Small RNAs as Fundamental Players in the Transference of Information During Bacterial Infectious Diseases

. 2020 ; 7 () : 101. [epub] 20200616

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32613006

Communication shapes life on Earth. Transference of information has played a paramount role on the evolution of all living or extinct organisms since the appearance of life. Success or failure in this process will determine the prevalence or disappearance of a certain set of genes, the basis of Darwinian paradigm. Among different molecules used for transmission or reception of information, RNA plays a key role. For instance, the early precursors of life were information molecules based in primitive RNA forms. A growing field of research has focused on the contribution of small non-coding RNA forms due to its role on infectious diseases. These are short RNA species that carry out regulatory tasks in cis or trans. Small RNAs have shown their relevance in fine tuning the expression and activity of important regulators of essential genes for bacteria. Regulation of targets occurs through a plethora of mechanisms, including mRNA stabilization/destabilization, driving target mRNAs to degradation, or direct binding to regulatory proteins. Different studies have been conducted during the interplay of pathogenic bacteria with several hosts, including humans, animals, or plants. The sRNAs help the invader to quickly adapt to the change in environmental conditions when it enters in the host, or passes to a free state. The adaptation is achieved by direct targeting of the pathogen genes, or subversion of the host immune system. Pathogens trigger also an immune response in the host, which has been shown as well to be regulated by a wide range of sRNAs. This review focuses on the most recent host-pathogen interaction studies during bacterial infectious diseases, providing the perspective of the pathogen.

Zobrazit více v PubMed

Agliano F., Rathinam V. A., Medvedev A. E., Vanaja S. K., Vella A. T. (2019). Long noncoding RNAs in host-pathogen interactions. Trends Immunol. 40 492–510. 10.1016/j.it.2019.04.001 PubMed DOI PMC

Ágoston R., Soni K., Jesudhasan P. R., Russell W. K., Mohácsi-Farkas C., Pillai S. D. (2009). Differential expression of proteins in Listeria monocytogenes under thermotolerance-inducing, heat shock, and prolonged heat shock conditions. Foodborne Pathog. Dis. 6 1133–1140. 10.1089/fpd.2009.0286 PubMed DOI

Aguilar C., Mano M., Eulalio A. (2019). MicroRNAs at the host-bacteria interface: host defense or bacterial offense. Trends Microbiol. 27 206–218. 10.1016/j.tim.2018.10.011 PubMed DOI

Akira S., Uematsu S., Takeuchi O. (2006). Pathogen recognition and innate immunity. Cell 124 783–801. 10.1016/j.cell.2006.02.015 PubMed DOI

Aldridge P. D., Karlinsey J. E., Aldridge C., Birchall C., Thompson D., Yagasaki J., et al. (2006). The flagellar-specific transcription factor, σ28, is the type III secretion chaperone for the flagellar-specific anti- σ28 factor FlgM. Genes Dev. 20 2315–2326. 10.1101/gad.380406 PubMed DOI PMC

Allerberger F., Wagner M. (2010). Listeriosis: a resurgent foodborne infection. Clin. Microbiol. Infect. 16 16–23. 10.1111/j.1469-0691.2009.03109.x PubMed DOI

Álvarez-Estrada Á, Gutiérrez-Martín C. B., Rodríguez-Ferri E. F., Martínez-Martínez S. (2018). Transcriptomics of Haemophilus (Glässerella) Parasuis serovar 5 subjected to culture conditions partially mimetic to natural infection for the search of new vaccine antigens. BMC Vet. Res. 14:326 10.1186/s12917-018-1647-1641 PubMed DOI PMC

Andrews S. C., Robinson A. K., Rodríguez-Quiñones F. (2003). Bacterial iron homeostasis. FEMS Microbiol. Rev. 27 215–237. 10.1016/S0168-6445(03)00055-X PubMed DOI

Atkinson G. C., Tenson T., Hauryliuk V. (2011). The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One 6:e23479. 10.1371/journal.pone.0023479 PubMed DOI PMC

Ausubel F. F. M. (2005). Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6 973–979. 10.1038/ni1253 PubMed DOI

Baker Y. R., Hodgkinson J. T., Florea B. I., Alza E., Galloway W. R. J. D., Grimm L., et al. (2017). Identification of new quorum sensing autoinducer binding partners in: Pseudomonas aeruginosa using photoaffinity probes. Chem. Sci. 8 7403–7411. 10.1039/c7sc01270e PubMed DOI PMC

Battesti A., Majdalani N., Gottesman S. (2011). The RpoS-Mediated General Stress Response in Escherichia coli. Annu. Rev. Microbiol. 65 189–213. 10.1146/annurev-micro-090110-102946 PubMed DOI PMC

Bayer M. G., Heinrichs J. H., Cheung A. L. (1996). The molecular architecture of the sar locus in Staphylococcus aureus. J. Bacteriol. 178 4563–4570. 10.1128/jb.178.15.4563-4570.1996 PubMed DOI PMC

Beebe S., Rao I., Mukankusi C., Buruchara R. (2013). Improving Resource Use Efficiency And Reducing Risk Of Common Bean Production In Africa, Latin America, And The Caribbean, In Eco-Efficiency: From Vision To Reality, 117-134. Available online at: http://ciat.cgiar.org/wp-content/uploads/2013/04/eco-efficiency_book.pdf (accessed December 17, 2019).

Beisel C. L., Storz G. (2010). Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol. Rev. 34 866–882. 10.1111/j.1574-6976.2010.00241.x PubMed DOI PMC

Benbow M. E., Pechal J. L., Tomberlin J. K., Jordan H. R. (2018). “Interkingdom community interactions in disease ecology,” in The Connections Between Ecology and Infectious Disease. Advances in Environmental Microbiology, Vol. 5 ed. Hurst C. (Cham: Springer; ).

Bennett G. M., Moran N. A. (2015). Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc. Natl. Acad. Sci. U.S.A. 112 10169–10176. 10.1073/pnas.1421388112 PubMed DOI PMC

Bermúdez-Barrientos J. R., Ramírez-Sánchez O., Chow F. W.-N., Buck A. H., Abreu-Goodger C. (2020). Disentangling sRNA-Seq data to study RNA communication between species. Nucleic Acids Res. 48:e21. 10.1093/nar/gkz1198 PubMed DOI PMC

Bhatt S., Egan M., Jenkins V., Muche S., El-Fenej J. (2016). The tip of the iceberg: on the roles of regulatory small RNAs in the virulence of enterohemorrhagic and enteropathogenic Escherichia coli. Front. Cell. Infect. Microbiol. 6:105. 10.3389/fcimb.2016.00105 PubMed DOI PMC

Bianco C. M., Fröhlich K. S., Vanderpool C. K. (2019). Bacterial cyclopropane fatty acid synthase mRNA is targeted by activating and repressing small RNAs. bioRxiv [Preprint], 10.1128/jb.00461-419 PubMed DOI PMC

Bidnenko V., Nicolas P., Grylak-Mielnicka A., Delumeau O., Auger S., Aucouturier A., et al. (2017). Termination factor Rho: from the control of pervasive transcription to cell fate determination in Bacillus subtilis. PLoS Genet. 13:e1006909. 10.1371/journal.pgen.1006909 PubMed DOI PMC

Bogaert D., De Groot R., Hermans P. W. M. (2004). Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect. Dis. 4 144–154. 10.1016/S1473-3099(04)00938-937 PubMed DOI

Böhm M.-E., Razavi M., Marathe N. P., Flach C.-F., Larsson D. G. J. (2020). Discovery of a novel integron-borne aminoglycoside resistance gene present in clinical pathogens by screening environmental bacterial communities. Microbiome 8:41. 10.1186/s40168-020-00814-z PubMed DOI PMC

Bohn C., Rigoulay C., Chabelskaya S., Sharma C. M., Marchais A., Skorski P., et al. (2010). Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nucleic Acids Res. 38 6620–6636. 10.1093/nar/gkq462 PubMed DOI PMC

Borgmann J., Schäkermann S., Bandow J. E., Narberhaus F. (2018). A small regulatory RNA controls cell wall biosynthesis and antibiotic resistance. mBio 9:e002100-18 10.1128/mBio.02100-2118 PubMed DOI PMC

Brant E. J., Budak H. (2018). Plant small non-coding RNAs and their roles in biotic stresses. Front. Plant Sci. 9:1038. 10.3389/fpls.2018.01038 PubMed DOI PMC

Brouwer S., Pustelny C., Ritter C., Klinkert B., Narberhaus F., Häussler S. (2014). The PqsR and RhlR transcriptional regulators determine the level of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa by producing two different pqsABCDE mRNA Isoforms. J. Bacteriol. 196 4163–4171. 10.1128/JB.02000-2014 PubMed DOI PMC

Budnick J. A., Sheehan L. M., Kang L., Michalak P., Caswell C. C. (2018). Characterization of three small proteins in Brucella abortus linked to fucose utilization. J. Bacteriol. 200:e00127-18 10.1128/JB.00127-118 PubMed DOI PMC

Burne R. A., Chen Y. Y. M. (2000). Bacterial ureases in infectious diseases. Microbes Infect. 2 533–542. 10.1016/S1286-4579(00)00312-319 PubMed DOI

Burtnick M. N., Downey J. S., Brett P. J., Boylan J. A., Frye J. G., Hoover T. R., et al. (2007). Insights into the complex regulation of rpoS in Borrelia burgdorferi. Mol. Microbiol. 65 277–293. 10.1111/j.1365-2958.2007.05813.x PubMed DOI PMC

Bush V. (1945). Science - The Endless Frontier. Washington: Scientific Research and Development.

