Glucocorticoids are potent anti-inflammatory drugs, although their use is associated with severe side effects. Loading glucocorticoids into suitable nanocarriers can significantly reduce these undesirable effects. Macrophages play a crucial role in inflammation, making them strategic targets for glucocorticoid-loaded nanocarriers. The main objective of this study is to develop a glucocorticoid-loaded PLGA nanocarrier specifically targeting liver macrophages, thereby enabling the localized release of glucocorticoids at the site of inflammation. Dexamethasone acetate (DA)-loaded PLGA nanospheres designed for passive macrophage targeting are synthesized using the nanoprecipitation method. Two types of PLGA NSs in the size range of 100-300 nm are prepared, achieving a DA-loading efficiency of 19 %. Sustained DA release from nanospheres over 3 days is demonstrated. Flow cytometry analysis using murine bone marrow-derived macrophages demonstrates the efficient internalization of fluorescent dye-labeled PLGA nanospheres, particularly into pro-inflammatory macrophages. Significant down-regulation in pro-inflammatory cytokine genes mRNA is observed without apparent cytotoxicity after treatment with DA-loaded PLGA nanospheres. Subsequent experiments in mice confirm liver macrophage-specific nanospheres accumulation following intravenous administration using in vivo imaging, flow cytometry, and fluorescence microscopy. Taken together, the data show that the DA-loaded PLGA nanospheres are a promising drug-delivery system for the treatment of inflammatory liver diseases.
- MeSH
- Anti-Inflammatory Agents pharmacology chemistry MeSH
- Dexamethasone * pharmacology chemistry analogs & derivatives MeSH
- Liver * drug effects metabolism MeSH
- Polylactic Acid-Polyglycolic Acid Copolymer * chemistry MeSH
- Macrophages * drug effects metabolism MeSH
- Mice MeSH
- Nanospheres * chemistry MeSH
- Drug Carriers chemistry pharmacology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Cholinesterases, specifically acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), play critical roles in neurotransmission and are key targets for inhibitors with therapeutic and toxicological significance. This review focuses on the development and application of fluorometric and colorimetric biosensors for the detection of cholinesterase inhibitors. These biosensors take advantage of the unique properties of AChE and BChE to provide sensitive and selective detection methods essential for environmental monitoring, food safety, and clinical diagnostics. Recent advances in assay techniques, including the use of gold nanoparticles, pseudoperoxidase nanomaterials, and innovative enzyme-substrate interactions, are highlighted. This review also discusses challenges and future directions for optimizing these biosensors for practical applications, emphasizing their potential to enhance public health and safety.
- MeSH
- Acetylcholinesterase chemistry metabolism MeSH
- Biosensing Techniques * methods MeSH
- Butyrylcholinesterase chemistry metabolism MeSH
- Cholinesterase Inhibitors * analysis MeSH
- Fluorometry * methods MeSH
- Colorimetry * methods MeSH
- Metal Nanoparticles chemistry MeSH
- Humans MeSH
- Gold chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Mikrobiom střeva hraje klíčovou roli v dlouhodobém fyzickém i psychickém zdraví člověka. Jeho vhodné složení během počáteční kolonizace gastrointestinálního traktu novorozenců s dostatečným zastoupením taxonů s komenzálním či probiotickým potenciálem je zásadní pro obranu před infekcemi a správný vývoj imunitního systému. Enterobakterie tvoří nedílnou součást střevní mikrobioty a mají klíčovou úlohu v počáteční kolonizaci střeva novorozence. Zároveň se jedná o potenciální patogeny, které mohou způsobovat závažné infekce. V článku jsou popsány funkce enterobakterií v mikrobiotě kojenců, rizika spojená s jejich nadměrnou přítomností a strategie prevence infekcí. Dále jsou diskutovány faktory ovlivňující formování mikrobioty u dětí, včetně způsobu porodu a vlivu antibiotik. Výzkumy ukazují, že podpora přirozeného porodu, kojení a použití probiotik mohou pozitivně ovlivnit střevní mikrobiotu a eliminovat potenciální rizika spojená s enterobakteriemi. Článek poskytuje přehled současných poznatků o enterobakteriích v mikrobiotě kojenců a zdůrazňuje potřebu dalšího výzkumu a sdílení nových poznatků v klinické praxi, aby byl zajištěn zdravý vývoj dětí.
