Alarm communication predates eusociality in termites
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36681783
PubMed Central
PMC9867704
DOI
10.1038/s42003-023-04438-5
PII: 10.1038/s42003-023-04438-5
Knihovny.cz E-zdroje
- MeSH
- etologie MeSH
- fylogeneze MeSH
- Isoptera * MeSH
- komunikace MeSH
- lidé MeSH
- švábi * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Termites (Blattodea: Isoptera) have evolved specialized defensive strategies for colony protection. Alarm communication enables workers to escape threats while soldiers are recruited to the source of disturbance. Here, we study the vibroacoustic and chemical alarm communication in the wood roach Cryptocercus and in 20 termite species including seven of the nine termite families, all life-types, and all feeding and nesting habits. Our multidisciplinary approach shows that vibratory alarm signals represent an ethological synapomorphy of termites and Cryptocercus. In contrast, chemical alarms have evolved independently in several cockroach groups and at least twice in termites. Vibroacoustic alarm signaling patterns are the most complex in Neoisoptera, in which they are often combined with chemical signals. The alarm characters correlate to phylogenetic position, food type and hardness, foraging area size, and nesting habits. Overall, species of Neoisoptera have developed the most sophisticated communication system amongst termites, potentially contributing to their ecological success.
Czech Technical University Prague Faculty of Electrical Engineering 166 27 Prague 6 Czech Republic
Okinawa Institute of Science and Technology Graduate University Okinawa Japan
Zobrazit více v PubMed
Stankowich T, Haverkamp PJ, Caro T. Ecological drivers of antipredator defenses in Carnivores. Evolution. 2014;68:1415–1425. doi: 10.1111/evo.12356. PubMed DOI
Sugiura S. Predators as drivers of insect defenses. Entomol. Sci. 2020;23:316–337. doi: 10.1111/ens.12423. DOI
Beauchamp, G. Animal Vigilance—Monitoring Predators And Competitors. p. 254 (Elsevier, 2015).
Hollén LI, Radford AN. The development of alarm call behaviour in mammals and birds. Anim. Behav. 2009;78:791–800. doi: 10.1016/j.anbehav.2009.07.021. DOI
Gill S, Bierema AM-K. On the meaning of alarm calls: a review of functional reference in avian alarm calling. Ethology. 2013;119:449–461. doi: 10.1111/eth.12097. DOI
Blumstein, D. T. Rodent Societies: An Ecological & Evolutionary Perspective (eds. J. O. Wolff & P. W. Sherman) pp. 317–327. (University of Chicago Press, 2007).
Snowdon CT. Vervet monkey alarm calls: setting the historical context. Anim. Behav. Cogn. 2020;7:87–94. doi: 10.26451/abc.07.02.02.2020. DOI
Hamilton WD. The genetical evolution of social behaviour. J. Theor. Biol. 1964;7:1–52. doi: 10.1016/0022-5193(64)90038-4. PubMed DOI
Smith JM. The evolution of alarm calls. Am. Nat. 1965;99:59–63. doi: 10.1086/282349. DOI
Taylor RJ, Balph DF, Balph MH. The evolution of alarm calling: a cost-benefit analysis. Anim. Behav. 1990;39:860–868. doi: 10.1016/S0003-3472(05)80950-9. DOI
Hermann, H. R. Defensive Mechanisms in Social Insects. p. 259 (Praeger Publishers, 1984).
Stern DL, Foster WA. The evolution of soldiers in aphids. Biol. Rev. 1996;71:27–79. doi: 10.1111/j.1469-185X.1996.tb00741.x. PubMed DOI
Smith RJF. Alarm signals in fishes. Rev. Fish. Biol. Fish. 1992;2:33–63. doi: 10.1007/BF00042916. DOI
Klump GM, Shalter MD. Acoustic behaviour of birds and mammals in the predator context; I. Factors affecting the structure of alarm signals. II. The functional significance and evolution of alarm signals. Z. Tierpsychol. 1984;66:189–226. doi: 10.1111/j.1439-0310.1984.tb01365.x. DOI
Caro, T. Antipredator Defenses in Birds and Mammals. p. 592 (University of Chicago Press, 2005).
