Enhancing MPPT performance for partially shaded photovoltaic arrays through backstepping control with Genetic Algorithm-optimized gains
Status odvoláno Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, odvolaná publikace
PubMed
38336800
PubMed Central
PMC11310497
DOI
10.1038/s41598-024-53721-w
PII: 10.1038/s41598-024-53721-w
Knihovny.cz E-zdroje
- Klíčová slova
- Backstepping controller, Genetic algorithm, Maximum power point tracking, Partial shading effects, Photovoltaic array,
- Publikační typ
- časopisecké články MeSH
- odvolaná publikace MeSH
As the significance and complexity of solar panel performance, particularly at their maximum power point (MPP), continue to grow, there is a demand for improved monitoring systems. The presence of variable weather conditions in Maroua, including potential partial shadowing caused by cloud cover or urban buildings, poses challenges to the efficiency of solar systems. This study introduces a new approach to tracking the Global Maximum Power Point (GMPP) in photovoltaic systems within the context of solar research conducted in Cameroon. The system utilizes Genetic Algorithm (GA) and Backstepping Controller (BSC) methodologies. The Backstepping Controller (BSC) dynamically adjusts the duty cycle of the Single Ended Primary Inductor Converter (SEPIC) to align with the reference voltage of the Genetic Algorithm (GA) in Maroua's dynamic environment. This environment, characterized by intermittent sunlight and the impact of local factors and urban shadowing, affects the production of energy. The Genetic Algorithm is employed to enhance the efficiency of BSC gains in Maroua's solar environment. This optimization technique expedites the tracking process and minimizes oscillations in the GMPP. The adaptability of the learning algorithm to specific conditions improves energy generation, even in the challenging environment of Maroua. This study introduces a novel approach to enhance the efficiency of photovoltaic systems in Maroua, Cameroon, by tailoring them to the specific solar dynamics of the region. In terms of performance, our approach surpasses the INC-BSC, P&O-BSC, GA-BSC, and PSO-BSC methodologies. In practice, the stabilization period following shadowing typically requires fewer than three iterations. Additionally, our Maximum Power Point Tracking (MPPT) technology is based on the Global Maximum Power Point (GMPP) methodology, contrasting with alternative technologies that prioritize the Local Maximum Power Point (LMPP). This differentiation is particularly relevant in areas with partial shading, such as Maroua, where the use of LMPP-based technologies can result in power losses. The proposed method demonstrates significant performance by achieving a minimum 33% reduction in power losses.
Applied Science Research Center Applied Science Private University Amman 11937 Jordan
Department of Electrical Engineering Faculty of Engineering Aswan University Aswân 81542 Egypt
Department of Electrical Engineering Graphic Era Dehra Dun 248002 India
Graphic Era Hill University Dehra Dun 248002 India
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman Jordan
Zobrazit více v PubMed
Dincer, I. & Rosen, M. A. A worldwide perspective on energy, environment and sustainable development. Int. J. Energy Res.22, 1305–1321. 10.1002/(SICI)1099-114X(199812)22:15%3c1305::AID-ER417%3e3.0.CO;2-H (1998).
Wang, Y. & Xia, Y. W. Harmonic transfer function based single-input single-output impedance modeling of LCCHVDC systems. J. Mod. Power Syst. Clean Energy10.35833/MPCE.2023.000093 (2023).
Arvind, Y. et al. Propitious step for CO2 mitigation in university campus boosting clean development mechanism. In IEEE Global Power, Energy and Communication Conference - GPECOM2022, Cappadocia, Turkey June 14–17 340–343 (2022). 10.1109/GPECOM55404.2022.9815778.
Wang, H., Wu, X., Zheng, X. & Yuan, X. Model predictive current control of nine-phase open-end winding PMSMs with an online virtual vector synthesis strategy. IEEE Trans. Ind. Electron.70, 2199–2208. 10.1109/TIE.2022.3174241 (2023).
Sahoo, G. K., Subhashree, C., Rajkumar, S. R., Mohit, B. & Ashit, K. D. Scaled Conjugate-Artificial Neural Network-Based novel framework for enhancing the power quality of Grid-Tied Microgrid systems. Alexandr. Eng. J.80, 520–541. 10.1016/j.aej.2023.08.081 (2023).
Glaser, P. E. Power from the sun: Its future. Science162, 857–861. 10.1126/science.162.3856.857 (1968). PubMed
Song, X., Wang, H., Ma, X., Yuan, X. & Wu, X. Robust model predictive current control for a nine-phase open-end winding PMSM With high computational efficiency. IEEE Trans. Power Electron.38, 13933–13943. 10.1109/TPEL.2023.3309308 (2023).