Butz H. A., Mey A. R., Ciosek A. L., Payne S. M. (2019). Vibrio cholerae CsrA directly regulates varA to increase expression of the three nonredundant Csr small RNAs. mBio 10:e001042-19 10.1128/mBio.01042-1019 PubMed DOI PMC

Caldelari I., Chao Y., Romby P., Vogel J. (2013). RNA-mediated regulation in pathogenic bacteria. Cold Spring Harb. Perspect. Med. 3:10298. 10.1101/cshperspect.a010298 PubMed DOI PMC

Carlos A. R., Weis S., Soares M. P. (2018). Cross-talk between iron and glucose metabolism in the establishment of disease tolerance. Front. Immunol. 9:2498. 10.3389/fimmu.2018.02498 PubMed DOI PMC

Carrier M.-C., Lalaouna D., Massé E. (2018a). Broadening the definition of bacterial small RNAs: characteristics and mechanisms of action. Annu. Rev. Microbiol. 72 141–161. 10.1146/annurev-micro-090817-62607 PubMed DOI

Carrier M. C., Laliberté G., Massé E. (2018b). Identification of new bacterial small RNA targets using MS2 affinity purification coupled to RNA sequencing. Methods Mol. Biol. 1737 77–88. 10.1007/978-1-4939-7634-8_5 PubMed DOI

Carroll R. K., Weiss A., Broach W. H., Wiemels R. E., Mogen A. B., Rice K. C., et al. (2016). Genome-wide annotation, identification, and global transcriptomic analysis of regulatory or small RNA gene expression in Staphylococcus aureus. mBio 7:1990 10.1128/mBio.01990-1915 PubMed DOI PMC

Casadevall A. (2016). thermal restriction as an antimicrobial function of fever. PLoS Pathog. 12:5577. 10.1371/journal.ppat.1005577 PubMed DOI PMC

Casadevall A., Pirofski L. (2003). The damage-response framework of microbial pathogenesis. Nat. Rev. Microbiol. 1 17–24. 10.1038/nrmicro732 PubMed DOI PMC

Cassat J. E., Skaar E. P. (2013). Iron in infection and immunity. Cell Host Microbe 13 509–519. 10.1016/j.chom.2013.04.010 PubMed DOI PMC

Chakravarty S., Massé E. (2019). RNA-dependent regulation of virulence in pathogenic bacteria. Front. Cell. Infect. Microbiol. 9:337. 10.3389/fcimb.2019.00337 PubMed DOI PMC

Chambonnier G., Roux L., Redelberger D., Fadel F., Filloux A., Sivaneson M., et al. (2016). The hybrid histidine kinase LadS forms a multicomponent signal transduction system with the GacS/GacA two-component system in Pseudomonas aeruginosa. PLoS Genet. 12:e1006032. 10.1371/journal.pgen.1006032 PubMed DOI PMC

Chatterji D., Ojha A. K. (2001). Revisiting the stringent response, ppGpp and starvation signaling. Curr. Opin. Microbiol. 4 160–165. 10.1016/S1369-5274(00)00182-X PubMed DOI

Chen R., Wei X., Li Z., Weng Y., Xia Y., Ren W. R., et al. (2019). Identification of a small RNA that directly controls the translation of the quorum sensing signal synthase gene rhlI in Pseudomonas aeruginosa. Environ. Microbiol. 21 2933–2947. 10.1111/1462-2920.14686 PubMed DOI

Chevance F. F. V., Hughes K. T. (2008). Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6 455–465. 10.1038/nrmicro1887 PubMed DOI PMC

Chevance F. F. V., Karlinsey J. E., Wozniak C. E., Hughes K. T. (2006). A little gene with big effects: a serT mutant is defective in flgM gene translation. J. Bacteriol. 188 297–304. 10.1128/JB.188.1.297-304.2006 PubMed DOI PMC

Choi J. S., Kim W., Suk S., Park H., Bak G., Yoon J., et al. (2018). The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli. RNA Biol. 15 1319–1335. 10.1080/15476286.2018.1532252 PubMed DOI PMC

Cobaxin M., Martínez H., Ayala G., Holmgren J., Sjoling A., Sánchez J. (2014). Cholera toxin expression by El Tor Vibrio cholerae in shallow culture growth conditions. Microb. Pathog. 66 5–13. 10.1016/j.micpath.2013.11.002 PubMed DOI

Coggan K. A., Wolfgang M. C. (2012). Global regulatory pathways and cross-talk control Pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr. Issues Mol. Biol. 14 47–70. 10.21775/cimb.014.047 PubMed DOI

Cohen M. L. (2000). Changing patterns of infectious disease. Nature 406 762–767. 10.1038/35021206 PubMed DOI

Cornelis P., Wei Q., Andrews S. C., Vinckx T. (2011). Iron homeostasis and management of oxidative stress response in bacteria. Metallomics 3 540–549. 10.1039/c1mt00022e PubMed DOI

Cristaldo P. F., Jandák V., Kutalová K., Rodrigues V. B., Brothánek M., Jiøíèek O., et al. (2016). The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals. Biol. Open 4 1649–1659. 10.1242/bio.014084 PubMed DOI PMC

Damo S. M., Kehl-Fie T. E., Sugitani N., Holt M. E., Rathi S., Murphy W. J., et al. (2013). Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proc. Natl. Acad. Sci. U.S.A. 110 3841–3846. 10.1073/pnas.1220341110 PubMed DOI PMC

Dangl J. L., Jones J. D. G. (2001). Plant pathogens and integrated defence responses to infection. Nature 411 826–833. 10.1038/35081161 PubMed DOI

Dauros-Singorenko P., Blenkiron C., Phillips A., Swift S. (2018). The functional RNA cargo of bacterial membrane vesicles. FEMS Microbiol. Lett. 365:fny02 10.1093/femsle/fny023 PubMed DOI

Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280 295–298. 10.1126/science.280.5361.295 PubMed DOI

de Viana J. (1637). Tratado de Peste, sus Causas y curacion, y el Modo Que se ha tenido de curar las Secas y Carbuncos Pestilentes que Han Oprimido A Esta Ciudad de Málaga este año de 1637., ed. Serrano J. de Vargas y Ureña Málaga. Available online at: http://bdh.bne.es/bnesearch/biblioteca/Tratado de peste, sus causas y curacion, y el modo que se ha tenido de curar las secas y carbuncos pestilentes que han oprimido a esta ciudad de Malaga este año de 1637. /qls/Viana, Juan de/qls/bdh0000089890;jses (accessed April 5, 2020).

Deng W., Puente J. L., Gruenheid S., Li Y., Vallance B. A., Vázquez A., et al. (2004). Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc. Natl. Acad. Sci. U.S.A. 101 3597–3602. 10.1073/pnas.0400326101 PubMed DOI PMC

Dersch P., Khan M. A., Mühlen S., Görke B. (2017). Roles of regulatory RNAs for antibiotic resistance in bacteria and their potential value as novel drug targets. Front. Microbiol. 8:803. 10.3389/fmicb.2017.00803 PubMed DOI PMC

Diard M., Hardt W.-D. (2017). Evolution of bacterial virulence. FEMS Microbiol. Rev. 41 679–697. 10.1093/femsre/fux023 PubMed DOI

Diaz-Ochoa V. E., Jellbauer S., Klaus S., Raffatellu M. (2014). Transition metal ions at the crossroads of mucosal immunity and microbial pathogenesis. Front. Cell. Infect. Microbiol. 4:2. 10.3389/fcimb.2014.00002 PubMed DOI PMC

Djapgne L., Panja S., Brewer L. K., Gans J. H., Kane M. A., Woodson S. A., et al. (2018). The Pseudomonas aeruginosa PrrF1 and PrrF2 small regulatory RNAs promote 2-alkyl-4- quinolone production through redundant regulation of the antR mRNA. J. Bacteriol. 200:e0704-17 10.1128/JB.00704-717 PubMed DOI PMC

