Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae

. 2021 Mar ; 78 (6) : 2749-2769. [epub] 20210103

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33388854

Grantová podpora
FLA-FLT 005660 USDA National Institute of Food and Agriculture
1754083 NSF-DEB
IGA 20205014 Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague

Odkazy

PubMed 33388854
PubMed Central PMC11071720
DOI 10.1007/s00018-020-03728-z
PII: 10.1007/s00018-020-03728-z
Knihovny.cz E-zdroje

Termites are a clade of eusocial wood-feeding roaches with > 3000 described species. Eusociality emerged ~ 150 million years ago in the ancestor of modern termites, which, since then, have acquired and sometimes lost a series of adaptive traits defining of their evolution. Termites primarily feed on wood, and digest cellulose in association with their obligatory nutritional mutualistic gut microbes. Recent advances in our understanding of termite phylogenetic relationships have served to provide a tentative timeline for the emergence of innovative traits and their consequences on the ecological success of termites. While all "lower" termites rely on cellulolytic protists to digest wood, "higher" termites (Termitidae), which comprise ~ 70% of termite species, do not rely on protists for digestion. The loss of protists in Termitidae was a critical evolutionary step that fostered the emergence of novel traits, resulting in a diversification of morphology, diets, and niches to an extent unattained by "lower" termites. However, the mechanisms that led to the initial loss of protists and the succession of events that took place in the termite gut remain speculative. In this review, we provide an overview of the key innovative traits acquired by termites during their evolution, which ultimately set the stage for the emergence of "higher" termites. We then discuss two hypotheses concerning the loss of protists in Termitidae, either through an externalization of the digestion or a dietary transition. Finally, we argue that many aspects of termite evolution remain speculative, as most termite biological diversity and evolutionary trajectories have yet to be explored.

Zobrazit více v PubMed

Cleveland LR. Symbiosis among animals with special reference to termites and their intestinal flagellates. Q Rev Biol. 1926;1(1):51–60. doi: 10.1086/394236. DOI

Engel P, Moran NA. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev. 2013;37(5):699–735. doi: 10.1111/1574-6976.12025. PubMed DOI

Higashi M, Abe T. Global diversification of termites driven by the evolution of symbiosis and sociality. In: Abe T, Levin SA, Higashi M, editors. Biodiversity: an ecological perspective. New York: Springer; 1997. pp. 83–112.

Aanen DK, Eggleton P. Symbiogenesis: beyond the endosymbiosis theory? J Theor Biol. 2017;434:99–103. doi: 10.1016/j.jtbi.2017.08.001. PubMed DOI

Bourguignon T, Lo N, Dietrich C, Šobotník J, Sidek S, Roisin Y, Brune A, Evans TA. Rampant host switching shaped the termite gut microbiome. Curr Biol. 2018;28(4):649–654. doi: 10.1016/j.cub.2018.01.035. PubMed DOI

Nalepa CA. Origin of mutualism between termites and flagellated gut protists: transition from horizontal to vertical transmission. Front Ecol Evol. 2020;8:14. doi: 10.3389/fevo.2020.00014. DOI

Nalepa CA. Altricial development in wood-feeding cockroaches: the key antecedent of termite eusociality. In: Bignell DE, Roisin Y, Lo N, editors. Biology of termites: a modern synthesis. Dordrecht: Springer; 2010. pp. 69–95.

Nalepa CA. Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol Entomol. 2015;40(4):323–335. doi: 10.1111/een.12197. DOI

Howard KJ, Thorne BL. Eusocial evolution in termites and Hymenoptera. In: Bignell DE, Roisin Y, Lo N, editors. Biology of termites: a modern synthesis. Dordrecht: Springer; 2010. pp. 97–132.

Lo N, Engel MS, Cameron S, Nalepa CA, Tokuda G, Grimaldi D, Kitade O, Krishna K, Klass K-D, Maekawa K, Miura T, Thompson GJ, et al. Save Isoptera: a comment on Inward et al. Biol Lett. 2007;3(5):562–563. doi: 10.1098/rsbl.2007.0264. PubMed DOI PMC

Krishna K, Grimaldi DA, Krishna V, Engel MS. Treatise on the Isoptera of the world. Bull Am Mus Nat Hist. 2013;377:1–2704. doi: 10.1206/377.1. DOI

Bignell DE. Introduction to symbiosis. In: Abe T, Bignell DE, Higashi M, editors. Termites: evolution, sociality, symbioses, ecology. Dordrecht: Kluwer Academic Publishers; 2000. pp. 189–208.

Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JEM, Zimmer M. Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol. 2015;29:108–119. doi: 10.1016/j.cbpa.2015.10.018. PubMed DOI PMC

Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc Natl Acad Sci USA. 2016;115(25):6506–6511. doi: 10.1073/pnas.1711842115. PubMed DOI PMC

Eggleton P. The state of the world’s insects. Annu Rev Environ Res. 2020 doi: 10.1146/annurev-environ-012420-050035. DOI

Jouquet P, Bottinelli N, Shanbhag RR, Bourguignon T, Traoré S, Abbasi SA. Termites: the neglected soil engineers of tropical soils. Soil Sci. 2016;181(3–4):157–165. doi: 10.1097/SS.0000000000000119. DOI

Brugerolle G, Radek R. Symbiotic protozoa of termites. In: König H, Varma A, editors. Intestinal microorganisms of termites and other invertebrates. Cham: Springer; 2006. pp. 243–269.

Ohkuma M, Brune A. Diversity, structure, and evolution of the termite gut microbial community. In: Bignell DE, Roisin Y, Lo N, editors. Biology of termites: a modern synthesis. Dordrecht: Springer; 2010. pp. 413–438.

Eggleton P. The termite gut habitat: its evolution and co-evolution. In: König H, Varma A, editors. Intestinal microorganisms of termites and other invertebrates. Berlin: Springer; 2006. pp. 373–404.

Lo N, Eggleton P. Termite phylogenetics and co-cladogenesis with symbionts. In: Bignell DE, Roisin Y, Lo N, editors. Biology of termites: a modern synthesis. Dordrecht: Springer; 2010. pp. 27–50.