The gut microbiome plays a key role in a person's long-term physical and psychological health. Its appropriate composition during the initial colonization of the gastrointestinal tract of newborns with the sufficient representation of the taxa with commensal or probiotic potential is essential for defence against infections and proper development of the immune system. Enterobacteria form an integral part of the intestinal microbiota and play a vital role in the initial colonization of the newborn gut. At the same time, these are potential pathogens that can cause serious infections. This article describes the functions of enterobacteria in the microbiota of infants, the risks associated with their excessive presence, and strategies for preventing infections. Furthermore, factors affecting microbiota formation in children are discussed, including the delivery method and the effect of antibiotics. Research shows that promoting natural childbirth, breastfeeding, and probiotic use can positively influence the gut microbiota and eliminate potential risks associated with enterobacteria. The article provides an overview of current knowledge about enterobacteria in the microbiota of infants and highlights the need for further research and the sharing of new knowledge in clinical practice to ensure the healthy development of children.
- MeSH
- Enterobacteriaceae * immunology MeSH
- Enterovirus Infections immunology microbiology MeSH
- Hygiene MeSH
- Breast Feeding MeSH
- Humans MeSH
- Microbiota * immunology MeSH
- Infant, Newborn, Diseases immunology metabolism MeSH
- Infant, Newborn MeSH
- Natural Childbirth MeSH
- Probiotics MeSH
- Check Tag
- Humans MeSH
- Infant, Newborn MeSH
The ReAct (Recovery, Activity) project is an ENFSI (European Network of Forensic Science Institutes) supported initiative comprising a large consortium of laboratories. Here, the results from more than 23 laboratories are presented. The primary purpose was to design experiments simulating typical casework circumstances; collect data and to implement Bayesian networks to assess the value (i.e., likelihood ratio) of DNA results given activity level propositions. Two different experimental designs were used to simulate a robbery, where a screwdriver was used to force a door or window. Propositions and case information were chosen following laboratory feedback listing typical casework circumstances (included in the paper). In a direct transfer experiment, the defendant owned and used the screwdriver, but he did not force the door/window in question. An unknown person used the defendant's stolen screwdriver. In an indirect transfer experiment, the defendant neither owned, saw, nor used the screwdriver, nor did they force the door or window. For the second experiment, given the defence view, the defendant never held the screwdriver. We envisaged the situation where an object manipulated by the defendant (or the defendant himself/herself) would be touched by the unknown offender who would then force the window. It was found for the direct transfer experiment that unless a single contributor profile aligning with the known person's of interest profile was retrieved, the results did not allow to discriminate between propositions. On the other hand, for the indirect transfer experiment, both single and major contributor profiles that aligned with the person of interest (POI) supported the proposition that the person used the tool rather than an unknown person who had touched an object, when indeed the former was true. There was considerable variation in median recoveries of DNA between laboratories (between 200pg-5ng) for a given experiment if quantities are taken into account. These differences affect the likelihood ratios given activity level propositions. More than 2700 samples were analysed in the course of this study. Two different Bayesian Networks are made available via an open source application written in Shiny R: Shiny_React(). For comparison, all datasets were analysed using a qualitative method categorised into absent, single, major or other given contributors. The importance of standardising methods is emphasised, alongside the necessity of developing new approaches to assign the probability of laboratory-dependent DNA recovery. Freely accessible open databases play a crucial role in supporting these efforts.
- MeSH
- Bayes Theorem * MeSH
- DNA Fingerprinting * MeSH
- DNA * genetics MeSH
- Laboratories * MeSH
- Humans MeSH
- Microsatellite Repeats MeSH
- Likelihood Functions MeSH
- Forensic Genetics methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Acute lymphoblastic leukemia (ALL) is the most common childhood hematological malignancy, but it also affects adult patients with worse prognosis and outcomes. Leukemic cells benefit from protective mechanisms, which are mediated by intercellular signaling molecules - cytokines. Through these signals, cytokines modulate the biology of leukemic cells and their surroundings, enhancing the proliferation, survival, and chemoresistance of the disease. This ultimately leads to disease progression, refractoriness, and relapse, decreasing the chances of curability and overall survival of the patients. Targeting and modulating these pathological processes without affecting the healthy physiology is desirable, offering more possibilities for the treatment of ALL patients, which still remains unsatisfactory in certain cases. In this review, we comprehensively analyze the existing literature and ongoing trials regarding the role of chemokines and interleukins in the biology of ALL. Focusing on the functional pathways, genetic background, and critical checkpoints, we constructed a summary of molecules that are promising for prognostic stratification and mainly therapeutic use. Targeted therapy, including chemokine and interleukin pathways, is a new and promising approach to the treatment of cancer. With the expansion of our knowledge, we are able to uncover a spectrum of new potential checkpoints in order to modulate the disease biology. Several cytokine-related targets are advancing toward clinical application, offering the hope of higher disease response rates to treatment.