Gupta, S. et al. Estimation of solar radiation with consideration of terrestrial losses at a selected location—a review. Sustainability15, 9962. 10.3390/su15139962 (2023).
Yang, B. et al. Mechanically strong, flexible, and flame-retardant Ti3C2Tx MXene-coated aramid paper with superior electromagnetic interference shielding and electrical heating performance. Chem. Eng. J.476, 146834. 10.1016/j.cej.2023.146834 (2023).
Feldman, D. & Margolis, R. Q4 2019/Q1 2020 Solar Industry Update. Golden, CO (United States) (2020). 10.2172/1669465.
Yang, Y., Zhang, Z., Zhou, Y., Wang, C. & Zhu, H. Design of a simultaneous information and power transfer system based on a modulating feature of magnetron. IEEE Trans. Microw. Theory Tech.71, 907–915. 10.1109/TMTT.2022.3205612 (2023).
Li, X., Wen, H. & Hu, Y. Evaluation of different maximum power point tracking (MPPT) techniques based on practical meteorological data. In 2016 IEEE Int. Conf. Renew. Energy Res. Appl., IEEE 696–701 (2016). 10.1109/ICRERA.2016.7884423.
Kalaiarasi, N. et al. Performance evaluation of various Z-Source inverter topologies for PV applications using AI-based MPPT techniques. Int. Trans. Electr. Energy Syst.2023, 16. 10.1155/2023/1134633 (2023).
Hamed, S. B. et al. A robust MPPT approach based on first-order sliding mode for triple-junction photovoltaic power system supplying electric vehicle. Energy Rep.9, 4275–4297. 10.1016/j.egyr.2023.02.086 (2023).
Scarpa, V., Buso, S. & Spiazzi, G. Low-complexity MPPT technique exploiting the PV module MPP locus characterization. IEEE Trans. Ind. Electron.56, 1531–1538. 10.1109/TIE.2008.2009618 (2009).
Chtouki, I., Wira, P., Zazi, M. & Colicchio, B. M. S. Design, implementation and comparison of several neural perturb and observe MPPT methods for photovoltaic systems. Int. J. Renew. Energy Res.10.20508/ijrer.v9i2.9293.g7645 (2019).
Ali, A., Hasan, A. N. & Marwala, T. Perturb and observe based on fuzzy logic controller maximum power point tracking (MPPT). In 2014 Int. Conf. Renew. Energy Res. Appl., IEEE 406–11 (2014). 10.1109/ICRERA.2014.7016418.
Madaria, P. K., Bajaj, M., Aggarwal, S. & Singh, A. K. A Grid-connected solar PV module with autonomous power management. In 2020 IEEE 9th Power India International Conference (PIICON), Sonepat, India 1–6 (2020). 10.1109/PIICON49524.2020.9113065.
Abdelhakim, B., Ilhami, C. & Korhan-Kayisli, R. B. Design and implementation of a cuk converter controlled by a direct duty cycle INC-MPPT in PV battery system. Int. J. Smart Grid10.20508/ijsmartgrid.v3i1.37.g42 (2019).
Yang, C., Wu, Z., Li, X. & Fars, A. Risk-constrained stochastic scheduling for energy hub: Integrating renewables, demand response, and electric vehicles. Energy288, 129680. 10.1016/j.energy.2023.129680 (2024).
Zhang, X. et al. Voltage and frequency stabilization control strategy of virtual synchronous generator based on small signal model. Energy Rep.9, 583–590. 10.1016/j.egyr.2023.03.071 (2023).
Fu, C., Yuan, H., Xu, H., Zhang, H. & Shen, L. TMSO-Net: Texture adaptive multi-scale observation for light field image depth estimation. J. Vis. Commun. Image Represent.90, 103731. 10.1016/j.jvcir.2022.103731 (2023).
Harrag, A. & Messalti, S. Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller. Renew. Sustain. Energy Rev.49, 1247–1260. 10.1016/j.rser.2015.05.003 (2015).
Sahoo, J., Samanta, S. & Bhattacharyya, S. Adaptive PID controller with P&O MPPT algorithm for photovoltaic system. IETE J. Res.66, 442–453. 10.1080/03772063.2018.1497552 (2020).
Feroz Mirza, A., Mansoor, M., Ling, Q., Khan, M. I. & Aldossary, O. M. Advanced variable step size incremental conductance MPPT for a standalone PV system utilizing a GA-tuned PID controller. Energies13, 4153. 10.3390/en13164153 (2020).