Tai V, James ER, Nalepa CA, Scheffrahn RH, Perlman SJ, Keeling PJ. The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl Environ Microbiol. 2015;81(3):1059–1070. doi: 10.1128/AEM.02945-14. PubMed DOI PMC

Taerum SJ, De Martini F, Liebig J, Gile GH. Incomplete co-cladogenesis between Zootermopsis termites and their associated protists. Environ Entomol. 2018;47(1):184–195. doi: 10.1093/ee/nvx193. PubMed DOI

Radek R, Meuser K, Strassert JFH, Arslana O, Teßmer A, Šobotník J, Sillam-Dussès D, Nink RA, Brune A. Exclusive gut flagellates of Serritermitidae suggest a major transfaunation Eevent in lower termites: description of Heliconympha glossotermitis gen. nov. spec. nov. J Eucaryot Microbiol. 2018;65(1):77–92. doi: 10.1111/jeu.12441. PubMed DOI

Mee ED, Gaylor MG, Jasso-Selles DE, Mizumoto N, Gile GH. Molecular phylogenetic position of Hoplonympha natator (Trichonymphea, Parabasalia): horizontal symbiont transfer or differential loss? J Eukaryotic Microbiol. 2020;67(2):268–272. doi: 10.1111/jeu.12765. PubMed DOI

Kitade O, Matsumoto T. Characteristics of the symbiotic flagellate composition within the termite family Rhinotermitidae (Isoptera) Symbiosis. 1998;25:271–278.

Bignell DE. The role of symbionts in the evolution of termites and their rise to ecological dominance in the tropics. In: Hurst CJ, editor. The mechanistic benefits of microbial symbionts. Cham: Springer; 2016. pp. 121–172.

Bourguignon T, Lo N, Šobotník J, Ho SYW, Iqbal N, Coissac E, Lee M, Jendryka M, Sillam-Dussès D, Křížková B, Roisin Y, Evans TA. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol Biol Evol. 2017;34(3):589–597. doi: 10.1093/molbev/msw253. PubMed DOI

Buček A, Šobotník J, He S, Shi M, McMahon DP, Holmes EC, Roisin Y, Lo N, Bourguignon T. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr Biol. 2019;29(21):3728–3734. doi: 10.1016/j.cub.2019.08.076. PubMed DOI

Brune A, Dietrich C. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol. 2015;69:145–166. doi: 10.1146/annurev-micro-092412-155715. PubMed DOI

Emerson AE. Termite nests—a study of the phylogeny of behavior. Ecol Monogr. 1938;8(2):247–284. doi: 10.2307/1943251. DOI

Nalepa CA. Body size and termite evolution. Evol Biol. 2011;38(3):243–257. doi: 10.1007/s11692-011-9121-z. DOI

Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M, Maekawa K, Bandi C, Noda H. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol. 2000;10(13):801–804. doi: 10.1016/S0960-9822(00)00561-3. PubMed DOI

Inward D, Beccaloni G, Eggleton P. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol lett. 2007;3(3):331–335. doi: 10.1098/rsbl.2007.0102. PubMed DOI PMC

Engel MS, Grimaldi DA, Krishna K. Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am Mus Novitates. 2009;3650:1–27. doi: 10.1206/651.1. DOI

Engel MS, Barden P, Riccio ML, Grimaldi DA. Morphologically specialized termite castes and advanced sociality in the Early Cretaceous. Curr Biol. 2016;26(4):522–530. doi: 10.1016/j.cub.2015.12.061. PubMed DOI

Bourguignon T, Lo N, Cameron SL, Šobotník J, Hayashi Y, Shigenobu S, Watanabe D, Roisin Y, Miura T, Evans TA. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol Biol Evol. 2015;32(2):406–421. doi: 10.1093/molbev/msu308. PubMed DOI

Watson JAL, Sewell JJ. Caste development in Mastotermes and Kalotermes: which is primitive? In: Watson JAL, Okot-Kotber BM, Noirot C, editors. Current themes in tropical science, caste differentiation in social insects. Oxford: Pergamon Press; 1985. pp. 27–40.

Scheffrahn RH, Bourguignon T, Akama PD, Sillam-Dussès D, Šobotník J. Roisinitermes ebogoensis gen. & sp. n., an outstanding drywood termite with snapping soldiers from Cameroon (Isoptera, Kalotermitidae) ZooKeys. 2018;787:91–105. doi: 10.3897/zookeys.787.28195. PubMed DOI PMC

Roisin Y, Korb J. Social organization and the status of workers in termites. In: Bignell DE, Roisin Y, Lo N, editors. Biology of termites: a modern synthesis. Dordrecht: Springer; 2010. pp. 133–164.

Noirot C, Pasteels JM. Ontogenetic development and evolution of the worker caste in termites. Experientia. 1987;43(8):851–860. doi: 10.1007/BF01951642. DOI

Noirot C, Pasteels JM. The worker caste is polyphyletic in termites. Sociobiology. 1988;14(1):15–20.

Roisin Y. Intragroup conflicts and the evolution of sterile castes in termites. Am Nat. 1994;143(5):751–765. doi: 10.1086/285631. DOI

Shellman-Reeve JS. The spectrum of eusociality in termites. In: Choe JC, Crespi BJ, editors. The evolution of social behavior in insects and arachnids. Cambridge: Cambridge University Press; 1997. pp. 52–93.

Thorne BL. Evolution of eusociality in termites. Annu Rev Ecol Syst. 1997;28(1):27–54. doi: 10.1146/annurev.ecolsys.28.1.27. DOI

Thorne BL, Traniello JFA. Comparative social biology of basal taxa of ants and termites. Annu Rev Entomol. 2003;48(1):283–306. doi: 10.1146/annurev.ento.48.091801.112611. PubMed DOI

Korb J. The ecology of social evolution in termites. In: Korb J, Heinze J, editors. Ecology of social evolution. Berlin: Springer; 2008. pp. 151–174.

Legendre F, Whiting MF, Bordereau C, Cancello EM, Evans TA, Grandcolas P. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol Phylogenet Evol. 2008;48(2):615–627. doi: 10.1016/j.ympev.2008.04.017. PubMed DOI

Watson JAL, Sewell JJ. The origin and evolution of caste systems in termites. Sociobiology. 1981;6(1):101–118.

Thompson GJ, Kitade O, Lo N, Crozier RH. Phylogenetic evidence for a single, ancestral origin of a ‘true’ worker caste in termites. J Evol Biol. 2000;13(6):869–881. doi: 10.1046/j.1420-9101.2000.00237.x. DOI

Thompson GJ, Kitade O, Lo N, Crozier RH. On the origin of termite workers: weighing up the phylogenetic evidence. J Evol Biol. 2004;17(1):217–220. doi: 10.1046/j.1420-9101.2003.00645.x. PubMed DOI

Bourguignon T, Chisholm RA, Evans TA. The termite worker phenotype evolved as a dispersal strategy for fertile wingless individuals before eusociality. Am Nat. 2016;187(3):372–387. doi: 10.1086/684838. PubMed DOI

Korb J, Buschmann M, Schafberg S, Liebig J, Bagnères A-G. Brood care and social evolution in termites. Proc R Soc B Lond. 2012;279(1738):2662–2671. doi: 10.1098/rspb.2011.2639. PubMed DOI PMC

Nalepa CA. ‘Cost’ of proctodeal trophallaxis in extant termite individuals has no relevance in analysing the origins of eusociality. Ecol Entomol. 2016;41(1):27–30. doi: 10.1111/een.12276. DOI

Roisin Y. What makes the cost of brood care important for the evolution of termite sociality? Its insignificance. Ecol Entomol. 2016;41(1):31–33. doi: 10.1111/een.12278. DOI

Bignell DE, Roisin Y, Lo N. Biology of termites: a modern synthesis. Dordrecht: Springer; 2010.