Dong H., Peng X., Liu Y., Wu T., Wang X., De Y., et al. (2018). BASI74, a virulence-related sRNA in Brucella abortus. Front. Microbiol. 9:2173. 10.3389/fmicb.2018.02173 PubMed DOI PMC

Dong T., Schellhorn H. E. (2010). Role of RpoS in virulence of pathogens. Infect. Immun. 78 887–897. 10.1128/IAI.00882-889 PubMed DOI PMC

Dorey A., Marinho C., Piveteau P., O’Byrne C. (2019). Role and regulation of the stress activated sigma factor sigma B (σ B) in the saprophytic and host-associated life stages of Listeria monocytogenes. Adv. Appl. Microbiol. 106 1–48. 10.1016/bs.aambs.2018.11.001 PubMed DOI

Dorman M. J., Dorman C. J. (2018). Regulatory hierarchies controlling virulence gene expression in Shigella flexneri and Vibrio cholerae. Front. Microbiol. 9:2686. 10.3389/fmicb.2018.02686 PubMed DOI PMC

dos Santos P. T., Menendez-Gil P., Sabharwal D., Christensen J.-H., Brunhede M. Z., Lillebæk E. M. S., et al. (2018). The small regulatory RNAs LhrC1-5 contribute to the response of Listeria monocytogenes to heme toxicity. Front. Microbiol. 9:599. 10.3389/fmicb.2018.00599 PubMed DOI PMC

Drecktrah D., Hall L. S., Rescheneder P., Lybecker M., Scott Samuels D. (2018). The stringent response-regulated sRNA transcriptome of Borrelia burgdorferi. Front. Cell. Infect. Microbiol. 8:231. 10.3389/fcimb.2018.00231 PubMed DOI PMC

Drevinek P., Mahenthiralingam E. (2010). Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin. Microbiol. Infect. 16 821–830. 10.1111/j.1469-0691.2010.03237.x PubMed DOI

Dubern J. F., Diggle S. P. (2008). Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol. Biosyst. 4 882–888. 10.1039/b803796p PubMed DOI

Dunman P. M., Murphy E., Haney S., Palacios D., Tucker-Kellogg G., Wu S., et al. (2001). Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J. Bacteriol. 183 7341–7353. 10.1128/JB.183.24.7341-7353.2001 PubMed DOI PMC

Epstein P. R. (2001). Climate change and emerging infectious diseases. Microb. Infect. 3 747–754. 10.1016/S1286-4579(01)01429-1420 PubMed DOI

Fàbrega A., Vila J. (2013). Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin. Microbiol. Rev. 26 308–341. 10.1128/CMR.00066-12 PubMed DOI PMC

Fang F. C., Libby S. J., Buchmeier N. A., Loewen P. C., Switala J., Harwood J., et al. (1992). The alternative σ factor KatF (RpoS) regulates Salmonella virulence. Proc. Natl. Acad. Sci. U.S.A. 89 11978–11982. 10.1073/pnas.89.24.11978 PubMed DOI PMC

Faucher S. P., Shuman H. A. (2011). Small regulatory RNA and Legionella pneumophila. Front. Microbiol. 2:98. 10.3389/fmicb.2011.00098 PubMed DOI PMC

Felden B., Cattoira V. (2018). Bacterial adaptation to antibiotics through regulatory RNAs. Antimicrob. Agents Chemother. 62:e002503-17 10.1128/AAC.02503-2517 PubMed DOI PMC

Fernández M., Corral-Lugo A., Krell T. (2018). The plant compound rosmarinic acid induces a broad quorum sensing response in Pseudomonas aeruginosa PAO1. Environ. Microbiol. 20 4230–4244. 10.1111/1462-2920.14301 PubMed DOI

Ferrara S., Brugnoli M., de Bonis A., Righetti F., Delvillani F., Dehò G., et al. (2012). Comparative profiling of Pseudomonas aeruginosa strains reveals differential expression of novel unique and conserved small RNAs. PLoS One 7:36553. 10.1371/journal.pone.0036553 PubMed DOI PMC

Fischbach M. A. (2009). Antibiotics from microbes: converging to kill. Curr. Opin. Microbiol. 12 520–527. 10.1016/j.mib.2009.07.002 PubMed DOI PMC

Flahaut S., Frere J., Boutibonnes P., Auffray Y. (1996). Comparison of the bile salts and sodium dodecyl sulfate stress responses in Enterococcus faecalis. Appl. Environ. Microbiol. 62 2416–2420. 10.1128/aem.62.7.2416-2420.1996 PubMed DOI PMC

Frye J., Karlinsey J. E., Felise H. R., Marzolf B., Dowidar N., McClelland M., et al. (2006). Identification of new flagellar genes of Salmonella enterica serovar typhimurium. J. Bacteriol. 188 2233–2243. 10.1128/JB.188.6.2233-2243.2006 PubMed DOI PMC

Fu Y., Li W., Wu Z., Tao Y., Wang X., Wei J., et al. (2018). Detection of mycobacterial small RNA in the bacterial culture supernatant and plasma of patients with active tuberculosis. Biochem. Biophys. Res. Commun. 503 490–494. 10.1016/j.bbrc.2018.04.165 PubMed DOI

Furniss R. C. D., Clements A. (2018). Regulation of the locus of enterocyte effacement in attaching and effacing pathogens. J. Bacteriol. 200:e00336-17 10.1128/JB.00336-317 PubMed DOI PMC

Gan I.-N., Tan H. S. (2019). A small RNA decreases the sensitivity of Shigella sonnei to norfloxacin. BMC Res. Notes 12:97 10.1186/s13104-019-4124-4124 PubMed DOI PMC

Gelsinger D. R., DiRuggiero J. (2018). Transcriptional landscape and regulatory roles of small noncoding RNAs in the oxidative stress response of the haloarchaeon Haloferax volcanii. J. Bacteriol. 200:e00779-17 10.1128/JB.00779-717 PubMed DOI PMC

Gelvin S. B. (2003). Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying”. Tool. Microbiol. Mol. Biol. Rev. 67 16–37. 10.1128/mmbr.67.1.16-37.2003 PubMed DOI PMC

Gerrick E. R., Barbier T., Chase M. R., Xu R., François J., Lin V. H., et al. (2018). Small RNA profiling in Mycobacterium tuberculosis identifies MrsI as necessary for an anticipatory iron sparing response. Proc. Natl. Acad. Sci. U.S.A. 115 6464–6469. 10.1073/pnas.1718003115 PubMed DOI PMC

Ghaly T. M., Gillings M. R. (2018). Mobile DNAs as ecologically and evolutionarily independent units of life. Trends Microbiol. 26 904–912. 10.1016/j.tim.2018.05.008 PubMed DOI

Ghosal A. (2017). Importance of secreted bacterial RNA in bacterial-host interactions in the gut. Microb. Pathog. 104 161–163. 10.1016/j.micpath.2017.01.032 PubMed DOI

Gilbertson S., Federspiel J. D., Hartenian E., Cristea I. M., Glaunsinger B. (2018). Changes in mRNA abundance drive shuttling of RNA binding proteins, linking cytoplasmic RNA degradation to transcription. eLife 7:37663. 10.7554/eLife.37663 PubMed DOI PMC

Golding B., Scott D. E., Scharf O., Huang L. Y., Zaitseva M., Lapham C., et al. (2001). Immunity and protection against Brucella abortus. Microb. Infect. 3 43–48. 10.1016/S1286-4579(00)01350-1352 PubMed DOI

González Plaza J. J. (2018). Small RNAs in cell-to-cell communications during bacterial infection. FEMS Microbiol. Lett. 365:fny024 10.1093/femsle/fny024 PubMed DOI

González Plaza J. J., Hulak N., Zhumadilov Z., Akilzhanova A., Plaza J. J. G., Jj G. P., et al. (2016). Fever as an important resource for infectious diseases research. Intractable Rare Dis. Res. 5 97–102. 10.5582/irdr.2016.01009 PubMed DOI PMC

Grimson A., Srivastava M., Fahey B., Woodcroft B. J., Chiang H. R., King N., et al. (2008). Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455 1193–1198. PubMed PMC

Guo Z., Li Y., Ding S.-W. (2019). Small RNA-based antimicrobial immunity. Nat. Rev. Immunol. 19 31–44. 10.1038/s41577-018-0071-x PubMed DOI

Gutierrez A., Laureti L., Crussard S., Abida H., Rodríguez-Rojas A., Blázquez J., et al. (2013). β-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat. Commun. 4:2607. 10.1038/ncomms2607 PubMed DOI PMC