Ashok-Kumar, B., Srinivasa-Venkatesh, M. & Mohan-Muralikrishna, G. Optimization of photovoltaic power using PID MPPT controller based on incremental conductance algorithm. Power Electron. Renew. Energy Syst.2015, 803–809. 10.1007/978-81-322-2119-7_78 (2015).
Li, S., Zhao, X., Liang, W., Hossain, M. T. & Zhang, Z. A fast and accurate calculation method of line breaking power flow based on taylor expansion. Front. Energy Res.2022, 10. 10.3389/fenrg.2022.943946 (2022).
Wang, Y., Jiang, X., Xie, X., Yang, X. & Xiao, X. Identifying sources of subsynchronous resonance using wide-area phasor measurements. IEEE Trans. Power Deliv.36, 3242–3254. 10.1109/TPWRD.2020.3037289 (2021).
Diouri, O., Gaga, A., Senhaji, S. & Jamil, M. O. Design and PIL test of high performance MPPT controller based on P&O-backstepping applied to DC-DC converter. J. Robot. Control3, 431–438. 10.18196/jrc.v3i4.15184 (2022).
Taouni, A., Abbou, A., Akherraz, M., Ouchatti, A. & Majdoul, R. MPPT design for photovoltaic system using backstepping control with boost converter. In 2016 Int. Renew. Sustain. Energy Conf., IEEE 469–75 (2016). 10.1109/IRSEC.2016.7983920.
Chennoufi, K. & Ferfra, M. Conception and hardware implementation of MPPT controller for partially shaded photovoltaic panels using backstepping and neural network based particle swarm optimization. Int. J. Intell. Eng. Syst.2022, 15. 10.22266/ijies2022.0831.49 (2022).
Satpathy, P. R. et al. Performance and reliability improvement of partially shaded PV arrays by one-time electrical reconfiguration. IEEE Access10, 46911–46935. 10.1109/ACCESS.2022.3171107 (2022).
Muniyandi, V., Saravanan, M. & Balasubramanian, A. K. Improving the power output of a partially shaded photovoltaic array through a hybrid magic square configuration with differential evolution based adaptive P&O MPPT method. J. Sol. Energy Eng.2023, 1–38. 10.1115/1.4056621 (2023).
Chen, B., Hu, J., Zhao, Y. & Ghosh, B. K. Finite-time velocity-free rendezvous control of multiple AUV systems with intermittent communication. IEEE Trans. Syst. Man Cybern. Syst.52, 6618–6629. 10.1109/TSMC.2022.3148295 (2022).
Chen, B., Hu, J., Zhao, Y. & Ghosh, B. K. Finite-time observer based tracking control of uncertain heterogeneous underwater vehicles using adaptive sliding mode approach. Neurocomputing481, 322–332. 10.1016/j.neucom.2022.01.038 (2022).
Raj, R. D. A. & Naik, K. A. Novel shade dispersion techniques for reconfiguration of partially shaded photovoltaic arrays. Smart Grids Sustain. Energy8, 5. 10.1007/s40866-023-00163-4 (2023).
Muthuramalingam, M. & Manoharan, P. S. Comparative analysis of distributed MPPT controllers for partially shaded stand alone photovoltaic systems. Energy Convers. Manag.86, 286–299. 10.1016/j.enconman.2014.05.044 (2014).
Esram, T. & Chapman, P. L. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers.22, 439–449. 10.1109/TEC.2006.874230 (2007).
Guo, C. & Hu, J. Time base generator-based practical predefined-time stabilization of high-order systems with unknown disturbance. IEEE Trans. Circ. Syst. II Express Briefs70, 2670–2674. 10.1109/TCSII.2023.3242856 (2023).
Lu, Y., Tan, C., Ge, W., Zhao, Y. & Wang, G. Adaptive disturbance observer-based improved super-twisting sliding mode control for electromagnetic direct-drive pump. Smart Mater. Struct.32, 017001. 10.1088/1361-665X/aca84e (2023).
Jiang, L. L., Maskell, D. L. & Patra, J. C. A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy Build.58, 227–236. 10.1016/j.enbuild.2012.12.001 (2013).
Al-Emam M, Marei MI, El-khattam W. A maximum power point tracking technique for PV under partial shading condition. In 2018 8th IEEE India Int. Conf. Power Electron., IEEE 1–6 (2018). 10.1109/IICPE.2018.8709506.
Boztepe, M. et al. Global MPPT scheme for photovoltaic string inverters based on restricted voltage window search algorithm. IEEE Trans. Ind. Electron.61, 3302–3312. 10.1109/TIE.2013.2281163 (2014).