Cleveland LR, Hall SK, Sanders EP, Collier J. The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem Am Acad Arts Sci. 1934;17(2):185–342.

Nalepa CA. Ancestral transfer of symbionts between cockroaches and termites: an unlikely scenario. Proc R Soc B Lond. 1991;246(1316):185–189. doi: 10.1098/rspb.1991.0143. PubMed DOI

Dietrich C, Köhler T, Brune A. The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. App Environ Microbiol. 2014;80(7):2261–2269. doi: 10.1128/AEM.04206-13. PubMed DOI PMC

Klass K-D, Nalepa C, Lo N. Wood-feeding cockroaches as models for termite evolution (Insecta: Dictyoptera): Cryptocercus vs Parasphaeria boleiriana. Mol Phylogenet Evol. 2008;46(3):809–817. doi: 10.1016/j.ympev.2007.11.028. PubMed DOI

Ohkuma M, Noda S, Hongoh Y, Nalepa CA, Inoue T. Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Proc R Soc B Lond. 2009;276(1655):239–245. doi: 10.1098/rspb.2008.1094. PubMed DOI PMC

Nalepa CA, Bignell DE, Bandi C. Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insect Soc. 2001;48(3):194–201. doi: 10.1007/PL00001767. DOI

Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Garcia Martin H, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernández M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 2007;450(169):560–565. doi: 10.1038/nature06269. PubMed DOI

Yamada A, Inoue T, Noda S, Hongoh Y, Ohkuma M. Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol Ecol. 2007;16(18):3768–3777. doi: 10.1111/j.1365-294X.2007.03326.x. PubMed DOI

Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M. Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science. 2008;322(5904):1108–1109. doi: 10.1126/science.1165578. PubMed DOI

Watanabe H, Tokuda G. Cellulolytic systems in insects. Annu Rev Entomol. 2010;55:609–632. doi: 10.1146/annurev-ento-112408-085319. PubMed DOI

Ohkuma M, Noda S, Hattori S, Iida T, Yuki M, Starns D, Inoue J-I, Darby AC, Hongoh Y. Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. Proc Acad Natl Sci USA. 2015;112(33):10224–10230. doi: 10.1073/pnas.1423979112. PubMed DOI PMC

Nalepa CA. Colony composition, protozoan transfer and some life history characteristics of the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae) Behav Ecol Sociobiol. 1984;14:273–279. doi: 10.1007/BF00299498. DOI

Nalepa CA. Nourishment and the origin of termite eusociality. In: Hunt JH, Nalepa CA, editors. Nourishment and evolution in insect societies. Boulder: Westview Press; 1994. pp. 57–104.

Korb J, Thorne B. Sociality in termites. In: Rubenstein D, Abbot P, editors. Comparative social evolution. Cambridge: Cambridge University Press; 2017. pp. 124–153.

Costa JT. The other insect societies. Cambridge: Harvard University Press; 2006. p. 767.

Trumbo ST. Patterns of parental care in invertebrates. In: Royle NJ, Smiseth PT, Kölliker M, editors. The evolution of parental care. Oxford: Oxford University Press; 2012. pp. 81–100.

Wong JWY, Meunier J, Kölliker M. The evolution of parental care in insects: the roles of ecology, life history and the social environment. Ecol Entomol. 2013;38(2):123–137. doi: 10.1111/een.12000. DOI

Nalepa CA, Maekawa K, Shimada K, Saito Y, Arellano C, Matsumoto T. Altricial development in subsocial wood-feeding cockroaches. Zool Sci. 2008;25(12):1190–1198. doi: 10.2108/zsj.25.1190. PubMed DOI

Chouvenc T, Su N-Y. Irreversible transfer of brood care duties and insights into the burden of caregiving in incipient subterranean termite colonies. Ecol Entomol. 2017;42(6):777–784. doi: 10.1111/een.12443. DOI

Barden P, Engel MS. Fossil social insects. In: Starr CK, editor. Encyclopedia of social insects. Cham: Springer International; 2020. pp. 1–21.

Zhao Z, Yin X, Shih C, Gao T, Ren D. Termite colonies from mid-Cretaceous Myanmar demonstrate their early eusocial lifestyle in damp wood. Natl Sci Rev. 2020;7(2):381–390. doi: 10.1093/nsr/nwz141. PubMed DOI PMC

Barden P, Ware JL. Relevant relicts: the impact of fossil distributions on biogeographic reconstruction in ants and dragonflies. Insect Syst Div. 2017;1(1):73–80. doi: 10.1093/isd/ixx005. DOI

Nalepa CA, Lenz M. The ootheca of Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae): homology with cockroach oothecae. Proc R Soc B Lond. 2000;267(1454):1809–1813. doi: 10.1098/rspb.2000.1214. PubMed DOI PMC

Sacchi L, Nalepa CA, Lenz M, Bandi C, Corona S, Grigolo A, Bigliardi E. Transovarial transmission of symbiotic bacteria in Mastotermes darwiniensis (Isoptera: Mastotermitidae): ultrastructural aspects and phylogenetic implications. Ann Entomol Soc Am. 2000;93(6):1308–1313. doi: 10.1603/0013-8746(2000)093[1308:TTOSBI]2.0.CO;2. DOI

Watson JAL, Metcalf EC, Sewell JJ. A re-examination of the development of castes in Mastotermes darwiniensis Froggatt (Isoptera) Aust J Zool. 1977;25(1):25–42. doi: 10.1071/ZO9770025. DOI

Hill GF. Notes on Mastotermes darwiniensis Froggatt (Isoptera) Proc R Soc Vic. 1925;37:119–124.

