Tailocins are nano-scale phage tail-like protein complexes that can mediate antagonistic interactions between closely related bacterial species. While the capacity to produce R-type tailocin was found widely across Gammaproteobacteria, the production of F-type tailocins seems comparatively rare. In this study, we examined the freshwater isolate, Pragia fontium 24613, which can produce both R- and F-type tailocins. We investigated their inhibition spectrum, focusing on clinically relevant enterobacteria, and identified the associated tailocin gene cluster. Transmission electron microscopy confirmed that inactivation of the tape measure protein within the tailocin cluster disrupted R-tailocin production. Comparative analysis of Budviciaceae gene clusters showed high conservation of R-type tailocin genes, whereas F-type tailocin genes were found in only a few species, with little conservation. Our findings indicate a high prevalence of bacteriocin production among underexplored Enterobacteriales species. Detected tailocins showed potential as antimicrobials targeting clinically significant pathogens.
The spread of multidrug-resistant Escherichia coli in healthcare facilities is a global challenge. Hospital-acquired infections produced by Escherichia coli include gastrointestinal, blood-borne, urinary tract, surgical sites, and neonatal infections. Therefore, novel approaches are needed to deal with this pathogen and its rising resistance. The concept of attenuating virulence factors is an alternative strategy that might lead to low levels of resistance and combat this pathogen. A sub-inhibitory concentration (1⁄4 MIC) of sitagliptin and nitazoxanide was used for phenotypic assessments of Escherichia coli virulence factors such as biofilm production, swimming motility, serum resistance, and protease production. Moreover, qRT-PCR was used to determine the impact of sub-MIC of the tested drugs on the relative expression levels of papC, fimH, fliC, kpsMTII, ompT_m, and stcE genes encoding virulence factors in Escherichia coli. Also, an in vivo model was conducted as a confirmatory test. Phenotypically, our findings demonstrated that the tested strains showed a significant decrease in all the tested virulence factors. Moreover, the genotypic results showed a significant downregulation in the relative expression levels of all the tested genes. Besides, the examined drugs were found to be effective in protecting mice against Escherichia coli pathogenesis. Sitagliptin and nitazoxanide exhibited strong anti-virulence activities against Escherichia coli. In addition, it is recommended that they might function as adjuvant in the management of Escherichia coli infections with either conventional antimicrobial agents or alone as alternative treatment measures.
- MeSH
- Anti-Bacterial Agents * pharmacology MeSH
- Biofilms drug effects MeSH
- Nitro Compounds MeSH
- Escherichia coli * drug effects pathogenicity genetics MeSH
- Virulence Factors genetics metabolism MeSH
- Escherichia coli Infections * drug therapy microbiology MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Drug Resistance, Multiple, Bacterial MeSH
- Mice MeSH
- Escherichia coli Proteins genetics MeSH
- Sitagliptin Phosphate * pharmacology MeSH
- Thiazoles * pharmacology MeSH
- Virulence drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Escherichia coli is a significant pathogen in extraintestinal infections, and ESBL-producing E. coli poses a major clinical challenge due to its antibiotic resistance. This study comprehensively analyzed E. coli isolates from urine and blood samples of patients with urinary tract and bloodstream infections at three major tertiary hospitals in South Korea. The goal was to provide insights into the distribution, antibiotic resistance, and virulence factors of these strains. Our analysis identified CTX-M and TEM as the dominant ESBL types, found in 71.7% and 61.7% of isolates, respectively, with 46.7% showing co-occurrence. Multilocus sequence typing (MLST) revealed the predominance of high-risk clones such as ST131, ST69, ST73, and ST95, with rare sequence types like ST410 and ST405 also identified. The high prevalence of virulence factors, including iutA (80.8%) and kpsMII (74.2%), further highlights the complexity of these strains. In addition, 38.3% of clinical isolates contained a combination of siderophore, adhesin, protectin, and toxin-related genes. There was no significant difference between urinary tract and bloodstream infections or regional differentiation in Korea. This study highlights the importance of controlling ESBL-producing E. coli infections, especially given the increasing incidence among patients with underlying medical conditions and older adults who are more susceptible to urinary tract infections. These findings serve as valuable indicators for pathogen analysis, especially those harboring antibiotic resistance and toxin genes. The insights gained are expected to contribute significantly to the development of infectious disease prevention and control strategies.