Hammer B. K., Bassler B. L. (2007). Regulatory small RNAs circumvent the conventional quorum sensing pathway in pandemic Vibrio cholerae. Proc. Natl. Acad. Sci. U.S.A. 104 11145–11149. 10.1073/pnas.0703860104 PubMed DOI PMC

Han Y., Chen D., Yan Y., Gao X., Liu Z., Xue Y., et al. (2019). Hfq globally binds and destabilizes sRNAs and mRNAs in Yersinia pestis. mSystems 4:245 10.1128/msystems.00245-219 PubMed DOI PMC

Hansen A. K., Degnan P. H. (2014). Widespread expression of conserved small RNAs in small symbiont genomes. ISME J. 8 2490–2502. 10.1038/ismej.2014.121 PubMed DOI PMC

Harkey C. W., Everiss K. D., Peterson K. M. (1994). The Vibrio cholerae toxin-coregulated-pilus gene tcpI encodes a homolog of methyl-accepting chemotaxis proteins. Infect. Immun. 62 2669–2678. 10.1128/IAI.62.7.2669-2678.1994 PubMed DOI PMC

Harvell C. D., Mitchell C. E., Ward J. R., Altizer S., Dobson A. P., Ostfeld R. S., et al. (2002). Climate warming and disease risks for terrestrial and marine biota. Science 296 2158–2162. 10.1126/science.1063699 PubMed DOI

Hendaus M. A., Jomha F. A., Alhammadi A. H. (2015). Virus-induced secondary bacterial infection: a concise review. Ther. Clin. Risk Manag. 11 1265–1271. 10.2147/TCRM.S87789 PubMed DOI PMC

Herrera J., Nunn C. L. (2019). Behavioural ecology and infectious disease: implications for conservation of biodiversity. Philos. Trans. R. Soc. B Biol. Sci. 374:54. 10.1098/rstb.2018.0054 PubMed DOI PMC

Higgs P. G., Lehman N. (2015). The RNA world: molecular cooperation at the origins of life. Nat. Rev. Genet. 16 7–17. 10.1038/nrg3841 PubMed DOI

Hille F., Richter H., Wong S. P., Bratoviè M., Ressel S., Charpentier E. (2018). The biology of CRISPR-Cas: backward and forward. Cell 172 1239–1259. 10.1016/j.cell.2017.11.032 PubMed DOI

Hoekzema M., Romilly C., Holmqvist E., Wagner E. G. H. (2019). Hfq-dependent mRNA unfolding promotes sRNA -based inhibition of translation. EMBO J. 38:e101199. 10.15252/embj.2018101199 PubMed DOI PMC

Holmqvist E., Vogel J. (2018). RNA-binding proteins in bacteria. Nat. Rev. Microbiol. 16 601–615. 10.1038/s41579-018-0049-45 PubMed DOI

Hornung V., Barchet W., Schlee M., Hartmann G. (2008). “RNA Recognition via TLR7 and TLR8,” in Toll-Like Receptors (TLRs) and Innate Immunity. Handbook of Experimental Pharmacology, Vol. 183 eds Bauer S., Hartmann G. (Berlin: Springer; ), 71–86. 10.1007/978-3-540-72167-3_4 PubMed DOI

How M. J., Norman M. D., Finn J., Chung W. S., Marshall N. J. (2017). Dynamic skin patterns in cephalopods. Front. Physiol. 8:393. 10.3389/fphys.2017.00393 PubMed DOI PMC

Hu Y., Lu P., Zhang Y., Li L., Chen S. (2010). Characterization of an aspartate-dependent acid survival system in Yersinia pseudotuberculosis. FEBS Lett. 584 2311–2314. 10.1016/j.febslet.2010.03.045 PubMed DOI

Hu Y., Zhang L., Wang X., Sun F., Kong X., Dong H., et al. (2018). Two virulent sRNAs identified by genomic sequencing target the type III secretion system in rice bacterial blight pathogen. BMC Plant Biol. 18:1477 10.1186/s12870-018-1470-1477 PubMed DOI PMC

Hübner A., Yang X., Nolen D. M., Popova T. G., Cabello F. C., Norgard M. V. (2001). Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc. Natl. Acad. Sci. U.S.A. 98 12724–12729. 10.1073/pnas.231442498 PubMed DOI PMC

Hwang H.-H., Yu M., Lai E.-M. (2017). Agrobacterium -mediated plant transformation: biology and applications. Arab. B 15:e0186. 10.1199/tab.0186 PubMed DOI PMC

Ingle R. A., Carstens M., Denby K. J. (2006). PAMP recognition and the plant-pathogen arms race. Bioessays 28 880–889. 10.1002/bies.20457 PubMed DOI

Irving S. E., Corrigan R. M. (2018). Triggering the stringent response: signals responsible for activating (p)ppGpp synthesis in bacteria. Microbiology 164 268–276. 10.1099/mic.0.000621 PubMed DOI

Islam W., Noman A., Qasim M., Wang L. (2018). Plant responses to pathogen attack: small rnas in focus. Int. J. Mol. Sci. 19:515. 10.3390/ijms19020515 PubMed DOI PMC

Izoré T., Job V., Dessen A. (2011). Biogenesis, regulation, and targeting of the type III secretion system. Structure 19 603–612. 10.1016/j.str.2011.03.015 PubMed DOI

Jang J., Jung K. T., Park J., Yoo C. K., Rhie G. E. (2011). The Vibrio cholerae VarS/VarA two-component system controls the expression of virulence proteins through ToxT regulation. Microbiology 157 1466–1473. 10.1099/mic.0.043737-43730 PubMed DOI

Janssen K. H., Diaz M. R., Gode C. J., Wolfgang M. C., Yahr T. L. (2018a). RsmV, a small noncoding regulatory RNA in Pseudomonas aeruginosa that sequesters RsmA and RsmF from target mRNAs. J. Bacteriol. 200:e00277-18 10.1128/JB.00277-218 PubMed DOI PMC

Janssen K. H., Diaz M. R., Golden M., Graham J. W., Sanders W., Wolfgang M. C., et al. (2018b). Functional analyses of the RsmY and RsmZ small noncoding regulatory RNAs in Pseudomonas aeruginosa. J. Bacteriol. 200:e0736-17. 10.1128/JB.00736-17 PubMed DOI PMC

Jemielita M., Wingreen N. S., Bassler B. L. (2018). Quorum sensing controls Vibrio cholerae multicellular aggregate formation. eLife 7:42057. 10.7554/eLife.42057 PubMed DOI PMC

Kalir S., McClure J., Pabbaraju K., Southward C., Ronen M., Leibler S., et al. (2001). Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292 2080–2083. 10.1126/science.1058758 PubMed DOI

Kawai T., Akira S. (2009). The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21 317–337. 10.1093/intimm/dxp017 PubMed DOI PMC

Kay E., Humair B., Dénervaud V., Riedel K., Spahr S., Eberl L., et al. (2006). Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J. Bacteriol. 188 6026–6033. 10.1128/JB.00409-406 PubMed DOI PMC

Khasnis A. A., Nettleman M. D. (2005). Global warming and infectious disease. Arch. Med. Res. 36 689–696. 10.1016/j.arcmed.2005.03.041 PubMed DOI

Kiekens S., Sass A., Van Nieuwerburgh F., Deforce D., Coenye T. (2018). The Small RNA ncS35 regulates growth in Burkholderia cenocepacia J2315. mSphere 3:e0579-17 10.1128/msphere.00579-517 PubMed DOI PMC

Kim S., Reyes D., Beaume M., Francois P., Cheung A. (2014). Contribution of teg49 Small RNA in the 5′ upstream transcriptional region of sarA to virulence in Staphylococcus aureus. Infect. Immun. 82 4369–4379. 10.1128/IAI.02002-2014 PubMed DOI PMC

Kim V. N., Han J., Siomi M. C. (2009). Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10 127–139. PubMed

Kirchman D. L., Meon B., Cottrell M. T., Hutchins D. A., Weeks D., Bruland K. W. (2000). Carbon versus iron limitation of bacterial growth in the California upwelling regime. Limnol. Oceanogr. 45 1681–1688. 10.4319/lo.2000.45.8.1681 DOI

Kluger M. J., Kozak W., Conn C. A., Leon L. R., Soszynski D. (1998). Role of fever in disease. Ann. N. Y. Acad. Sci. 856 224–233. 10.1111/j.1749-6632.1998.tb08329.x PubMed DOI

Krämer A., Akmatov M., Kretzschmar M. (2009). “Principles of infectious disease epidemiology,” in Modern Infectious Disease Epidemiology. Statistics for Biology and Health, eds Krämer A., Kretzschmar M., Krickeberg K. (New York, NY: Springer; ), 85–99. 10.1007/978-0-387-93835-6_5 DOI