Sillam-Dussès D, Sémon E, Lacey MJ, Robert A, Lenz M, Bordereau C. Trail-following pheromones in basal termites, with special reference to Mastotermes darwiniensis. J Chem Ecol. 2007;33(10):1960–1977. doi: 10.1007/s10886-007-9363-5. PubMed DOI

Roisin Y. Diversity and evolution of caste patterns. In: Abe T, Bignell DE, Higashi M, editors. Termites: evolution, sociality, symbioses, ecology. Dordrecht: Kluwer Academic Publishers; 2000. pp. 95–119.

Imms AD. On the structure and biology of Archotermopsis, together with descriptions of new species of intestinal Protozoa, and general observations on the Isoptera. Philos Trans R Soc Lond. 1919;209:75–180.

Lepage M, Darlington JPEC. Population dynamics of termites. In: Abe T, Bignell DE, Higashi M, editors. Termites: evolution, sociality, symbioses, ecology. Dordrecht: Kluwer Academic Publishers; 2000. pp. 333–361.

Castle GB. The damp-wood termites of western United States, genus Zootermopsis (formerly Termopsis) In: Kofoid CA, editor. Termites and termite control. 2. Berkeley: University of California Press; 1934. pp. 273–310.

Morgan FD. The ecology and external morphology of Stolotermes ruficeps Brauer (Isoptera: Hodotermitidae) Trans R Soc N Zeal. 1959;86:155–195.

Nkunika POY. Field composition and size of the populations of the primitive damp wood termite, Porotermes adamsoni (Isoptera: Termopsidae) in South Australia. Sociobiology. 1990;16:251–258.

Bordereau C, Pasteels JM. Pheromones and chemical ecology of dispersal and foraging in termites. In: Bignell DE, Roisin Y, Lo N, editors. Biology of termites: a modern synthesis. Dordrecht: Springer; 2010. pp. 279–320.

Myles TG. Reproductive soldiers in the Termopsidae (Isoptera) Pan-Pac Entomol. 1986;62(4):293–299.

Thorne BL, Breisch NL, Muscedere ML. Evolution of eusociality and the soldier caste in termites: influence of intraspecific competition and accelerated inheritance. Proc Acad Natl Sci USA. 2003;100(22):12808–12813. doi: 10.1073/pnas.2133530100. PubMed DOI PMC

Watson JAL. The worker caste of the hodotermitid harvester termites. Insect Soc. 1973;20(1):1–20. doi: 10.1007/BF02223558. DOI

Inward DJG, Vogler AP, Eggleton P. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol. 2007;44(3):953–967. doi: 10.1016/j.ympev.2007.05.014. PubMed DOI

Engel MS, Grimaldi DA, Krishna K. Primitive termites from the Early Cretaceous of Asia (Isoptera) Stuttgarter Beiträge zur Naturkunde, Serie B, Geologie und Paläontologie. 2007;371:1–32.

Scheffrahn RH. Expanded new world distributions of genera in the termite family Kalotermitidae. Sociobiology. 2019;66(1):136–153. doi: 10.13102/sociobiology.v66i1.3492. DOI

Scheffrahn RH, Křeček J, Ripa R, Luppichini P. Endemic origin and vast anthropogeneic dispersal of the West Indian drywood termite. Biol Invas. 2009;11(4):787–799. doi: 10.1007/s10530-008-9293-3. DOI

Engel MS, Kaulfuss U. Diverse, primitive termites (Isoptera: Kalotermitidae, incertae sedis) from the early Miocene of New Zealand. Aust Entomol. 2017;56(1):94–103. doi: 10.1111/aen.12216. DOI

Roisin Y, Dejean A, Corbora B, Orivel J, Samaniego M, Leponce M. Vertical stratification of the termite assemblage in a neotropical rainforest. Oecologia. 2006;149(2):301–311. doi: 10.1007/s00442-006-0449-5. PubMed DOI

Korb J. Workers of a drywood termite do not work. Front Zool. 2007;4:7. doi: 10.1186/1742-9994-4-7. PubMed DOI PMC

Nutting WL. Colonizing flights and associated activities of termites. I. The desert damp-wood termite Paraneotermes simplicicornis (Kalotermitidae) Psyche. 1966;73(2):131–149. doi: 10.1155/1966/59080. DOI

Mizumoto N, Bourguignon T. Modern termites inherited the potential of collective construction from their common ancestor. Ecol Evol. 2020;10:6775–6784. doi: 10.1002/ece3.6381. PubMed DOI PMC

Mizumoto N, Bardunias PM, Pratt SC. Complex relationship between tunneling patterns and individual behaviors in termites. Am Nat. 2020;196(5):555–565. doi: 10.1086/711020. PubMed DOI

Thompson GJ, Miller LR, Lenz M, Crozier RH. Phylogenetic analysis and trait evolution in Australian lineages of drywood termites (Isoptera, Kalotermitidae) Mol Phylogenet Evol. 2000;17(3):419–429. doi: 10.1006/mpev.2000.0852. PubMed DOI

Noirot C. Glands and secretions. In: Krishna K, Weesner FM, editors. Biology of termites. New York: Academic Press; 1969. pp. 89–123.

Prestwich GD. Defense mechanisms of termites. Annu Rev Entomol. 1984;29(1):201–232. doi: 10.1146/annurev.en.29.010184.001221. DOI

Šobotník J, Weyda F, Hanus R, Kyjaková P, Doubský J. Ultrastructure of the frontal gland in Prorhinotermes simplex (Isoptera: Rhinotermitidae) and quantity of the defensive substance. Euro J Entomol. 2004;101(1):153–163. doi: 10.14411/eje.2004.020. DOI

Šobotník J, Jirošová A, Hanus R. Chemical warfare in termites. J Insect Physiol. 2010;56(9):1012–1021. doi: 10.1016/j.jinsphys.2010.02.012. PubMed DOI

Šobotník J, Sillam-Dussès D, Weyda F, Dejean A, Roisin Y, Hanus R, Bourguignon T. The frontal gland in workers of Neotropical soldierless termites. Naturwissenschaften. 2010;97(5):95–503. doi: 10.1007/s00114-010-0664-0. PubMed DOI

Piskorski R, Hanus R, Kalinová B, Valterová I, Křeček J, Bourguignon T, Roisin Y, Šobotník J. Temporal and geographic variations in the morphology and chemical composition of the frontal gland in imagoes of Prorhinotermes species (Isoptera: Rhinotermitidae) Biol J Linnean Soc. 2009;98(2):384–392. doi: 10.1111/j.1095-8312.2009.01286.x. DOI

Kutalová K, Hanus R, Bourguignon T, Roisin Y, Šobotník J. Armed reproductives: evolution of the frontal gland in imagoes of Termitidae. Arthrop Struct Develop. 2013;42(4):339–348. doi: 10.1016/j.asd.2013.04.001. PubMed DOI

Deligne J, Quennedey A, Blum MS. The enemies and defense mechanisms of termites. In: Hermann HR, editor. Social insects. New York: Academic Press; 1981. pp. 1–76.