- MeSH
- Precursor Cell Lymphoblastic Leukemia-Lymphoma * drug therapy immunology metabolism pathology MeSH
- Chemokines * metabolism immunology MeSH
- Interleukins * metabolism immunology MeSH
- Humans MeSH
- Prognosis MeSH
- Signal Transduction MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Systematic Review MeSH
Background/Objectives: This retrospective study analyzed soluble urokinase plasminogen activator receptor (suPAR) plasma levels alongside routine inflammatory markers, including the neutrophil-to-lymphocyte count ratio, C-reactive protein (CRP), interleukin-6 (IL-6), procalcitonin (PCT), and D-dimers in COVID-19 patients hospitalized during the Omicron wave of the pandemic. Methods: We measured plasma suPAR levels using a suPARnostic® Quick Triage kit. We divided COVID-19 patients into two groups based on the severity of SARS-CoV-2 infection according to the National Institutes of Health (NIH) criteria. The logistic regression analysis tested the predictive value of the biomarkers. Results: We evaluated 160 consecutive COVID-19 patients hospitalized between January and August 2022. The cohort exhibited a high incidence of comorbidities, with an in-hospital mortality rate of 5.6%. Upon admission, the median suPAR plasma levels were not significantly different between patients with mild COVID-19 (n = 110) and those with moderate/severe disease (n = 50), with 7.25 ng/mL and 7.55 ng/mL, respectively. We observed significant differences (p < 0.01) between the groups for CRP and IL-6 levels that were higher in moderate/severe disease than in mild infection. Additionally, suPAR plasma levels were above the normal range (0-2.00 ng/mL) in all patients, with a significant positive correlation identified between suPAR levels and serum IL-6, PCT, and creatinine levels. Conclusions: These findings indicate that COVID-19 during the Omicron wave is strongly associated with elevated suPAR levels; however, these levels do not directly correlate with the severity of SARS-CoV-2 infection.
- Publication type
- Journal Article MeSH
Species belonging to the Mycobacterium kansasii complex (MKC) are frequently isolated from humans and the environment and can cause serious diseases. The most common MKC infections are caused by the species M. kansasii (sensu stricto), leading to tuberculosis-like disease. However, a broad spectrum of virulence, antimicrobial resistance and pathogenicity of these non-tuberculous mycobacteria (NTM) are observed across the MKC. Many genomic aspects of the MKC that relate to these broad phenotypes are not well elucidated. Here, we performed genomic analyses from a collection of 665 MKC strains, isolated from environmental, animal and human sources. We inferred the MKC pangenome, mobilome, resistome, virulome and defence systems and show that the MKC species harbours unique and shared genomic signatures. High frequency of presence of prophages and different types of defence systems were observed. We found that the M. kansasii species splits into four lineages, of which three are lowly represented and mainly in Brazil, while one lineage is dominant and globally spread. Moreover, we show that four sub-lineages of this most distributed M. kansasii lineage emerged during the twentieth century. Further analysis of the M. kansasii genomes revealed almost 300 regions of difference contributing to genomic diversity, as well as fixed mutations that may explain the M. kansasii's increased virulence and drug resistance.
- MeSH
- Mycobacterium Infections, Nontuberculous * microbiology MeSH
- Phylogeny * MeSH
- Genome, Bacterial * MeSH
- Genomics * MeSH
- Humans MeSH
- Mycobacterium kansasii * genetics classification isolation & purification MeSH
- Virulence genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Viral infection may represent a stress condition to the host cell. Cells react to it by triggering the defence programme to restore homeostasis and these events may in turn impact the viral replication. The knowledge about tick-borne encephalitis virus (TBEV) infection-associated stress is limited. Here we investigated the interplay between TBEV infection and stress pathways in PMJ2-R mouse macrophage cell line, as macrophages are the target cells in early phases of TBEV infection. First, to determine how stress influences TBEV replication, the effect of stress inducers H2O2 and tunicamycin (TM) was tested. Viral multiplication was decreased in the presence of both stress inducers suggesting that the stress and cellular stress responses restrict the virus replication. Second, we investigated the induction of oxidative stress and endoplasmic reticulum (ER) stress upon TBEV infection. The level of oxidative stress was interrogated by measuring the reactive oxygen species (ROS). ROS were intermittently increased in infected cells at 12 hpi and at 72 hpi. As mitochondrial dysfunction may result in increased ROS level, we evaluated the mitochondrial homeostasis by measuring the mitochondrial membrane potential (MMP) and found that TBEV infection induced the hyperpolarization of MMP. Moreover, a transient increase of gene expression of stress-induced antioxidative enzymes, like p62, Gclm and Hmox1, was detected. Next, we evaluated the ER stress upon TBEV infection by analysing unfolded protein responses (UPR). We found that infection induced gene expression of two general sensors BiP and CHOP and activated the IRE1 pathway of UPR. Finally, since the natural transmission route of TBEV from its tick vector to the host is mediated via tick saliva, the impact of tick saliva from Ixodes ricinus on stress pathways in TBEV-infected cells was tested. We observed only marginal potentiation of UPR pathway. In conclusion, we found that TBEV infection of PMJ2-R cells elicits the changes in redox balance and triggers cellular stress defences, including antioxidant responses and the IRE1 pathway of UPR. Importantly, our results revealed the negative effect of stress-evoked events on TBEV replication and only marginal impact of tick saliva on stress cellular pathways.