Seyfarth RM, Cheney DL, Marler P. Monkey responses to three different alarm calls: Classification and semantic communication. Science. 1980;210:801–803. doi: 10.1126/science.7433999. PubMed DOI
Wyatt, T. D. Pheromones and Animal Behaviour. p. 391 (Cambridge University Press, 2003).
Hill, P. S. M. Vibrational Communication in Animals. p. 272 (Harvard, Cambridge, 2008).
Hill PSM. Biotremology: We fight for food. Curr. Biol. 2019;29:R209–R212. doi: 10.1016/j.cub.2019.01.061. PubMed DOI
Cocroft RB, Rodríguez RL. The behavioral ecology of insect vibrational communication. BioScience. 2005;55:323–334. doi: 10.1641/0006-3568(2005)055[0323:TBEOIV]2.0.CO;2. DOI
Kettler R, Leuthold RH. Inter- and intraspecific alarm response in the termite Macrotermes subhyalinus (Rambur) Insectes Soc. 1995;42:145–156. doi: 10.1007/BF01242451. DOI
Hölldobler B, Braun U, Gronenberg W, Kirchner WH, Peeters C. Trail communication in the ant Megaponera foetens (Fabr.) (Formicidae, Ponerinae) J. Insect Physiol. 1994;40:585–593. doi: 10.1016/0022-1910(94)90145-7. DOI
Hunt JH, Richard F-J. Intracolony vibroacoustic communication in social insects. Insectes Soc. 2013;60:403–417. doi: 10.1007/s00040-013-0311-9. DOI
Howse PE. The perception of vibration by the subgenual organ in Zootermopsis angusticollis Emerson and Periplaneta americana L. Experientia. 1962;18:457–458. doi: 10.1007/BF02175857. DOI
Golden TMJ, Hill PSM. The evolution of stridulatory communication in ants, revisited. Insectes Soc. 2016;63:309–319. doi: 10.1007/s00040-016-0470-6. DOI
Šobotník J, Hanus R, Roisin Y. Agonistic behavior of the termite Prorhinotermes canalifrons (Isoptera: Rhinotermitidae) J. Insect Behav. 2008;21:521–534. doi: 10.1007/s10905-008-9147-y. DOI
Delattre O, et al. Complex alarm strategy in the most basal termite species. Behav. Ecol. Sociobiol. 2015;69:1945–1955. doi: 10.1007/s00265-015-2007-9. DOI
Krausa K, Hager FA, Kiatoko N, Kirchner WH. Vibrational signals of African stingless bees. Insectes Soc. 2017;64:415–424. doi: 10.1007/s00040-017-0564-9. DOI
Rosengaus R, Jordan C, Lefebvre M, Traniello JFA. Pathogen alarm behavior in a termite: a new form of communication in social insects. Naturwissenschaften. 1999;86:544–548. doi: 10.1007/s001140050672. PubMed DOI
Evans TA, et al. Termites assess wood size by using vibration signals. Proc. Natl Acad. Sci. USA. 2005;102:3732–3737. doi: 10.1073/pnas.0408649102. PubMed DOI PMC
Evans TA, et al. Termites eavesdrop to avoid competitors. Proc. R. Soc. B. 2009;276:4035–4041. doi: 10.1098/rspb.2009.1147. PubMed DOI PMC
Blum, M. S. Comprehensive Insect Physiology, Biochemistry and Pharmacology: Behavior, Vol. 9 (eds. G. A. Kerkut & L. I. Gilbert), pp. 193–224 (Pergamon Press, 1985).