Kröger C., Rothhardt J. E., Brokatzky D., Felsl A., Kary S. C., Heermann R., et al. (2018). The small RNA RssR regulates myo-inositol degradation by Salmonella enterica. Sci. Rep. 8:17739 10.1038/s41598-018-35784-35788 PubMed DOI PMC

Kuijl C., Neefjes J. (2009). New insight into the everlasting host-pathogen arms race. Nat. Immunol. 10 808–809. 10.1038/ni0809-808 PubMed DOI

Lalaouna D., Baude J., Wu Z., Tomasini A., Chicher J., Marzi S., et al. (2019). RsaC sRNA modulates the oxidative stress response of Staphylococcus aureus during manganese starvation. Nucleic Acids Res. 47 9871–9887. 10.1093/nar/gkz728 PubMed DOI PMC

Lalaouna D., Eyraud A., Chabelskaya S., Felden B., Massé E. (2014). Regulatory RNAs involved in bacterial antibiotic resistance. PLoS Pathog. 10:e04299. 10.1371/journal.ppat.1004299 PubMed DOI PMC

Lalaouna D., Simoneau-Roy M., Lafontaine D., Massé E. (2013). Regulatory RNAs and target mRNA decay in prokaryotes. Biochim. Biophys. Acta Gene Regul. Mech. 1829 742–747. 10.1016/j.bbagrm.2013.02.013 PubMed DOI

Langdon J. H. (2016). “Case Study 1. The darwinian paradigm: an evolving world view,” in The Science of Human Evolution, (Cham: Springer; ), 1–8. 10.1007/978-3-319-41585-7 DOI

Law C. O. K., Huang C., Pan Q., Lee J., Hao Q., Chan T. F., et al. (2019). A small RNA transforms the multidrug resistance of Pseudomonas aeruginosa to drug susceptibility. Mol. Ther. Nucleic Acids 16 218–228. 10.1016/j.omtn.2019.02.011 PubMed DOI PMC

Lee J., Zhang L. (2015). The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6 26–41. 10.1007/s13238-014-0100-x PubMed DOI PMC

Lee R. C., Feinbaum R. L., Ambros V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75 843–854. 10.1016/0092-8674(93)90529-y PubMed DOI

Legüe M., Calixto A. (2019). RNA language in Caenorhabditis elegans and bacteria interspecies communication and memory. Curr. Opin. Syst. Biol. 13 16–22. 10.1016/j.coisb.2018.08.005 DOI

Leid J. G., Willson C. J., Shirtliff M. E., Hassett D. J., Parsek M. R., Jeffers A. K. (2005). The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-γ-mediated macrophage killing. J. Immunol. 175 7512–7518. 10.4049/jimmunol.175.11.7512 PubMed DOI

Lejars M., Kobayashi A., Hajnsdorf E. (2019). Physiological roles of antisense RNAs in prokaryotes. Biochimie 164 3–16. 10.1016/j.biochi.2019.04.015 PubMed DOI

Lenz D. H., Mok K. C., Lilley B. N., Kulkarni R. V., Wingreen N. S., Bassler B. L. (2004). The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118 69–82. 10.1016/j.cell.2004.06.009 PubMed DOI

Li S., Xu X., Zheng Z., Zheng J., Shakeel M., Jin F. (2019). MicroRNA expression profiling of Plutella xylostella after challenge with B. thuringiensis. Dev. Comp. Immunol. 93 115–124. 10.1016/j.dci.2018.12.008 PubMed DOI

Liao L., Liu C., Zeng Y., Zhao B., Zhang J., Chen B. (2019). Multipartite genomes and the sRNome in response to temperature stress of an Arctic Pseudoalteromonas fuliginea BSW20308. Environ. Microbiol. 21 272–285. 10.1111/1462-2920.14455 PubMed DOI

Lindsley C. W. (2016). Lost in translation: the death of basic science. ACS Chem. Neurosci. 7 1024–1024. 10.1021/acschemneuro.6b00206 PubMed DOI

Liu H., Wang X., Wang H. D., Wu J., Ren J., Meng L., et al. (2012). Escherichia coli noncoding RNAs can affect gene expression and physiology of Caenorhabditis elegans. Nat. Commun. 3 1–11. 10.1038/ncomms2071 PubMed DOI PMC

Liu R., Ochman H. (2007). Stepwise formation of the bacterial flagellar system. Proc. Natl. Acad. Sci. U.S.A. 104 7116–7121. 10.1073/pnas.0700266104 PubMed DOI PMC

Liu X., Matsumura P. (1994). The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J. Bacteriol. 176 7345–7351. 10.1128/jb.176.23.7345-7351.1994 PubMed DOI PMC

Loh E., Righetti F., Eichner H., Twittenhoff C., Narberhaus F. (2018). RNA thermometers in bacterial pathogens. Microbiol. Spectr. 6:RWR-0012-2017. 10.1128/microbiolspec.RWR-0012-2017 PubMed DOI PMC

Lowy F. D. (1998). Medical progress: Staphylococcus aureus infections. N. Engl. J. Med. 339 520–532. 10.1056/NEJM199808203390806 PubMed DOI

Lybecker M. C., Abel C. A., Feig A. L., Samuels D. S. (2010). Identification and function of the RNA chaperone Hfq in the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 78 622–635. 10.1111/j.1365-2958.2010.07374.x PubMed DOI PMC

Lybecker M. C., Samuels D. S. (2007). Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi. Mol. Microbiol. 64 1075–1089. 10.1111/j.1365-2958.2007.05716.x PubMed DOI

Lyu L., Zhang X., Li C., Yang T., Wang J., Pan L., et al. (2019). Small RNA profiles of serum exosomes derived from individuals with latent and active tuberculosis. Front. Microbiol. 10:1174. 10.3389/fmicb.2019.01174 PubMed DOI PMC

Lyu Y., Wu J., Shi Y. (2019). Metabolic and physiological perturbations of Escherichia coli W3100 by bacterial small RNA RyhB. Biochimie 162 144–155. 10.1016/j.biochi.2019.04.016 PubMed DOI

Mackowiak P. A. (1981). Direct effects of hyperthermia on pathogenic microorganisms: teleologic implications with regard to fever. Rev. Infect. Dis. 3 508–520. 10.1093/CLINIDS/3.3.508 PubMed DOI

Mahenthiralingam E., Urban T. A., Goldberg J. B. (2005). The multifarious, multireplicon Burkholderia cepacia complex. Nat. Rev. Microbiol. 3 144–156. 10.1038/nrmicro1085 PubMed DOI

Mai J., Rao C., Watt J., Sun X., Lin C., Zhang L., et al. (2019). Mycobacterium tuberculosis 6C sRNA binds multiple mRNA targets via C-rich loops independent of RNA chaperones. Nucleic Acids Res. 47 4292–4307. 10.1093/nar/gkz149 PubMed DOI PMC

Malgaonkar A., Nair M. (2019). Quorum sensing in Pseudomonas aeruginosa mediated by RhlR is regulated by a small RNA PhrD. Sci. Rep. 9:89 10.1038/s41598-018-36488-36489 PubMed DOI PMC

Mallia P., Johnston S. L. (2007). Influenza infection and COPD. Int. J. COPD 2 55–64. 10.2147/copd.2007.2.1.55 PubMed DOI PMC

Manna A. C., Kim S., Cengher L., Corvaglia A., Leo S., Francois P., et al. (2018). Small RNA teg49 is derived from a sarA transcript and regulates virulence genes independent of SarA in Staphylococcus aureus. Infect. Immun. 86:17 10.1128/IAI.00635-617 PubMed DOI PMC

Marden J. N., Diaz M. R., Walton W. G., Gode C. J., Betts L., Urbanowski M. L., et al. (2013). An unusual CsrA family member operates in series with RsmA to amplify posttranscriptional responses in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 110 15055–15060. 10.1073/pnas.1307217110 PubMed DOI PMC

Marinho C. M., Dos Santos P. T., Kallipolitis B. H., Johansson J., Ignatov D., Guerreiro D. N., et al. (2019). The σB-dependent regulatory sRNA Rli47 represses isoleucine biosynthesis in Listeria monocytogenes through a direct interaction with the ilvA transcript. RNA Biol. 16 1424–1437. 10.1080/15476286.2019.1632776 PubMed DOI PMC

Massé E., Gottesman S. (2002). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 99 4620–4625. 10.1073/pnas.032066599 PubMed DOI PMC

Massé E., Majdalani N., Gottesman S. (2003). Regulatory roles for small RNAs in bacteria. Curr. Opin. Microbiol. 6 120–124. 10.1016/S1369-5274(03)00027-24 PubMed DOI