- MeSH
- Cell Line MeSH
- Encephalitis, Tick-Borne * MeSH
- Mice MeSH
- Hydrogen Peroxide metabolism MeSH
- Protein Serine-Threonine Kinases metabolism MeSH
- Reactive Oxygen Species metabolism MeSH
- Virus Replication MeSH
- Encephalitis Viruses, Tick-Borne * genetics MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND AND PURPOSE: Dysfunction of the airway defence system in Huntington's disease (HD) is a significant but often overlooked problem. Although expiratory muscle strength training (EMST) is frequently utilized in cough effectiveness treatment, its specific impact in HD patients has not yet been explored. This study investigated the effects of EMST on voluntary peak cough flow (vPCF) in HD patients and evaluated the retention of potential gains post-intervention. METHODS: In this prospective case-controlled trial, 29 HD patients completed an 8-week wait-to-start period, which served to identify the natural development of expiratory muscle strength and vPCF. This was followed by 8 weeks of EMST training and an additional 8 weeks of follow-up. The study's outcome parameters, vPCF and maximum expiratory pressure (MEP), were measured against those of age- and sex-matched healthy controls. RESULTS: Huntington's disease patients had significantly lower MEP (p < 0.001) and vPCF (p = 0.012) compared to healthy controls at baseline. Following the EMST, significant improvements in MEP (d = 1.39, p < 0.001) and vPCF (d = 0.77, p = 0.001) were observed, with HD patients reaching the cough performance levels of healthy subjects. However, these gains diminished during the follow-up, with a significant decline in vPCF (d = -0.451, p = 0.03) and in MEP (d = -0.71; p = 0.002). CONCLUSIONS: Expiratory muscle strength training improves expiratory muscle strength and voluntary cough effectiveness in HD patients, but an ongoing maintenance programme is necessary to sustain the improvements.
- MeSH
- Breathing Exercises methods MeSH
- Adult MeSH
- Respiratory Muscles * physiopathology MeSH
- Huntington Disease * physiopathology complications rehabilitation MeSH
- Cough * physiopathology etiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Resistance Training methods MeSH
- Prospective Studies MeSH
- Case-Control Studies MeSH
- Muscle Strength * physiology MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Francisella is a highly infectious gram-negative bacterium that causes tularemia in humans and animals. It can survive and multiply in a variety of cells, including macrophages, dendritic cells, amoebae, and arthropod-derived cells. However, the intracellular life cycle of a bacterium varies depending on the cell type. Shortly after the infection of mammalian cells, the bacterium escapes the phagosome into the cytosol, where it replicates. In contrast, in the amoebae Acanthamoeba castellanii and Hartmannella vermiformis, the bacterium replicates within the membrane-bound vacuole. In recent years, the amoeba Dictyostelium discoideum has emerged as a powerful model to study the intracellular cycle and virulence of many pathogenic bacteria. In this study, we used D. discoideum as a model for the infection and isolation of Francisella novicida-containing vacuoles (FCVs) formed after bacteria invade the amoeba. Our results showed that F. novicida localized in a vacuole after invading D. discoideum. Here, we developed a method to isolate FCV and determined its composition by proteomic analyses. Proteomic analyses revealed 689 proteins, including 13 small GTPases of the Rab family. This is the first evidence of F. novicida-containing vacuoles within amoeba, and this approach will contribute to our understanding of host-pathogen interactions and the process of pathogen vacuole formation, as vacuoles containing bacteria represent direct contact between pathogens and their hosts. Furthermore, this method can be translocated on other amoeba models.
- Publication type
- Journal Article MeSH