Quennedey A. Morphology and ultrastructure of termite defense glands. In: Hermann HR, editor. Defensive mechanisms in social insects. New York: Praeger; 1984. pp. 151–200.

Šobotník J, Bourguignon T, Hanus R, Weyda F, Roisin Y. Structure and function of defensive glands in soldiers of Glossotermes oculatus (Isoptera: Serritermitidae) Biol J Linnean Soc. 2010;99(4):839–848. doi: 10.1111/j.1095-8312.2010.01392.x. DOI

Šobotník J, Hanus R, Kalinová B, Piskorski R, Cvačka J, Bourguignon T, Roisin Y. E, E)-α-farnesene, the alarm pheromone of Prorhinotermes canalifrons (Isoptera: Rhinotermitidae. J Chem Ecol. 2008;34(4):478–486. doi: 10.1007/s10886-008-9450-2. PubMed DOI

Waller DA, La Fage JP. Unpalatability as a defense of Coptotermes formosanus Shiraki soldiers against ant predation. J Appl Entomol. 1987;103(15):148–153. doi: 10.1111/j.1439-0418.1987.tb00973.x. DOI

Haverty MI. The proportion of soldiers in termite colonies: a list and a bibliography (Isoptera) Sociobiology. 1977;2(3):199–216.

Labandeira CC, Johnson KR, Wilf P. Impact of the terminal Cretaceous event on plant-insect associations. Proc Natl Acad Sci USA. 2002;99(4):2061–2066. doi: 10.1073/pnas.042492999. PubMed DOI PMC

Barden P. Fossil ants (Hymenoptera: Formicidae): ancient diversity and the rise of modern lineages. Myrmecol News. 2017;14:1–30. doi: 10.25849/myrmecol.news_024:001. DOI

Tuma J, Eggleton P, Fayle TM. Ant-termite interactions: an important but under-explored ecological linkage. Biol Rev. 2020;95(3):555–572. doi: 10.1111/brv.12577. PubMed DOI

Krishna K, Grimaldi DA. The first Cretaceous Rhinotermitidae (Isoptera): a new species, genus, and subfamily in Burmese amber. Am Mus Novitates. 2003;3390:1–10. doi: 10.1206/0003-0082(2003)390<0001:TFCRIA>2.0.CO;2. DOI

Wu L-W, Bourguignon T, Šobotník J, Wen P, Liang W-R, Li H-F. Phylogenetic position of the enigmatic termite family Stylotermitidae. Invertebr Syst. 2018;32(5):1111–1117. doi: 10.1071/IS17093. DOI

Tsai P-H, Ping C-K, Li G-X. Four new species of the genus Stylotermes Holmgren, K. et N. (Isoptera: Rhinotermitidae, Stylotermitinae) from Kwangsi. Acta Entomol Sinica. 1978;21:429–436.

Roisin Y. Morphology, development and evolutionary significance of the working stages in the caste system of Prorhinotermes (Insecta, Isoptera) Zoomorphol. 1988;107(6):339–347. doi: 10.1007/BF00312217. DOI

Parmentier D, Roisin Y. Caste morphology and development in Termitogeton nr. planus (Insecta, Isoptera, Rhinotermitidae) J Morphol. 2003;255(1):69–79. doi: 10.1002/jmor.10047. PubMed DOI

Bourguignon T, Šobotník J, Hanus R, Roisin Y. Developmental pathways of Glossotermes oculatus (Isoptera, Serritermitidae): at the cross-roads of worker caste evolution in termites. Evol Dev. 2009;11(6):659–668. doi: 10.1111/j.1525-142X.2009.00373.x. PubMed DOI

Bourguignon T, Šobotník J, Sillam-Dussès D, Jiroš P, Hanus R, Roisin Y, Miura T. Developmental pathways of Psammotermes hybostoma (Isoptera: Rhinotermitidae): old pseudergates make up a new sterile caste. PLoS ONE. 2012;7:e44527. doi: 10.1371/journal.pone.0044527. PubMed DOI PMC

Barbosa JRC, Constantino R. Polymorphism in the neotropical termite Serritermes serrifer. Entomol Exp Appl. 2017;163(1):43–50. doi: 10.1111/eea.12532. DOI

Rupf T, Roisin Y. Coming out of the woods: do termites need a specialized worker caste to search for new food sources? Naturwissenschaften. 2008;95(9):811–819. doi: 10.1007/s00114-008-0387-7. PubMed DOI

Su N-Y, Scheffrahn RH. Foraging population and territory of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in an urban environment. Sociobiology. 1988;14(2):353–359.

Abe T. Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T, editors. Evolution and coadaptation in biotic communities. Tokyo: University of Tokyo Press; 1987. pp. 125–148.

Li H-F, Su N-Y. Sand displacement during tunnel excavation by the Formosan subterranean termite (Isoptera: Rhinotermitidae) Ann Entomol Soc Am. 2008;101(2):456–462. doi: 10.1603/0013-8746(2008)101[456:SDDTEB]2.0.CO;2. DOI

Bardunias P, Su N-Y. Opposing headings of excavating and depositing termites facilitate branch formation in the Formosan subterranean termite. Anim Behav. 2009;78(3):755–759. doi: 10.1016/j.anbehav.2009.06.024. DOI

Rust MK, Su N-Y. Managing social insects of urban importance. Annu Rev Entomol. 2012;57:355–375. doi: 10.1146/annurev-ento-120710-100634. PubMed DOI

Evans TA, Forschler BT, Grace JK. Biology of invasive termites: a worldwide review. Annu Rev Entomol. 2013;58:455–474. doi: 10.1146/annurev-ento-120811-153554. PubMed DOI

Bourguignon T, Lo N, Šobotník J, Sillam-Dussès D, Roisin Y, Evans TA. Oceanic dispersal, vicariance, and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proc R Soc B Lond. 2016;283(1827):1827–1835. doi: 10.1098/rspb.2016.0179. PubMed DOI PMC

Chouvenc T, Li H-F, Austin J, Bordereau C, Bourguignon T, Cameron S, Cancello E, Constantino R, Costa-Leonardo A-M, Eggleton P, Evans T, Forschler B, Grace JK, Husseneder C, Křeček J, Lee C-Y, Lee T, Lo N, Messenger M, Mullins A, Robert A, Roisin Y, Scheffrahn RH, Sillam-Dussès D, Šobotník J, Szalanski A, Takematsu Y, Vargo EL, Yamada A, Yoshimura T, Su N-Y. Revisiting Coptotermes (Isoptera: Rhinotermitidae): a global taxonomic roadmap for species validity and distribution of the economically important subterranean termite genus. Syst Entomol. 2016;41(2):299–306. doi: 10.1111/syen.12157. DOI