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Bacteremia * microbiology epidemiology MeSH
- beta-Lactamases * genetics metabolism MeSH
- Adult MeSH
- Escherichia coli * genetics isolation & purification pathogenicity enzymology drug effects classification MeSH
- Virulence Factors genetics MeSH
- Urinary Tract Infections * microbiology epidemiology MeSH
- Escherichia coli Infections * microbiology epidemiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Young Adult MeSH
- Multilocus Sequence Typing MeSH
- Prevalence MeSH
- Escherichia coli Proteins genetics metabolism MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Virulence MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Republic of Korea MeSH
In 2019, Pantoea piersonii was initially isolated from the interior surfaces of the International Space Station. This microorganism is a species within the genus Pantoea in the family Erwiniaceae, belonging to the order Enterobacterales. Recent literature has documented four cases of its isolation. Despite initial predictions suggesting the non-pathogenicity of P. piersonii strains, evidence from observed cases indicates potential pathogenicity. According to documented evidence in the literature, this microorganism is capable of causing severe and life-threatening conditions, including sepsis. Traditional tests, as well as automated systems, may fail to provide complete differentiation due to these similarities. While MALDI-TOF MS is a valuable tool for identification in clinical diagnostic microbiology, sequencing may be necessary for precise identification. To determine the antibiotic susceptibility profile, various methods can be utilized, including minimum inhibitory concentration determination, disk diffusion testing (Kirby-Bauer test), genotypic resistance assays (PCR and sequencing), and automated systems. The literature reports a limited number of cases associating P. piersonii with human infection. This study contributes to this body of knowledge by reporting a novel case in which P. piersonii was isolated from a tissue sample for the first time. In this case report, the patient achieved recovery following the administration of appropriate antibiotic treatment based on the diagnosis. It underscores the need for precise identification and understanding of its pathogenicity.
- MeSH
- Anti-Bacterial Agents * pharmacology therapeutic use MeSH
- Enterobacteriaceae Infections * microbiology diagnosis drug therapy MeSH
- Humans MeSH
- Microbial Sensitivity Tests * MeSH
- Pantoea * isolation & purification genetics pathogenicity MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
Feruloyl esterases (FAEs) are a crucial component of the hemicellulose-degrading enzyme family that facilitates the degradation of lignocellulose while releasing hydroxycinnamic acids such as ferulic acid with high added value. Currently, the low enzyme yield of FAEs is one of the primary factors limiting its application. Therefore, in this paper, we optimized the fermentation conditions for the expression of FAE BpFaeT132C-D143C with excellent thermal stability in Escherichia coli by experimental design. Firstly, we explored the effects of 11 factors such as medium type, isopropyl-β-D-thiogalactopyranoside (IPTG) concentration, and inoculum size on BpFaeT132C-D143C activity separately by the single factor design. Then, the significance of the effects of seven factors, such as post-induction temperature, shaker rotational speed, and inoculum size on BpFaeT132C-D143C activity, was analyzed by Plackett-Burman design. We identified the main factors affecting the fermentation conditions of E. coli expressing BpFaeT132C-D143C as post-induction temperature, pre-induction period, and post-induction period. Finally, we used the steepest ascent path design and response surface method to optimize the levels of these three factors further. Under the optimal conditions, the activity of BpFaeT132C-D143C was 3.58 U/ml, which was a significant 6.6-fold increase compared to the pre-optimization (0.47 U/ml), demonstrating the effectiveness of this optimization process. Moreover, BpFaeT132C-D143C activity was 1.52 U/ml in a 3-l fermenter under the abovementioned optimal conditions. It was determined that the expression of BpFaeT132C-D143C in E. coli was predominantly intracellular in the cytoplasm. This study lays the foundation for further research on BpFaeT132C-D143C in degrading agricultural waste transformation applications.