Verheggen FJ, Haubruge E, Mescher MC. Alarm pheromones—Chemical signaling in response to danger, Editor(s): Gerald Litwack. Vitam. Horm. 2010;83:215–239. doi: 10.1016/S0083-6729(10)83009-2. PubMed DOI
Šobotník J, Jirošová A, Hanus R. Chemical warfare in termites. J. Insect Physiol. 2010;56:1012–1021. doi: 10.1016/j.jinsphys.2010.02.012. PubMed DOI
Eisner T, Kriston I, Aneshansley DJ. Defensive behavior of a termite (Nasutitermes exitiosus) Behav. Ecol. Sociobiol. 1976;1:83–125. doi: 10.1007/BF00299954. DOI
Šobotník J, et al. (E,E)-α-Farnesene, an alarm pheromone of the termite Prorhinotermes canalifrons. J. Chem. Ecol. 2008;34:478–486. doi: 10.1007/s10886-008-9450-2. PubMed DOI
Leonhardt SD, Menzel F, Nehring V, Schmitt T. Ecology and evolution of communication in social insects. Cell. 2016;164:1277–1287. doi: 10.1016/j.cell.2016.01.035. PubMed DOI
Wilson EO, Regnier FE., Jr The evolution of the alarm-defense system in the formicine ants. Am. Nat. 1971;105:279–289. doi: 10.1086/282724. DOI
Bradshaw JWS, Baker R, Howse PE. Multicomponent alarm pheromones of the weaver ant. Nature. 1975;258:230–231. doi: 10.1038/258230a0. PubMed DOI
Norman VC, Butterfield T, Drijfhout F, Tasman K, Hughes WO. Alarm pheromone composition and behavioral activity in fungus-growing ants. J. Chem. Ecol. 2017;43:225–235. doi: 10.1007/s10886-017-0821-4. PubMed DOI PMC
Prestwich GD. Defense Mechanisms of Termites. Annu. Rev. Entomol. 1984;29:201–232. doi: 10.1146/annurev.en.29.010184.001221. DOI
Bell, W. J., Roth, L. M. & Nalepa, C. A. Cockroaches: Ecology, Behavior, and Natural History. p. 247 (The Johns Hopkins University Press, 2007).
Evans, D. A., Baker, R., Briner, P. H. & McDowell, P. G. Defensive secretions of some African termites. Proceedings of the International Congress of the International Union for the Study of Social Insects (1977).
Anderson M. The evolution of eusociality. Annu. Rev. Ecol. Syst. 1984;15:165–189. doi: 10.1146/annurev.es.15.110184.001121. DOI
Stern DL. A phylogenetic analysis of soldier evolution in the aphid family Hormaphididae. Proc. R. Soc. B. 1994;256:203–209. doi: 10.1098/rspb.1994.0071. PubMed DOI
Bourke, A. F. Behavioural Ecology: An Evolutionary Approach, 4th ed. (eds. J. R. Krebs & N. B. Davies) pp. 203–227. (Blackwell Publishing, 1997).
Deligne, J., Quennedey, A. & Blum, M. S. Social Insects (ed. H. R. Hermann) p. 1–76 (Academic Press, 1981).
Bignell, D. E. The Mechanistic Benefits of Microbial Symbionts, Advances in Environmental Microbiology (ed. C. J. Hurst), p. 121–172. (Springer, 2016).
Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA. 2018;115:6506–6511. doi: 10.1073/pnas.1711842115. PubMed DOI PMC
Tuma J, Eggleton P, Fayle TM. Ant-termite interactions: an important but under-explored ecological linkage. Biol. Rev. 2020;95:555–572. doi: 10.1111/brv.12577. PubMed DOI
Noirot C, Pasteels JM. Ontogenetic development and evolution of the worker caste in termites. Experientia. 1987;43:851–860. doi: 10.1007/BF01951642. DOI
Prestwich GD, Bierl BA, Devilbiss ED, Chaudhury MFB. Soldier frontal glands of the termite Macrotermes subhyalinus: Morphology, chemical composition, and use in defense. J. Chem. Ecol. 1977;3:579–590. doi: 10.1007/BF00989078. DOI
Waller DA, La Face JP. Unpalatability as a passive defense of Coptotermes formosanus Shiraki soldiers against ant predation. J. Appl. Entomol. 1987;103:148–153. doi: 10.1111/j.1439-0418.1987.tb00973.x. DOI
Quennedey, A. Defensive Mechanisms in Social Insects (ed. H. R. Hermann) p. 151–200. (1984)
Kuan K-C, Chiu CI, Shih M-C, Chi K-J, Li H-F. Termite’s twisted mandible presents fast, powerful, and precise strikes. Sci. Rep. 2020;10:9462. doi: 10.1038/s41598-020-66294-1. PubMed DOI PMC
Šobotník J, et al. Explosive backpacks in old termite workers. Science. 2012;337:436. doi: 10.1126/science.1219129. PubMed DOI
Bourguignon T, et al. Molecular mechanism of the two-component suicidal weapon of Neocapritermes taracua old workers. Mol. Biol. Evol. 2016;33:809–819. doi: 10.1093/molbev/msv273. PubMed DOI
Wilson, E. O. The Insect Societies (Harvard University Press, 1971).