Oberst S, Lai JCS, Evans TA. Termites utilise clay to build structural supports and so increase foraging resources. Scie Rep. 2016;6(1):20990. doi: 10.1038/srep20990. PubMed DOI PMC

Wood TG. Termites and the soil environment. Biol Fertile Soils. 1988;6(3):228–236. doi: 10.1007/BF00260819. DOI

Chouvenc T, Efstathion CA, Elliott ML, Su N-Y. Extended disease resistance emerging from the faecal nest of a subterranean termite. Proc R Soc B Lond. 2013;280(1770):20131885. doi: 10.1098/rspb.2013.1885. PubMed DOI PMC

Mullins A, Su N-Y. Parental nitrogen transfer and apparent absence of N2 fixation during colony foundation in Coptotermes formosanus Shiraki. Insects. 2018;9(2):37. doi: 10.3390/insects9020037. PubMed DOI PMC

Chouvenc T, Elliott ML, Šobotník J, Efstathion CA, Su N-Y. The termite fecal nest: a framework for the opportunistic acquisition of beneficial soil Streptomyces (Actinomycetales: Streptomycetaceae) Environ Entomol. 2018;47(6):1431–1439. doi: 10.1093/ee/nvy152. PubMed DOI

Arango RA, Carlson CM, Currie CR, McDonald BR, Book AJ, Green F, III, Lebow NK, Raffa KF. Antimicrobial activity of actinobacteria isolated from the guts of subterranean termites. Environ Entomol. 2016;45(6):1415–1423. doi: 10.1093/ee/nvw126. PubMed DOI PMC

Legendre F, Condamine FL. When Darwin’s special difficulty promotes diversification in insects. Syst Biol. 2018;67(5):873–887. doi: 10.1093/sysbio/syy014. PubMed DOI

Noirot C. The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. I. Lower termites. Ann Soc Entomol France. 1995;31(3):197–226.

Noirot C. The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. II. Higher termites (Termitidae) Ann Soc Entomol France. 2001;37(4):431–471.

Scholtz OI, MacLeod N, Eggleton P. Termite soldier defence strategies: a reassessment of Prestwich’s classification and an examination of the evolution of defence morphology using extended eigenshape analyses of head morphology. Zool J Linn Soc Lond. 2008;153(4):631–650. doi: 10.1111/j.1096-3642.2008.00396.x. DOI

Kuan K-C, Chiu C-I, Shih M-C, Chi K-J, Li H-F. Termite’s twisted mandible presents fast, powerful, and precise strikes. Sci Rep. 2020;10(9462):1–12. doi: 10.1038/s41598-020-66294-1. PubMed DOI PMC

Bourguignon T, Šobotník J, Dahlsjö C, Roisin Y. The soldierless Apicotermitinae: insights into a poorly known and ecologically dominant tropical taxon. Insect Soc. 2016;63(1):39–50. doi: 10.1007/s00040-015-0446-y. DOI

Bignell DE. Termites as soil engineers and soil processors. In: König H, Varma A, editors. Intestinal microorganisms of termites and other invertebrates. Cham: Springer; 2006. pp. 183–220.

Bourguignon T, Šobotník J, Lepoint G, Martin J-M, Hardy OJ, Dejean A, Roisin Y. Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol Entomol. 2011;36(2):261–269. doi: 10.1111/j.1365-2311.2011.01265.x. DOI

Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, Brune A. Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol. 2015;24(20):5284–5285. doi: 10.1111/mec.13376. PubMed DOI

Donovan SE, Eggleton P, Bignell DE. Gut content analysis and a new feeding group classification of termites. Ecol Entomol. 2001;26(4):356–366. doi: 10.1046/j.1365-2311.2001.00342.x. DOI

Tokuda G, Watanabe H. Hidden cellulases in termites: revision of an old hypothesis. Biol Lett. 2007;3(3):336–339. doi: 10.1098/rsbl.2007.0073. PubMed DOI PMC

Chiu C-I (2020) Termite fungal cultivation as a ruminant-like digestive system? In: Proceedings of the 13th conference of the Pacific Rim termite research group, 12 Feb 2020

Garnier-Sillam E, Toutain F, Villemin G, Renoux J. Études préliminaires des meules originales du termite xylophage Sphaerotermes sphaerothorax (Sjöstedt) Insect Soc. 1989;36:293–312. doi: 10.1007/BF02224882. DOI

Rouland-Lefèvre C, Bignell DE. Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. In: Seckbach J, editor. Symbiosis, mechanisms and model systems. Cham: Springer; 2001. pp. 731–756.

Hyodo F, Tayasu I, Inoue T, Azuma J-I, Kudo T. Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera) Funct Ecol. 2003;17(2):186–193. doi: 10.1046/j.1365-2435.2003.00718.x. DOI

Mossebo DC, Essouman EPF, Machouart MC, Gueidan C. Phylogenetic relationships, taxonomic revision and new taxa of Termitomyces (Lyophyllaceae, Basidiomycota) inferred from combined nLSU- and mtSSU-rDNA sequences. Phytotaxa. 2017;321(1):71–102. doi: 10.11646/phytotaxa.321.1.3. DOI

Grassé P-P. Termitologia. Anatomie–physiologie–biologie–systématique des termites, fondation des societes, construction. Paris: Masson; 1984.

Rouland-Lefèvre C. Symbiosis with fungi. In: Abe T, Bignell DE, Higashi M, editors. Termites: evolution, sociality, symbioses, ecology. Dordrecht: Kluwer Academic Publishers; 2000. pp. 289–306.

Chiu C-I, Ou J-H, Chen C-Y, Li H-F. Fungal nutrition allocation enhances mutualism with fungus-growing termite. Fungal Ecol. 2019;41:92–100. doi: 10.1016/j.funeco.2019.04.001. DOI

Aanen DK, Boomsma JJ. Evolutionary dynamics of the mutualistic symbiosis between fungus-growing termites and Termitomyces fungi. In: Vega FE, Blackwell M, editors. Insect-fungal associations: ecology and evolution. Oxford: Oxford University Press; 2005. pp. 191–210.