McPhearson R. M., DePaola A., Zywno S. R., Motes M. L., Guarino A. M. (1991). Antibiotic resistance in Gram-negative bacteria from cultured catfish and aquaculture ponds. Aquaculture 99 203–211. 10.1016/0044-8486(91)90241-X DOI

Melson E. M., Kendall M. M. (2019). The sRNA DicF integrates oxygen sensing to enhance enterohemorrhagic Escherichia coli virulence via distinctive RNA control mechanisms. Proc. Natl. Acad. Sci. U.S.A. 116 14210–14215. 10.1073/pnas.1902725116 PubMed DOI PMC

Mey A. R., Butz H. A., Payne S. M. (2015). Vibrio cholerae CsrA regulates ToxR levels in response to amino acids and is essential for virulence. mBio 6:15 10.1128/mBio.01064-1015 PubMed DOI PMC

Milillo M. A., Trotta A., Serafino A., Marin Franco J. L., Marinho F. V., Alcain J., et al. (2019). Bacterial RNA contributes to the down-modulation of MHC-II expression on monocytes/macrophages diminishing CD4+ T cell responses. Front. Immunol. 10:2181. 10.3389/fimmu.2019.02181 PubMed DOI PMC

Miller C. L., Romero M., Karna S. L. R., Chen T., Heeb S., Leung K. P. (2016). RsmW, Pseudomonas aeruginosa small non-coding RsmA-binding RNA upregulated in biofilm versus planktonic growth conditions. BMC Microbiol. 16:155. 10.1186/s12866-016-0771-y PubMed DOI PMC

Moresco E. M. Y., LaVine D., Beutler B. (2011). Toll-like receptors. Curr. Biol. 21:39. 10.1016/j.cub.2011.05.039 PubMed DOI

Mustachio L. M., Aksit S., Mistry R. H., Scheffler R., Yamada A., Liu J. M. (2012). The Vibrio cholerae mannitol transporter is regulated posttranscriptionally by the MtlS small regulatory RNA. J. Bacteriol. 194 598–606. 10.1128/JB.06153-6111 PubMed DOI PMC

Nadal Jimenez P., Koch G., Thompson J. A., Xavier K. B., Cool R. H., Quax W. J. (2012). The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 76 46–65. 10.1128/mmbr.05007-5011 PubMed DOI PMC

Nakatsu Y., Matsui H., Yamamoto M., Noutoshi Y., Toyoda K., Ichinose Y. (2019). Quorum-dependent expression of rsmX and rsmY, small non-coding RNAs, in Pseudomonas syringae. Microbiol. Res. 22 72–78. 10.1016/j.micres.2019.04.004 PubMed DOI

Napoli C., Lemieux C., Jorgensen R. (1990). Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2 279–289. 10.1105/tpc.2.4.279 PubMed DOI PMC

Narberhaus F. (2010). Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs. RNA Biol. 7:501. 10.4161/rna.7.1.10501 PubMed DOI

Narberhaus F., Waldminghaus T., Chowdhury S. (2006). RNA thermometers. FEMS Microbiol. Rev. 30 3–16. 10.1111/j.1574-6976.2005.004.x PubMed DOI

Ng D., Harn T., Altindal T., Kolappan S., Marles J. M., Lala R., et al. (2016). The Vibrio cholerae minor pilin TcpB initiates assembly and retraction of the toxin-Coregulated Pilus. PLoS Pathog. 12:e1006109. 10.1371/journal.ppat.1006109 PubMed DOI PMC

Oh C. S., Beer S. V. (2005). Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol. Lett. 253 185–192. 10.1016/j.femsle.2005.09.051 PubMed DOI

Okamura K., Lai E. C. (2008). Endogenous small interfering RNAs in animals. Nat. Rev. Mol. Cell Biol. 9 673–678. 10.1038/nrm2479 PubMed DOI PMC

Olejniczak M., Storz G. (2017). ProQ/FinO-domain proteins: another ubiquitous family of RNA matchmakers? Mol. Microbiol. 104 905–915. 10.1111/mmi.13679 PubMed DOI PMC

O’Neill J. (2014). The review on antimicrobial resistance tackling drug-resistant infections globally: final report and recommendations. U. K. Rev. Antimicrob. Resist. 80. Available online at: https://wellcomecollection.org/works/thvwsuba

Ong S. T., Shan, Ho J. Z., Ho B., Ding J. L. (2006). Iron-withholding strategy in innate immunity. Immunobiology 211 295–314. 10.1016/j.imbio.2006.02.004 PubMed DOI

Ostberg J. R., Taylor S. L., Baumann H., Repasky E. A. (2000). Regulatory effects of fever-range whole-body hyperthermia on the LPS-induced acute inflammatory response. J. Leukoc. Biol. 68 815–820. 10.1189/jlb.68.6.815 PubMed DOI

Pallen M. J., Beatson S. A., Bailey C. M. (2005). Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol. 5:9. 10.1186/1471-2180-5-9 PubMed DOI PMC

Papenfort K., Vogel J. (2010). Regulatory RNA in bacterial pathogens. Cell Host Microb. 8 116–127. 10.1016/j.chom.2010.06.008 PubMed DOI

Pena R. T., Blasco L., Ambroa A., González-Pedrajo B., Fernández-García L., López M., et al. (2019). Relationship between quorum sensing and secretion systems. Front. Microbiol. 10:1100. 10.3389/fmicb.2019.01100 PubMed DOI PMC

Pita T., Feliciano J. R., Leitão J. H. (2018). Small noncoding regulatory RNAs from Pseudomonas aeruginosa and Burkholderia cepacia complex. Int. J. Mol. Sci. 19:3759. 10.3390/ijms19123759 PubMed DOI PMC

Poole K. (2012). Bacterial stress responses as determinants of antimicrobial resistance. J. Antimicrob. Chemother. 67 2069–2089. 10.1093/jac/dks196 PubMed DOI

Popitsch N., Bilusic I., Rescheneder P., Schroeder R., Lybecker M. (2017). Temperature-dependent sRNA transcriptome of the Lyme disease spirochete. BMC Genomics 18:28 10.1186/s12864-016-3398-3393 PubMed DOI PMC

Pounds J. A., Bustamante M. R., Coloma L. A., Consuegra J. A., Fogden M. P. L., Foster P. N., et al. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439 161–167. 10.1038/nature04246 PubMed DOI

Puzari M., Sharma M., Chetia P. (2018). Emergence of antibiotic resistant Shigella species: a matter of concern. J. Infect. Public Health 11 451–454. 10.1016/j.jiph.2017.09.025 PubMed DOI

Radolf J. D., Caimano M. J., Stevenson B., Hu L. T. (2012). Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 10 87–99. 10.1038/nrmicro2714 PubMed DOI PMC

Ramamoorthi N., Narasimhan S., Pal U., Bao F., Yang X. F., Fish D., et al. (2005). The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436 573–577. 10.1038/nature03812 PubMed DOI PMC

Ratner H. K., Escalera-Maurer A., Le Rhun A., Jaggavarapu S., Wozniak J. E., Crispell E. K., et al. (2019). Catalytically Active Cas9 mediates transcriptional interference to facilitate bacterial virulence. Mol. Cell 75 498–510. 10.1016/j.molcel.2019.05.029 PubMed DOI PMC

Records A. R., Gross D. C. (2010). Sensor kinases RetS and LadS regulate Pseudomonas syringae Type VI secretion and virulence factors. J. Bacteriol. 192 3584–3596. 10.1128/JB.00114-110 PubMed DOI PMC

Rochat T., Bohn C., Morvan C., Le Lam T. N., Razvi F., Pain A., et al. (2018). The conserved regulatory RNA RsaE down-regulates the arginine degradation pathway in Staphylococcus aureus. Nucleic Acids Res. 46 8803–8816. 10.1093/nar/gky584 PubMed DOI PMC

Rodó X., Pascual M., Fuchs G., Faruque A. S. G. (2002). ENSO and cholera: a nonstationary link related to climate change? Proc. Natl. Acad. Sci. U.S.A. 99 12901–12906. 10.1073/pnas.182203999 PubMed DOI PMC

Rohmer L., Hocquet D., Miller S. I. (2011). Are pathogenic bacteria just looking for food? metabolism and microbial pathogenesis. Trends Microbiol. 19 341–348. 10.1016/j.tim.2011.04.003 PubMed DOI PMC

Romeo T., Babitzke P. (2018). Global regulation by CsrA and Its RNA antagonists. Microbiol. Spectr. 6 1321–1330. 10.1128/microbiolspec.rwr-0009-2017 PubMed DOI PMC

Romero D., Traxler M. F., López D., Kolter R. (2011). Antibiotics as signal molecules. Chem. Rev. 111 5492–5505. 10.1021/cr2000509 PubMed DOI PMC