Roisin Y, Everaerts C, Pasteels JM, Bonnard O. Caste-dependent reactions to soldier defensive secretion and chiral alarm/recruitment pheromone in Nasutitermes princeps. J. Chem. Ecol. 1990;16:2865–2875. doi: 10.1007/BF00979479. PubMed DOI
Connétable S, Robert A, Bouffault F, Bordereau C. Vibratory alarm signals in two sympatric higher termite species: Pseudacanthotermes spiniger and P. militaris (Termitidae, Macrotermitinae) J. Insect Behav. 1999;12:329–342. doi: 10.1023/A:1020887421551. DOI
Lubin YD, Montgomery GG. Defenses of Nasutitermes termites (Isoptera, Termitidae) against Tamandua anteaters (Edentata, Myrmecophagidae) Biotropica. 1981;13:66–76. doi: 10.2307/2387872. DOI
Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, 1990).
Moore BP. Studies on the chemical composition and function of the cephalic gland secretion in Australian termites. J. Insect Physiol. 1968;14:33–39. doi: 10.1016/0022-1910(68)90131-5. DOI
Maschwitz U, Mühlenberg M. Chemische Gefahrenalarmierung bei einer Termite. Sci. Nat. 1972;59:516–516. doi: 10.1007/BF00609827. DOI
Vrkoč J, Křeček J, Hrdý I. Monoterpenic alarm pheromones in two Nasutitermes species. Acta Entomol. Bohemoslov. 1978;75:1–8.
Röhrig A, Kirchner WH, Leuthold RH. Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae) Insectes Soc. 1999;46:71–77. doi: 10.1007/s000400050115. DOI
Reinhard J, Clément J-L. Alarm reaction of European Reticulitermes termites to soldier head capsule volatiles (Isoptera, Rhinotermitidae) J. Insect Behav. 2002;15:95–107. doi: 10.1023/A:1014436313710. DOI
Cristaldo PF, et al. The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals. Biol. Open. 2015;4:1649–1659. doi: 10.1242/bio.014084. PubMed DOI PMC
Delattre O, et al. Chemical and vibratory signals used in alarm communication in the termite Reticulitermes flavipes (Rhinotermitidae) Insectes Soc. 2019;66:265–272. doi: 10.1007/s00040-018-00682-9. DOI
Krishna K, Grimaldi DA, Krishna V, Engel MS. Treatise on the Isoptera of the world. Bull. Am. Mus. Nat. Hist. 2013;377:1–2407. doi: 10.1206/377.1. DOI
Howse PE. On the significance of certain oscillatory movements of termites. Insectes Soc. 1965;12:335–345. doi: 10.1007/BF02222723. DOI
Stuart AM. Studies on the communication of alarm in the termite Zootermopsis nevadensis (Hagen), Isoptera. Physiol. Zool. 1963;36:85–96. doi: 10.1086/physzool.36.1.30152740. DOI
Šobotník J, Bourguignon T, Hanus R, Weyda F, Roisin Y. Structure and function of defensive glands in soldiers of Glossotermes oculatus (Isoptera: Serritermitidae) Biol. J. Linn. Soc. 2010;99:839–848. doi: 10.1111/j.1095-8312.2010.01392.x. DOI
Farine J-P, et al. The defensive secretion of Eurycotis floridana (Dictyoptera, Blattidae, Polyzosteriinae): chemical identification and evidence of an alarm function. Insect Biochem. Mol. Biol. 1997;27:577–586. doi: 10.1016/S0965-1748(97)00033-7. DOI
Farine J-P, et al. Defensive secretion of Therea petiveriana: Chemical identification and evidence of an alarm function. J. Chem. Ecol. 2002;28:1629–1640. doi: 10.1023/A:1019932630787. PubMed DOI
Brossut R. Allomonal secretions in cockroaches. J. Chem. Ecol. 1983;9:143–158. doi: 10.1007/BF00987778. PubMed DOI
Noirot, C. Biology of Termites (eds. K. Krishna, F. M. Weesner), p. 89–123. (Academic Press, 1969).
