp. 89-123. London, UK: Academic Press.
Noirot C. and Quennedey A. (1974). Fine structure of insect epidermal glands. Annu. Rev. Entomol. 19, 61-80. 10.1146/annurev.en.19.010174.000425 DOI
Perdereau E., Dedeine F., Christidès J.-P. and Bagnères A.-G. (2010). Variations in worker cuticular hydrocarbons and soldier isoprenoid defensive secretions within and among introduced and native populations of the subterranean termite, Reticulitermes flavipes. J. Chem. Ecol. 36, 1189-1198. 10.1007/s10886-010-9860-9 PubMed DOI
Pinheiro J. and Bates D. (2000). Mixed-effects models in S and S-plus. Springer-Verlag.
Prestwich G. D. (1984a). Defense mechanisms of termites. Annu. Rev. Entomol. 29, 201-232. 10.1146/annurev.en.29.010184.001221 DOI
Prestwich G. D. (1984b). Interspecific variation of diterpene composition of Cubitermes soldier defense secretions. J. Chem. Ecol. 10, 1219-1231. 10.1007/BF00988550 PubMed DOI
Quennedey A. (1984). Morphology and ultrastructure of termite defense glands. In Defensive Mechanisms in Social Insects (ed. Hermann H. R.), pp. 151-200. New York, USA: Praeger.
Quintana A., Reinhard J., Faure R., Uva P., Bagnéres A.-G., Massiot G. and Clemént J.-L. (2003). Interspecific variation in terpenoid composition of defensive secretions of European Reticulitermes termites. J. Chem. Ecol. 29, 639-652. 10.1023/A:1022868603108 PubMed DOI
R Development Core Team (2012). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, http://www.r-project.org/, ISBN: 3-900051-07-0.
Reinhard J. and Clément J.-L. (2002). Alarm reaction of European Reticulitermes termites to soldier head capsule volatiles (Isoptera, Rhinotermitidae). J. Insect Behav. 15, 95-107. 10.1023/A:1014436313710 DOI
Reinhard J., Quintana A., Sreng L. and Clément J. L. (2003). Chemical signals inducing attraction and alarm in European Reticulitermes termites (Isoptera, Rhinotermitidae). Sociobiology 42, 675-691.
Reynolds E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208-212. 10.1083/jcb.17.1.208 PubMed DOI PMC
Röhrig A., Kirchner W. H. and Leuthold R. H. (1999). Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae). Insect Soc. 46, 71-77. 10.1007/s000400050115 DOI
Roisin Y., Everaerts C., Pasteels J. M. and Bonnard O. (1990). Caste-dependent reactions to soldier defensive secretion and Chiral Alarm/Recruitment Pheromone in Nasutitermes princeps. J. Chem. Ecol. 16, 2865-2875. 10.1007/BF00979479 PubMed DOI
Santos C. A. and Costa-Leonardo A. M. (2006). Anatomy of the frontal gland and ultramorphology of the frontal tube in the soldier caste of species of Nasutitermitinae (Isoptera, Termitidae). Microsc. Res. Techniq. 69, 913-918. 10.1002/jemt.20365 PubMed DOI
Sbrenna G., Micciarelli A. S., Leis M. and Pavan G. (1992). Vibratory movements and sound production in Kalotermes flavicollis (Isoptera: Kalotermitidae). In Biology and Evolution of Social Insects (ed. Billen J.), pp. 23-238. Leuven, Belgium: Leuven University Press.
Shurin J. B. and Allen E. G. (2001). Effects of competition, predation, and dispersal on species richness at local and regional scales. Am. Nat. 158, 624-637. 10.1086/323589 PubMed DOI
Šobotník J., Hanus R., Kalinová B., Piskorski R., Cvačka J., Bourguignon T. and Roisin Y. (2008). (E,E)-α-Farnesene, an alarm pheromone of the termite Prorhinotermes canalifrons. J. Chem. Ecol. 34, 478-486. 10.1007/s10886-008-9450-2 PubMed DOI
Šobotník J., Jirošová A. and Hanus R. (2010a). Chemical warfare in termites. J. Insect Physiol. 56, 1012-1021. 10.1016/j.jinsphys.2010.02.012 PubMed DOI
Šobotník J., Bourguignon T., Hanus R., Sillam-Dussès D., Pflegerová J., Weyda F., Kutalová K., Vytisková B. and Roisin Y. (2010b). Not only soldiers have weapons: evolution of the frontal gland in imagoes of the termite families Rhinotermitidae and Serritermitidae. PLoS ONE 5, e15761 10.1371/journal.pone.0015761 PubMed DOI PMC
Šobotník J., Sillam-Dussès D., Weyda F., Dejean A., Roisin Y., Hanus R. and Bourguignon T. (2010c). The frontal gland in workers of Neotropical soldierless termites. Naturwissenschaften 97, 495-503. 10.1007/s00114-010-0664-0 PubMed DOI
Staddon B. W. (1990). Male sternal pheromone glands in Acanthosomatid shield bugs from Britain. J. Chem. Ecol. 16, 2195-2201. 10.1007/BF01026930 PubMed DOI
Stuart A. M. (1963). Studies of the communication of alarm in the termite Zootermopsis nevadensis (Hagen), Isoptera. Physiol. Zool. 36, 85-96.
Stuart A. M. (1988). Preliminary studies on the significance of head-banging movements in termites with special reference to Zootermopsis angusticollis (Hagen) (Isoptera: Hodotermitidae). Sociobiology 14, 49-60.
Valterová I., Křeček J. and Vrkoč J. (1988). Chemical composition of frontal gland secretion in soldiers of Velocitermes velox (Isoptera, Termitidae). Acta Entomol. Bohemos. 85, 241-248.
Valterová I., Křeček J. and Vrkoč J. (1989). Intraspecific variation in the defence secretions of Nasutitermes ephratae soldiers and the biological activity of some of their components. Biochem. Syst. Ecol. 17, 327-332. 10.1016/0305-1978(89)90013-6 DOI
Vrkoč J., Křeček J. and Hrdý I. (1978). Monoterpenic alarm pheromones in two Nasutitermes species. Acta Entomol. Bohemos. 75, 1-8.
Yatsynin V. G., Rubanova E. V. and Okhrimenko N. V. (1996). Identification of female-produced sex pheromones and their geographical differences in pheromone gland extract composition from click beetles (Col., Elateridae). J. Appl. Entomol. 120, 463-466. 10.1111/j.1439-0418.1996.tb01636.x DOI
Alarm communication predates eusociality in termites