Nobre T, Koné NA, Konaté S, Linsenmair KE, Aanen DK. Dating the fungus-growing termites’ mutualism shows a mixture between ancient codiversification and recent symbiont dispersal across divergent hosts. Mol Ecol. 2011;20(12):2619–2627. doi: 10.1111/j.1365-294X.2011.05090.x. PubMed DOI

Roberts EM, Todd CN, Aanen DK, Nobre T, Hilbert-Wolf HL, O’Connor PM, Tapanila L, Mtelela C, Stevens NJ. Oligocene termite nests with in situ fungus gardens from the Rukwa Rift basin, Tanzania, support a Paleogene African origin for insect agriculture. PLoS ONE. 2016;11(6):e0156847. doi: 10.1371/journal.pone.0156847. PubMed DOI PMC

Ivany LC, Patterson WP, Lohmann KC. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature. 2000;407(6806):887–890. doi: 10.1038/35038044. PubMed DOI

Mueller UG, Schultz TR, Currie CR, Adams RMM, Malloch D. The origin of the attine ant-fungus mutualism. Q Rev Biol. 2001;76(2):169–197. doi: 10.1086/393867. PubMed DOI

Aanen DK, Eggleton P, Rouland-Lefèvre C, Guldberg-Frøslev T, Rosendahl S, Boomsma JJ. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci USA. 2002;99(23):14887–14892. doi: 10.1073/pnas.222313099. PubMed DOI PMC

Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR. The evolution of agriculture in insects. Annu Rev Ecol Evol Syst. 2005;36:563–595. doi: 10.1146/annurev.ecolsys.36.102003.152626. DOI

Korb J, Aanen DK. The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae) Behav Ecol Sociobiol. 2003;53(2):65–71. doi: 10.1007/s00265-002-0559-y. DOI

Aanen DK. As you reap, so shall you sow: coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi. Biol Lett. 2006;2(2):209–212. doi: 10.1098/rsbl.2005.0424. PubMed DOI PMC

Nobre T, Aanen DK. Fungiculture or termite husbandry? The ruminant hypothesis. Insects. 2012;3(1):307–323. doi: 10.3390/insects3010307. PubMed DOI PMC

Poulsen M. Towards an integrated understanding of the consequences of fungus domestication on the fungus-growing termite gut microbiota. Environ Microbiol. 2015;17(8):2562–2572. doi: 10.1111/1462-2920.12765. PubMed DOI

Nobre T, Fernandes C, Boomsma JJ, Korb J, Aanen DK. Farming termites determine the genetic population structure of Termitomyces fungal symbionts. Mol Ecol. 2011;20(9):2023–2033. doi: 10.1111/j.1365-294X.2011.05064.x. PubMed DOI

da Costa RR, Vreeburg SME, Shik JZ, Aanen DK, Poulsen M. Can interaction specificity in the fungus-farming termite symbiosis be explained by nutritional requirements of the fungal crop? Fungal Ecol. 2019;38:54–61. doi: 10.1016/j.funeco.2018.08.009. DOI

van de Peppel LJJ, Aanen DK. High diversity and low host-specificity of Termitomyces symbionts cultivated by Microtermes spp. indicate frequent symbiont exchange. Fungal Ecol. 2020;45:100917. doi: 10.1016/j.funeco.2020.100917. DOI

Aanen DK, Ros VID, de Fine Licht HH, Mitchell J, de Beer ZW, Slippers B, Rouland-LeFèvre C, Boomsma JJ. Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evol Biol. 2007;7(115):1–11. doi: 10.1186/1471-2148-7-115. PubMed DOI PMC

Nobre T, Eggleton P, Aanen DK. Vertical transmission as the key to the colonization of Madagascar by fungus-growing termites? Proc R Soc B Lond. 2010;277(1680):359–365. PubMed PMC

Aanen DK, de Fine Licht HH, Debets AJM, Kerstes NAG, Hoekstra RF, Boomsma JJ. High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science. 2009;326(5956):1103–1106. doi: 10.1126/science.1173462. PubMed DOI

Mueller UG, Gerardo N. Fungus farming insects: multiple origins and diverse evolutionary histories. Proc Natl Acad Sci USA. 2002;99(24):15247–15249. doi: 10.1073/pnas.242594799. PubMed DOI PMC

Sands WA. The association of termites and fungi. In: Krishna K, Weesner FM, editors. Biology of termites. New York: Academic Press; 1969. pp. 495–524.

Wood TG, Thomas RJ. The mutualistic association between Macrotermitinae and Termitomyces. In: Wilding N, Collins NM, Hammond PM, Webber JF, editors. Insect-fungus interactions: 14th symposium of the Royal Entomological Society of London in collaboration with the British Mycological Socety. New York: Academic Press; 1989. pp. 69–92.

Darlington JPEC. Nutrition and evolution in fungus-growing termites. In: Hunt JH, Nalepa CA, editors. Nourishment and evolution in insect societies. Boulder: Westview Press; 1994. pp. 105–130.

Brauman A, Bignell DE, Tayasu I. Soil-feeding termites: biology, microbial associations and digestive mechanisms. In: Abe T, Bignell DE, Higashi M, editors. Termites: evolution, sociality, symbioses, ecology. Dordrecht: Kluwer Academic Publishers; 2000. pp. 233–259.

Eggleton P. Termite species description rates and the state of termite taxonomy. Insect Soc. 1999;46(1):1–5. doi: 10.1007/s000400050105. DOI

Davies RG, Eggleton P, Jones DT, Gathorne-Hardy FJ, Hernández LM. Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J Biogeogr. 2003;30(6):847–877. doi: 10.1046/j.1365-2699.2003.00883.x. DOI

Ackerman IL, Constantino R, Gauch HG, Lehmann J, Riha SJ, Fernandes ECM. Termite (Insecta: Isoptera) species composition in a primary rain forest and agroforests in Central Amazonia. Biotropica. 2009;41(2):226–233. doi: 10.1111/j.1744-7429.2008.00479.x. DOI

Dahlsjö CAL, Parr CL, Malhi Y, Rahman H, Meir P, Jones DT, Eggleton P. First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences. J Trop Ecol. 2014;30(2):143–152. doi: 10.1017/S0266467413000898. DOI

Abe T, Masumoto T. Studies on the distribution and ecological role of termites in a lowland rain forest of West Malaysia. Food and feeding habits of termites in Pasoh Forest Reserve. Jpn J Ecol. 1979;29(4):121–135. doi: 10.18960/seitai.29.4_337. DOI

Eggleton P, Bignell DE, Sands WA, Mawdsley NA, Lawton JH, Wood TG, Bignell NC. The diversity, abundance, and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philos Trans R Soc Lond B. 1996;351(1335):51–68. doi: 10.1098/rstb.1996.0004. DOI