Neoh K-B, Yeap B-K, Tsunoda K, Yoshimura T, Lee C-Y. Do termites avoid carcasses? Behavioral responses depend on the nature of the carcasses. PLoS ONE. 2012;7:e36375. doi: 10.1371/journal.pone.0036375. PubMed DOI PMC
Sun Q, Hampton JD, Merchant A, Haynes KF, Zhou X. Cooperative policing behaviour regulates reproductive division of labour in a termite. Proc. R. Soc. B. 2020;287:20200780. doi: 10.1098/rspb.2020.0780. PubMed DOI PMC
Lenz, M. Caste Differentiation in Social Insects (eds. J. A. L. Watson, B. M. Okot-Kotber, C. Noirot), p. 125–145. (Pergamon Press, 1985).
Stuart AM. The determination and regulation of the neotenic reproductive caste in the lower termites (Isoptera): with special reference to the genus Zootermopsis (Hagen) Sociobiology. 1979;4:223–237.
Bourguignon T, et al. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 2015;32:406–421. doi: 10.1093/molbev/msu308. PubMed DOI
Buček, A. et al., Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr. Biol. 29 (2019). PubMed
Shellman-Reeve, J. S. The Evolution of Social Behaviour in Insects and Arachnids. (eds. B. J. Crespi, J. C. Choe), p. 52–93. (Cambridge University Press, 1997)
Seelinger G, Seelinger U. On the social organisation, alarm and fighting in the primitive cockroach Cryptocercus punctulatus Scudder. Z. Tierpsychol. 1983;61:315–333. doi: 10.1111/j.1439-0310.1983.tb01347.x. DOI
Maistrello L, Sbrenna G. Behavioural differences between male and female replacement reproductives in Kalotermes flavicollis (Isoptera, Kalotermitidae) Insectes Soc. 1999;46:186–191. doi: 10.1007/s000400050131. DOI
Maistrello L, Sbrenna G. Frequency of some behavioural patterns in colonies of Kalotermes flavicollis (Isoptera Kalotermitidae): the importance of social interactions and vibratory movements as mechanisms for social integration. Ethol. Ecol. Evol. 1996;8:365–375. doi: 10.1080/08927014.1996.9522909. DOI
Whitman JG, Forschler BT. Observational notes on short-lived and infrequent behaviors displayed by Reticulitermes flavipes (Isoptera: Rhinotermitidae) Ann. Entomol. Soc. Am. 2007;100:763–771. doi: 10.1603/0013-8746(2007)100[763:ONOSAI]2.0.CO;2. DOI
Ruhland F, Moulin M, Choppin M, Meunier J, Lucas C. Reproductives and eggs trigger worker vibration in a subterranean termite. Ecol. Evol. 2020;10:5892–5898. doi: 10.1002/ece3.6325. PubMed DOI PMC
Stuart AM. Preliminary studies on the significance of head-banging movements in termites with special reference to Zootermopsis angusticollis (Hagen) (Isoptera: Hodotermitidae) Sociobiology. 1988;14:49–60.
Noirot, C. Biology of Termites (eds. K. Krishna, F. Weesner) Vol. 2, p. 73–125 (Academic Press, 1970).