Romero M., Silistre H., Lovelock L., Wright V. J., Chan K.-G., Hong K.-W., et al. (2018). Genome-wide mapping of the RNA targets of the Pseudomonas aeruginosa riboregulatory protein RsmN. Nucleic Acids Res. 46 6823–6840. 10.1093/nar/gky324 PubMed DOI PMC

Ross J. A., Thorsing M., Lillebæk E. M. S., Teixeira Dos Santos P., Kallipolitis B. H. (2019). The LhrC sRNAs control expression of T cell-stimulating antigen TcsA in Listeria monocytogenes by decreasing tcsA mRNA stability. RNA Biol. 16 270–281. 10.1080/15476286.2019.1572423 PubMed DOI PMC

Roy B., Ahamed S. T., Bandyopadhay B., Giri N. (2020). Development of quinolone resistance and prevalence of different virulence genes among Shigella flexneri and Shigella dysenteriae in environmental water samples. Lett. Appl. Microbiol. 13262. 10.1111/lam.13262 PubMed DOI

Ruano-Gallego D., Álvarez B., Fernández L. Á. (2015). Engineering the controlled assembly of filamentous injectisomes in E. coli K-12 for protein translocation into mammalian cells. ACS Synth. Biol. 4 1030–1041. 10.1021/acssynbio.5b00080 PubMed DOI PMC

Rübsam H., Kirsch F., Reimann V., Erban A., Kopka J., Hagemann M., et al. (2018). The iron-stress activated RNA 1 (IsaR1) coordinates osmotic acclimation and iron starvation responses in the cyanobacterium Synechocystis sp. PCC 6803. Environ. Microbiol. 20 2757–2768. 10.1111/1462-2920.14079 PubMed DOI

Sahni A., Hajjari M., Raheb J., Foroughmand A. M., Asgari M. (2019). The non-coding RNA rprA can increase the resistance to ampicillin in Escherichia coli. Microb. Pathog. 129 266–270. 10.1016/j.micpath.2019.02.021 PubMed DOI

Saliba A. E., Santos C., Vogel J. (2017). New RNA-seq approaches for the study of bacterial pathogens. Curr. Opin. Microbiol. 35 78–87. 10.1016/j.mib.2017.01.001 PubMed DOI

Sanderson S., Campbell D. J., Shastri N. (1995). Identification of a CD4+ T cell-stimulating antigen of pathogenic bacteria by expression cloning. J. Exp. Med. 182 1751–1757. 10.1084/jem.182.6.1751 PubMed DOI PMC

Santiago-Frangos A., Fröhlich K. S., Jeliazkov J. R., Małecka E. M., Marino G., Gray J. J., et al. (2019). Caulobacter crescentus Hfq structure reveals a conserved mechanism of RNA annealing regulation. Proc. Natl. Acad. Sci. U.S.A. 166 10978–10987. 10.1073/pnas.1814428116 PubMed DOI PMC

Sassi M., Augagneur Y., Mauro T., Ivain L., Chabelskaya S., Hallier M., et al. (2015). SRD: A Staphylococcus regulatory RNA database. RNA 21 1005–1017. 10.1261/rna.049346.114 PubMed DOI PMC

Sauder A. B., Kendall M. M. (2018). After the fact(or): posttranscriptional gene regulation in enterohemorrhagic Escherichia coli O157:H7. J. Bacteriol. 200:e00228-18 10.1128/JB.00228-218 PubMed DOI PMC

Schachterle J. K., Zeng Q., Sundin G. W. (2019). Three Hfq-dependent small RNAs regulate flagellar motility in the fire blight pathogen Erwinia amylovora. Mol. Microbiol. 111 1476–1492. 10.1111/mmi.14232 PubMed DOI

Schuster M., Hawkins A. C., Harwood C. S., Greenberg E. P. (2004). The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol. Microbiol. 51 973–985. 10.1046/j.1365-2958.2003.03886.x PubMed DOI

Segovia C., Arias-Carrasco R., Yañez A. J., Maracaja-Coutinho V., Santander J. (2018). Core non-coding RNAs of Piscirickettsia salmonis. PLoS One 13:e0197206. 10.1371/journal.pone.0197206 PubMed DOI PMC

Sellge G., Kufer T. A. (2015). PRR-signaling pathways: learning from microbial tactics. Semin. Immunol. 27 75–84. 10.1016/j.smim.2015.03.009 PubMed DOI

Sheehan L. M., Caswell C. C. (2018). An account of evolutionary specialization: the AbcR small RNAs in the rhizobiales. Mol. Microbiol. 107 24–33. 10.1111/mmi.13869 PubMed DOI PMC

Shimizu K. (2013). Regulation systems of bacteria such as Escherichia coli in response to nutrient limitation and environmental stresses. Metabolites 4 1–35. 10.3390/metabo4010001 PubMed DOI PMC

Shin G. Y., Schachterle J. K., Shyntum D. Y., Moleleki L. N., Coutinho T. A., Sundin G. W. (2019). Functional characterization of a global virulence regulator Hfq and identification of Hfq-dependent sRNAs in the plant pathogen Pantoea ananatis. Front. Microbiol. 10:2075. 10.3389/fmicb.2019.02075 PubMed DOI PMC

Shyp V., Tankov S., Ermakov A., Kudrin P., English B. P., Ehrenberg M., et al. (2012). Positive allosteric feedback regulation of the stringent response enzyme RelA by its product. EMBO Rep. 13 835–839. 10.1038/embor.2012.106 PubMed DOI PMC

Silva I. J., Barahona S., Eyraud A., Lalaouna D., Figueroa-Bossi N., Massé E., et al. (2019). SraL sRNA interaction regulates the terminator by preventing premature transcription termination of rho mRNA. Proc. Natl. Acad. Sci. U.S.A. 116 3042–3051. 10.1073/pnas.1811589116 PubMed DOI PMC

Sinha D., Matz L. M., Cameron T. A., de Lay N. R. (2018). Poly(A) polymerase is required for RyhB sRNA stability and function in Escherichia coli. RNA 24 1496–1511. 10.1261/rna.067181.118 PubMed DOI PMC

Slingenbergh J., Gilbert M., De Balogh K., Wint W. (2004). Ecological sources of zoonotic diseases. OIE Rev. Sci. Tech. 23 467–484. 10.20506/rst.23.2.1492 PubMed DOI

Smirnov A., Förstner K. U., Holmqvist E., Otto A., Günster R., Becher D., et al. (2016). Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. Proc. Natl. Acad. Sci. U.S.A. 113 11591–11596. 10.1073/pnas.1609981113 PubMed DOI PMC

Sonnleitner E., Gonzalez N., Sorger-Domenigg T., Heeb S., Richter A. S., Backofen R., et al. (2011). The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal. Mol. Microbiol. 80 868–885. 10.1111/j.1365-2958.2011.07620.x PubMed DOI

Sparling P. F. (1983). Bacterial virulence and pathogenesis: an overview. Rev. Infect. Dis. 5 637–646. PubMed

Steere A. C., Strle F., Wormser G. P., Hu L. T., Branda J. A., Hovius J. W. R., et al. (2016). Lyme borreliosis. Nat. Rev. Dis. Prim. 2 1–19. 10.1038/nrdp.2016.90 PubMed DOI PMC

Streinzer M., Paulus H. F., Spaethe J. (2009). Floral colour signal increases short-range detectability of a sexually deceptive orchid to its bee pollinator. J. Exp. Biol. 212 1365–1370. 10.1242/jeb.027482 PubMed DOI

Sudo N., Soma A., Iyoda S., Oshima T., Ohto Y., Saito K., et al. (2018). Small RNA Esr41 inversely regulates expression of LEE and flagellar genes in enterohaemorrhagic Escherichia coli. Microbiology 164 821–834. 10.1099/mic.0.000652 PubMed DOI

Sudo N., Soma A., Muto A., Iyoda S., Suh M., Kurihara N., et al. (2014). A novel small regulatory RNA enhances cell motility in enterohemorrhagic Escherichia coli. J. Gen. Appl. Microbiol. 60 44–50. 10.2323/jgam.60.44 PubMed DOI

Suh S. J., Silo-Suh L., Woods D. E., Hassett D. J., West S. E. H., Ohman D. E. (1999). Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J. Bacteriol. 181 3890–3897. 10.1128/jb.181.13.3890-3897.1999 PubMed DOI PMC

Sundberg L. R., Ketola T., Laanto E., Kinnula H., Bamford J. K. H., Penttinen R., et al. (2016). Intensive aquaculture selects for increased virulence and interference competition in bacteria. Proc. R. Soc. B Biol. Sci. 283:3069. 10.1098/rspb.2015.3069 PubMed DOI PMC