Pilawa-Podgurski, R. C. N. & Perreault, D. J. Submodule integrated distributed maximum power point tracking for solar photovoltaic applications. IEEE Trans. Power Electron.28, 2957–2967. 10.1109/TPEL.2012.2220861 (2013).
Hong, C.-M., Ou, T.-C. & Lu, K.-H. Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system. Energy50, 270–279. 10.1016/j.energy.2012.12.017 (2013).
Gao, X., Li, S. & Gong, R. Maximum power point tracking control strategies with variable weather parameters for photovoltaic generation systems. Sol. Energy93, 357–367. 10.1016/j.solener.2013.04.023 (2013).
Mohammedi, A., Mezzai, N., Rekioua, D. & Rekioua, T. Impact of shadow on the performances of a domestic photovoltaic pumping system incorporating an MPPT control: A case study in Bejaia, North Algeria. Energy Convers. Manag.84, 20–29. 10.1016/j.enconman.2014.04.008 (2014).
Mo, J. & Yang, H. sampled value attack detection for Busbar differential protection based on a negative selection immune system. J. Mod. Power Syst. Clean Energy11, 421–433. 10.35833/MPCE.2021.000318 (2023).
Hu, F. et al. Research on the evolution of China’s photovoltaic technology innovation network from the perspective of patents. Energy Strateg. Rev.51, 101309. 10.1016/j.esr.2024.101309 (2024).
Lin, X. et al. Stability analysis of Three-phase Grid-Connected inverter under the weak grids with asymmetrical grid impedance by LTP theory in time domain. Int. J. Electr. Power Energy Syst.142, 108244. 10.1016/j.ijepes.2022.108244 (2022).
Song, J., Mingotti, A., Zhang, J., Peretto, L. & Wen, H. Accurate damping factor and frequency estimation for damped real-valued sinusoidal signals. IEEE Trans. Instrum. Meas.71, 1–4. 10.1109/TIM.2022.3220300 (2022).
Bai, X., He, Y. & Xu, M. Low-thrust reconfiguration strategy and optimization for formation flying using jordan normal form. IEEE Trans. Aerosp. Electron. Syst.57, 3279–3295. 10.1109/TAES.2021.3074204 (2021).
Boussafa, A., Ferfra, M, Ouazzani, Y. E., Rabeh, R. & Chennoufi, K. Extraction of electrical parameters for two-diode photovoltaic model using combined analytical and genetic algorithm. In 2022 4th Glob. Power, Energy Commun. Conf., IEEE 301–6 (2022). 10.1109/GPECOM55404.2022.9815756.
Yang, X., Wang, X., Wang, S., Wang, K. & Sial, M. B. Finite-time adaptive dynamic surface synchronization control for dual-motor servo systems with backlash and time-varying uncertainties. ISA Trans.137, 248–262. 10.1016/j.isatra.2022.12.013 (2023). PubMed
Li, X. et al. Advances in mixed 2D and 3D perovskite heterostructure solar cells: A comprehensive review. Nano Energy118, 108979. 10.1016/j.nanoen.2023.108979 (2023).
Wang, H., Sun, W., Jiang, D. & Qu, R. A MTPA and flux-weakening curve identification method based on physics-informed network without calibration. IEEE Trans. Power Electron.38, 12370–12375. 10.1109/TPEL.2023.3295913 (2023).
Shao, B. et al. Power coupling analysis and improved decoupling control for the VSC connected to a weak AC grid. Int. J. Electr. Power Energy Syst.145, 108645. 10.1016/j.ijepes.2022.108645 (2023).
Sun, Q., Lyu, G., Liu, X., Niu, F. & Gan, C. Virtual current compensation-based quasi-sinusoidal-wave excitation scheme for switched reluctance motor drives. IEEE Trans. Ind. Electron.2023, 1–11. 10.1109/TIE.2023.3333056 (2023).
Xu, B., Wang, X., Zhang, J., Guo, Y. & Razzaqi, A. A. A novel adaptive filtering for cooperative localization under compass failure and non-gaussian noise. IEEE Trans. Veh. Technol.71, 3737–3749. 10.1109/TVT.2022.3145095 (2022).
Yang, M., Wang, Y., Xiao, X. & Li, Y. A robust damping control for virtual synchronous generators based on energy reshaping. IEEE Trans. Energy Convers.38, 2146–2159. 10.1109/TEC.2023.3260244 (2023).
Xu, B. & Guo, Y. A novel DVL calibration method based on robust invariant extended kalman filter. IEEE Trans. Veh. Technol.71, 9422–9434. 10.1109/TVT.2022.3182017 (2022).