Aguilera-Olivares D, Palma-Onetto V, Flores-Prado L, Zapata V, Niemeyer HM. X-ray computed tomography reveals that intraspecific competition promotes soldier differentiation in a one-piece nesting termite. Entomol. Exp. Appl. 2017;163:26–34. doi: 10.1111/eea.12557. DOI
King EG, Spink WT. Foraging galleries of the Formosan subterranean termite, Coptotermes formosanus, in Louisiana. Ann. Entomol. Soc. Am. 1969;62:536–542. doi: 10.1093/aesa/62.3.536. DOI
Valterová I, Vrkoč J, Lindström M, Norin T. On the natural occurrence of (-)-3-carene, a component of termite defense secretions. Sci. Nat. 1992;79:416–417. doi: 10.1007/BF01138574. DOI
Nutting WL. Colonizing flights and associated activities of termites. I. The desert damp-wood termite Paraneotermes simplicicornis (Kalotermitidae) Psyche. 1966;73:131–149. doi: 10.1155/1966/59080. DOI
Mizumoto N, Bourguignon T. Modern termites inherited the potential of collective construction from their common ancestor. Ecol. Evol. 2020;10:6775–6784. doi: 10.1002/ece3.6381. PubMed DOI PMC
Sands WA. The soldierless termites of Africa. Bull. Br. Mus. Nat. Hist. (Suppl.) 1972;18:1–244.
Ahmad M. The soldierless termite genera of the Oriental region, with a note on their phylogeny (Isoptera: Termitidae) Pak. J. Zool. 1976;8:105–123.
Miller LR. Invasitermes, a new genus of soldierless termites from northern Australia (Isoptera: Termitidae) J. Aust. Entomol. Soc. 1984;23:33–37. doi: 10.1111/j.1440-6055.1984.tb01902.x. DOI
Šobotník J, et al. The frontal gland in workers of Neotropical soldierless termites. Naturwissenschaften. 2010;97:495–503. doi: 10.1007/s00114-010-0664-0. PubMed DOI
Chouvenc T, Šobotník J, Engel MS, Bourguignon T. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell. Mol. Life Sci. 2021;78:2749–2769. doi: 10.1007/s00018-020-03728-z. PubMed DOI PMC
Hermann, H. R. & Blum, M. S. Social Insects (ed. H. R. Hermann) Vol. 2, pp 77–197 (Academic Press, 1981).
Buschinger, A., Maschwitz, U. Defensive Mechanisms In Social Insects (ed. H. R. Hermann), p. 95–150 (Praeger, 1984).
Schönrogge K, Barbero F, Casacci LP, Settele J, Thomas JA. Acoustic communication within ant societies and its mimicry by mutualistic and socially parasitic myrmecophiles. Anim. Behav. 2017;134:249–256. doi: 10.1016/j.anbehav.2016.10.031. DOI
Lo N, et al. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr. Biol. 2000;10:801–804. doi: 10.1016/S0960-9822(00)00561-3. PubMed DOI
Inward D, Beccaloni G, Eggleton P. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol. Lett. 2007;3:331–335. doi: 10.1098/rsbl.2007.0102. PubMed DOI PMC
Haverty MI. The proportion of soldiers in termite colonies: a list and a bibliography. Sociobiology. 1977;2:199–216.
Miramontes O, DeSouza O. The nonlinear dynamics of survival and social facilitation in termites. J. Theor. Biol. 1996;181:373–380. doi: 10.1006/jtbi.1996.0138. DOI
Bourguignon T, et al. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol. Biol. Evol. 2017;34:589–597. PubMed
Donovan SE, Eggleton P, Bignell DE. Gut content analysis and a new feeding group classification of termites. Ecol. Entomol. 2001;26:356–366. doi: 10.1046/j.1365-2311.2001.00342.x. DOI
Maddison, W. P. & Maddison, D. R. Mesquite: A Modular System For Evolutionary Analysishttp://mesquiteproject.org (2019).
Holm S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979;6:65–70.
Maddison WP. Testing character correlation using pairwise comparisons on a phylogeny. J. Theor. Biol. 2000;202:195–204. doi: 10.1006/jtbi.1999.1050. PubMed DOI
Maddison WP, FitzJohn RG. The unsolved challenge to phylogenetic correlation tests for categorical characters. Syst. Biol. 2015;64:127–136. doi: 10.1093/sysbio/syu070. PubMed DOI