- MeSH
- Escherichia coli * genetics metabolism enzymology MeSH
- Fermentation * MeSH
- Isopropyl Thiogalactoside metabolism MeSH
- Carboxylic Ester Hydrolases * genetics metabolism chemistry biosynthesis MeSH
- Culture Media chemistry MeSH
- Coumaric Acids metabolism MeSH
- Lignin MeSH
- Recombinant Proteins genetics metabolism biosynthesis chemistry MeSH
- Enzyme Stability MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
Biopriming seeds with beneficial bacteria has potential to enhance seed germination. Therefore, in this investigation, five sulphur-oxidizing bacterial cultures, viz., Pantoea dispersa SOB2, Bacillus velezensis SN06, Bacillus cereus SN20, Bacillus tropicus SN16, and Bacillus megaterium SN11, were evaluated for different plant growth-promoting traits and their impact on Vigna radiata L. (mung bean) and Brassica juncea L. (mustard) seed germination. Among these, three bacterial cultures Pantoea dispersa SOB2, Bacillus velezensis SN06, and Bacillus megaterium SN11 evinced potential for mineral solubilization on solid medium where Pantoea dispersa SOB2 had the maximum solubilization indices-3.06, 5.14, and 2.48 for phosphate, zinc, and potassium respectively. The culture also displayed higher indole acetic acid (113.12 μg/mL), gibberellic acid (162.66 μg/mL), ammonia (5.23 μg/mL), and siderophore (69.53%) production than other bacterial cultures whereas Bacillus cereus SN20 showed maximum exopolysaccharide production (9.26 g/L). Bacterial culture Pantoea dispersa SOB2 significantly ameliorated the germination rate (3.73 no./day) and relative seed germination (208%) of Brassica juncea L., while Bacillus velezensis SN06 and Bacillus cereus SN20 followed with germination rate and relative seed germination of 2.86 no./day and 207%, respectively. Pantoea dispersa SOB2 displayed lowest mean germination time 2.91 days followed by Bacillus megaterium SN11 with 3.19 days. Biopriming with sulphur-oxidizing bacterial cultures, germination parameters of Vigna radiata L. were also markedly improved. Pantoea dispersa SOB2 demonstrated the highest germination rate (6.72 no./day), relative seed germination (115.56%), and minimum mean generation time (1.73 days). Bacillus velezensis SN06 inoculation had a beneficial effect on the seedling growth of Vigna radiata L., whereas Pantoea dispersa SOB2 greatly aided the seedling growth of Brassica juncea L. Results corroborated a prominent positive correlation between seed germination and plant growth-promoting traits. This is the first study on Pantoea dispersa as sulphur oxidizer, displaying plant growth promoting traits and seed germination potential. The potent sulphur-oxidizing bacterial cultures possessing plant growth promoting activities enhanced seed germination under in vitro conditions that could be further explored in field as biofertilizers to enhance the growth and yield of Brassica juncea L. and Vigna radiata L. crop.
- MeSH
- Bacillus * metabolism MeSH
- Bacteria * metabolism MeSH
- Mustard Plant * growth & development microbiology MeSH
- Germination * MeSH
- Indoleacetic Acids metabolism MeSH
- Oxidation-Reduction MeSH
- Pantoea metabolism MeSH
- Plant Growth Regulators metabolism MeSH
- Seeds * microbiology growth & development MeSH
- Sulfur * metabolism MeSH
- Vigna * growth & development microbiology MeSH
- Publication type
- Journal Article MeSH
Foodborne diseases triggered by various infectious micro-organisms are contributing significantly to the global disease burden as well as to increasing mortality rates. Salmonella enterica belongs to the most prevalent form of bacteria accountable for significant burden of foodborne illness across the globe. The conventional therapeutic approach to cater to Salmonella enterica-based infections relies on antibiotic therapy, but the rapid emergence of the antibiotic resistance strains of Salmonella sp. necessitates the development of alternative treatment and prevention strategies. In light of this growing concern, the scientific community is rigorously exploring novel phytochemicals harnessed from medicinally important plants as a promising approach to curb Salmonella enterica infections. A variety of phytochemicals belonging to alkaloids, phenols, flavonoid, and terpene classes are reported to exhibit their inhibitory activity against bacterial cell communication, membrane proteins, efflux pumps, and biofilm formation among drug resistant Salmonella strains. The present review article delves to discuss the emergence of antibiotic resistance among Salmonella enterica strains, various plant sources, identification of phytochemicals, and the current state of research on the use of phytochemicals as antimicrobial agents against Salmonella enterica, shedding light on the promising potential of phytochemicals in the fight against this pathogen.