Swaminathan B., Gerner-Smidt P. (2007). The epidemiology of human listeriosis. Microb. Infect. 9 1236–1243. 10.1016/j.micinf.2007.05.011 PubMed DOI

Tanji T., Ip Y. T. (2005). Regulators of the toll and Imd pathways in the drosophila innate immune response. Trends Immunol. 26 193–198. 10.1016/j.it.2005.02.006 PubMed DOI

Taylor A. F. (2016). Small molecular replicators go organic. Nature 537 627–628. 10.1038/537627a PubMed DOI

Thairu M. W., Cheng S., Hansen A. K. (2018). A sRNA in a reduced Mutualistic symbiont genome regulates its own gene expression. Mol. Ecol. 27 1766–1776. 10.1111/mec.14424 PubMed DOI

Thairu M. W., Hansen A. K. (2019). Changes in aphid host plant diet influence the small-RNA expression profiles of its obligate nutritional symbiont, Buchnera. mBio 10:e01733-19 10.1128/mBio.01733-1719 PubMed DOI PMC

Thi Bach Nguyen H., Romero A. D., Amman F., Sorger-Domenigg T., Tata M. (2018). Negative control of RpoS synthesis by the sRNA ReaL in Pseudomonas aeruginosa. Front. Microbiol. 9:2488. 10.3389/fmicb.2018.02488 PubMed DOI PMC

Thomason M. K., Voichek M., Dar D., Addis V., Fitzgerald D., Gottesman S., et al. (2019). A rhlI 5′ UTR-Derived sRNA regulates RhlR-dependent quorum sensing in Pseudomonas aeruginosa. mBio 10:e02253-19 10.1128/mBio.02253-2219 PubMed DOI PMC

Tomasini A., François P., Howden B. P., Fechter P., Romby P., Caldelari I. (2014). The importance of regulatory RNAs in Staphylococcus aureus. Infect. Genet. Evol. 21 616–626. 10.1016/j.meegid.2013.11.016 PubMed DOI

Toyofuku M., Nomura N., Eberl L. (2019). Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol. 17 13–24. 10.1038/s41579-018-0112-112 PubMed DOI

Trewavas A. J. (2001). The population/biodiversity paradox. Agricultural efficiency to save wilderness. Plant Physiol. 125 174–179. 10.1104/pp.125.1.174 PubMed DOI PMC

Trullàs R. (2019). El Fracaso De La Ciencia Con Adjetivos, Por Ramon Trullàs. El Periódico. Available online at: https://www.elperiodico.com/es/opinion/20180201/el-fracaso-de-la-ciencia-con-adjetivos-articulo-ramon-trullas-6594038 (accessed December 23, 2019).

Valentini M., Gonzalez D., Mavridou D. A., Filloux A. (2018). Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. Curr. Opin. Microbiol. 41 15–20. 10.1016/j.mib.2017.11.006 PubMed DOI

van der Krol A. R., Mur L. A., Beld M., Mol J. N., Stuitje A. R. (1990). Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2 291–299. 10.1105/tpc.2.4.291 PubMed DOI PMC

Van Elsas J. D., Semenov A. V., Costa R., Trevors J. T. (2011). Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J. 5 173–183. 10.1038/ismej.2010.80 PubMed DOI PMC

Wassenaar T. M., Gaastra W. (2001). Bacterial virulence: can we draw the line? FEMS Microbiol. Lett. 201 1–7. 10.1111/j.1574-6968.2001.tb10724.x PubMed DOI

Waters L. S., Storz G. (2009). Regulatory RNAs in bacteria. Cell 136 615–628. 10.1016/j.cell.2009.01.043 PubMed DOI PMC

Wei B. L., Brun-Zinkernagel A. M., Simecka J. W., Prüß B. M., Babitzke P., Romeo T. (2001). Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol. Microbiol. 40 245–256. 10.1046/j.1365-2958.2001.02380.x PubMed DOI

Weiberg A., Wang M., Lin F. M., Zhao H., Zhang Z., Kaloshian I., et al. (2013). Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342 118–123. 10.1126/science.1239705 PubMed DOI PMC

Wernegreen J. J. (2002). Genome evolution in bacterial endosymbionts of insects. Nat. Rev. Genet. 3 850–861. 10.1038/nrg931 PubMed DOI

Werren J. H., Baldo L., Clark M. E. (2008). Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6 741–751. 10.1038/nrmicro1969 PubMed DOI

Westermann A. J., Barquist L., Vogel J. (2017). Resolving host-pathogen interactions by dual RNA-seq. PLoS Pathog. 13:e06033. 10.1371/journal.ppat.1006033 PubMed DOI PMC

Westermann A. J., Förstner K. U., Amman F., Barquist L., Chao Y., Schulte L. N., et al. (2016). Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 529 496–501. 10.1038/nature16547 PubMed DOI

Westermann A. J., Gorski S. A., Vogel J. (2012). Dual RNA-seq of pathogen and host. Nat. Rev. Microbiol. 10 618–630. 10.1038/nrmicro2852 PubMed DOI

Westermann A. J., Venturini E., Sellin M. E., Förstner K. U., Hardt W. D., Vogel J. (2019). The major RNA-binding protein ProQ impacts virulence gene expression in Salmonella enterica serovar Typhimurium. mBio 10:e002504-18 10.1128/mBio.02504-2518 PubMed DOI PMC

Wightman B., Ha I., Ruvkun G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75 855–862. 10.1016/0092-8674(93)90530-4 PubMed DOI

Wilderman P. J., Sowa N. A., FitzGerald D. J., FitzGerald P. C., Gottesman S., Ochsner U. A., et al. (2004). Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc. Natl. Acad. Sci. U.S.A. 101 9792–9797. 10.1073/pnas.0403423101 PubMed DOI PMC

Wilms I., Voss B., Hess W. R., Leichert L. I., Narberhaus F. (2011). Small RNA-mediated control of the Agrobacterium tumefaciens GABA binding protein. Mol. Microbiol. 80 492–506. 10.1111/j.1365-2958.2011.07589.x PubMed DOI

Witzany G. (2010). Biocommunication and natural genome editing. World J. Biol. Chem. 1:348. 10.4331/wjbc.v1.i11.348 PubMed DOI PMC

Woolfit M., Algama M., Keith J. M., McGraw E. A., Popovici J. (2015). Discovery of putative small non-coding RNAs from the obligate intracellular bacterium Wolbachia pipientis. PLoS One 10:e0118595. 10.1371/journal.pone.0118595 PubMed DOI PMC

Xi D., Li Y., Yan J., Li Y., Wang X., Cao B. (2020). Small RNA coaR contributes to intestinal colonization in Vibrio cholerae via the two-component system EnvZ/OmpR. Environ. Microbiol. 1462. 10.1111/1462-2920.14906 PubMed DOI

Yakhnin A. V., Baker C. S., Vakulskas C. A., Yakhnin H., Berezin I., Romeo T., et al. (2013). CsrA activates flhDC expression by protecting flhDC mRNA from RNase E-mediated cleavage. Mol. Microbiol. 87 851–866. 10.1111/mmi.12136 PubMed DOI PMC

Yuan X., Zeng Q., Khokhani D., Tian F., Severin G. B., Waters C. M., et al. (2019). A feed-forward signalling circuit controls bacterial virulence through linking cyclic di-GMP and two mechanistically distinct sRNAs, ArcZ and RsmB. Environ. Microbiol. 21 2755–2771. 10.1111/1462-2920.14603 PubMed DOI PMC

Zapf R. L., Wiemels R. E., Keogh R. A., Holzschu D. L., Howell K. M., Trzeciak E., et al. (2019). The small RNA Teg41 regulates expression of the alpha phenol-soluble modulins and is required for virulence in Staphylococcus aureus. mBio 10:e02484-18 10.1128/mBio.02484-2418 PubMed DOI PMC

Zeng G., Yang J., Zhu G. (2019). Cross-kingdom small RNAs among animals, plants and microbes. Cells 8:371. 10.3390/cells8040371 PubMed DOI PMC

Zeng Q., Sundin G. W. (2014). Genome-wide identification of Hfq-regulated small RNAs in the fire blight pathogen Erwinia amylovora discovered small RNAs with virulence regulatory function. BMC Genom. 15:414. 10.1186/1471-2164-15-414 PubMed DOI PMC

Zhang M. G., Liu J. M. (2019). Transcription of cis antisense small RNA MtlS in Vibrio cholerae is regulated by transcription of its target gene, mtlA. J. Bacteriol. 201:e00178-19 10.1128/JB.00178-119 PubMed DOI PMC

Zhang Y. J., Rubin E. J. (2013). Feast or famine: the host-pathogen battle over amino acids. Cell. Microbiol. 15 1079–1087. 10.1111/cmi.12140 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...