- MeSH
- Anti-Bacterial Agents * pharmacology MeSH
- Drug Resistance, Bacterial MeSH
- Phytochemicals * pharmacology chemistry MeSH
- Humans MeSH
- Foodborne Diseases microbiology prevention & control drug therapy MeSH
- Salmonella enterica * drug effects MeSH
- Salmonella Infections * microbiology drug therapy MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The objective of this study was to characterize the virulence characteristics of a collection of Klebsiella pneumoniae isolates collected from different clinical sources. A collection of 60 non-repetitive K. pneumoniae isolates, was studied. In vitro, virulence was analyzed by testing the survival of bacteria in pooled human serum. Isolates were typed by MLST. The genomes of 23 K. pneumoniae isolates, representatives of different STs and virulence profiles, were completely sequenced using the Illumina platform. Of note, 26/60 of K. pneumoniae isolates were resistant to killing by complement. Serum-resistant isolates belonged to distinct STs. Analysis of WGS data with VFDB showed the presence of several virulence genes related various virulence functions. Specifically, serum-resistant isolates carried a higher number of ORFs, which were associated with serum resistance, compared to serum-sensitive isolates. Additionally, analysis of WGS data showed the presence of multiple plasmid replicons that could be involved with the spread and acquisition of resistance and virulence genes. In conclusion, analysis of virulence characteristics showed that an important percentage (31.6%) of K. pneumoniae isolates were in vitro virulent by exhibiting resistance to serum. Thus, the presence of several virulence factors, in combination with the presence of multidrug resistance, could challenge antimicrobial therapy of infections caused by such bacteria.
- MeSH
- Virulence Factors * genetics MeSH
- Genome, Bacterial MeSH
- Klebsiella Infections * microbiology genetics MeSH
- Klebsiella pneumoniae * genetics pathogenicity isolation & purification MeSH
- Humans MeSH
- Multilocus Sequence Typing MeSH
- Hospitals MeSH
- Plasmids genetics MeSH
- Whole Genome Sequencing MeSH
- Virulence genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Greece MeSH
Článek se zabývá stručným popisem zdravotních problémů, na něž má vliv výživa. Nejčastějšími zdravotními problémy králíků se vztahem k výživě jsou onemocnění gastrointestinálního traktu (trichobezoáry, enteritidy, enterotoxemie), obezita a syndrom onemocnění dentice (a s tím související problémy). Na tyto problémy pak navazují další problémy a změny chování králíků. V závěru je stručně uvedeno správné složení krmné dávky králíků v zájmovém chovu.
The article deals with a description of the health problems affected by nutrition. The most common nutrition-related health problems in rabbits are gastrointestinal diseases (trichobezoars, enteritis, enterotoxaemia), obesity and dentition syndrome (and related problems). These problems are then followed by other problems and behavioural changes in rabbits. In conclusion, the correct composition of rabbit diets for pet rabbits is briefly outlined.
- MeSH
- Animal Husbandry MeSH
- Enteropathogenic Escherichia coli MeSH
- Protein-Losing Enteropathies etiology veterinary MeSH
- Animal Nutritional Physiological Phenomena MeSH
- Rabbits MeSH
- Digestive System Diseases * etiology veterinary MeSH
- Animal Diseases * MeSH
- Animal Welfare MeSH
- Diet, Plant-Based MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Animals MeSH
- Publication type
- Review MeSH