Mikaelyan A, Meuser K, Brune A. Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood-and humus-feeding higher termites. FEMS Microbiol Ecol. 2017;93(1):fiw10. doi: 10.1093/femsec/fiw210. PubMed DOI

Mikaelyan A, Strassert JFH, Tokuda G, Brune A. The fibre-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.) Environ Microbiol. 2014;16(9):2711–2722. doi: 10.1111/1462-2920.12425. DOI

Tokuda G, Mikaelyan A, Fukui C, Matsuura Y, Watanabe H, Fujishima M, Brune A. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proc Natl Acad Sci. 2018;115(51):E11996–E12004. doi: 10.1073/pnas.1810550115. PubMed DOI PMC

Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudol T. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol. 2005;71(11):6590–6599. doi: 10.1128/AEM.71.11.6590-6599.2005. PubMed DOI PMC

Ji R, Kappler A, Brune A. Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biol Biochem. 2000;32(8–9):1281–1291. doi: 10.1016/S0038-0717(00)00046-8. DOI

Ji R, Brune A. Transformation and mineralization of 14C-labeled cellulose, peptidoglycan, and protein by the soil-feeding termite Cubitermes orthognathus. Biol Fertil Soils. 2001;33(2):166–174. doi: 10.1007/s003740000310. DOI

Ji R, Brune A. Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biol Biochem. 2005;37(9):1648–1655. doi: 10.1016/j.soilbio.2005.01.026. DOI

Ngugi DK, Ji R, Brune A. Nitrogen mineralization, denitrification, and nitrate ammonification by soil-feeding termites: a 15N-based approach. Biogeochemistry. 2011;103(1–3):355–369. doi: 10.1007/s10533-010-9478-6. DOI

Ngugi DK, Brune A. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.) Environ Microbiol. 2012;14(4):860–871. doi: 10.1111/j.1462-2920.2011.02648.x. PubMed DOI

Ji R, Brune A. Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochemistry. 2006;78(3):267–283. doi: 10.1007/s10533-00. DOI

Breznak JA. Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M, editors. Termites: evolution, sociality, symbioses, ecology. Dordrecht: Kluwer Academic Publishers; 2000. pp. 209–231.

Baerends GP. Comparative methods and the concept of homology in the study of behaviour. Arch Neerl Zool. 1958;13(Suppl 1):401–417.

Wenzel JW. Behavioral homology and phylogeny. Annu Rev Ecol Syst. 1992;23(1):361–381. doi: 10.1146/annurev.es.23.110192.002045. DOI

Potrikus CJ, Breznak JA. Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci USA. 1981;78(7):4601–4605. doi: 10.1073/pnas.78.7.4601. PubMed DOI PMC

Higashi M, Abe T, Burns TP. Carbon—nitrogen balance and termite ecology. Proc R Soc B Lond. 1992;249(1326):303–308. doi: 10.1098/rspb.1992.0119. DOI

Machida M, Kitade O, Miura T, Matsumoto T. Nitrogen recycling through proctodeal trophallaxis in the Japanese damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae) Insect Soc. 2001;48(1):52–56. doi: 10.1007/PL00001745. DOI

Chouvenc T. Limited survival strategy in starving subterranean termite colonies. Insect Soc. 2020;67(1):71–82. doi: 10.1007/s00040-019-00729-5. DOI

Stadler B, Dixon AFG. Ant attendance in aphids: why different degrees of myrmecophily? Ecol Entomol. 1999;24(3):363–369. doi: 10.1046/j.1365-2311.1999.00195.x. DOI

Chouvenc T, Elliott ML, Su N-Y. Rich microbial community associated with the nest material of Reticulitermes flavipes (Isoptera: Rhinotermitidae) Florida Entomol. 2011;94(1):115–116. doi: 10.1653/024.094.0117. DOI

Chouvenc T, Bardunias P, Efstathion CA, Chakrabarti S, Elliott ML, Giblin-Davis R, Su N-Y. Resource opportunities from the nest of dying subterranean termite (Isoptera: Rhinotermitidae) colonies: a laboratory case of ecological succession. Ann Entomol Soc Am. 2013;106(6):771–778. doi: 10.1603/AN13104. DOI

Schulten HR, Schnitzer M. The chemistry of soil organic nitrogen: a review. Biol Fertil Soils. 1997;26(1):1–15. doi: 10.1007/s003740050335. DOI

Lavelle P, Spain AV. Soil ecology. Dordrecht: Kluwer Academic; 2001.

Marynowska M, Goux X, Sillam-Dussès D, Rouland-Lefevre C, Halder R, Wilmes P, Gawron P, Roisin Y, Delfosse P, Calusinska M. Compositional and functional characterisation of biomass-degrading microbial communities in guts of plant fibre-and soil-feeding higher termites. Microbiome. 2020;8(96):1–18. doi: 10.1186/s40168-020-00872-3. PubMed DOI PMC

Brune A, Kühl M. pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J Insect Physiol. 1996;42(11–12):1121–1127. doi: 10.1016/S0022-1910(96)00036-4. DOI

Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol. 2014;12(3):168–180. doi: 10.1038/nrmicro3182. PubMed DOI

Lo N, Tokuda G, Watanabe H. Evolution and function of endogenous termite cellulases. In: Bignell DE, Roisin Y, Lo N, editors. Biology of termites: a modern synthesis. Dordrecht: Springer; 2010. pp. 51–67.

Krishna K, Weesner FM. Biology of termites. New York: Academic Press; 1969.

Grassé P-P. Termitologia. Anatomie–physiologie–biologie–systématique des termites, comportement, socialité, écologie, evolution, systematique. Paris: Masson; 1985.

Engel MS, Grimaldi DA, Nascimbine PC, Singh H. The termites of Early Eocene Cambay amber, with the earliest record of the Termitidae (Isoptera) ZooKeys. 2011;148:105–123. doi: 10.3897/zookeys.148.1797. PubMed DOI PMC

Krishna K, Grimaldi DA. Diverse Rhinotermitidae and Termitidae (Isoptera) in Dominican Amber. Am Mus Novitates. 2009;3640:1–48. doi: 10.1206/633.1. DOI

Eggleton P. An introduction to termites: biology, taxonomy and functional morphology. In: Bignell DE, Roisin Y, Lo N, editors. Biology of termites: a modern synthesis. Dordrecht: Springer; 2010. pp. 1–26.

Scheffrahn RH, Bourguignon T, Bordereau C, Hernandez-Aguilar RA, Oelze VM, Dieguez P, Šobotník J, Pascual-Garrido A. White-gutted soldiers: simplification of the digestive tube for a non-particulate diet in higher old world termites (Isoptera: Termitidae) Insect Soc. 2017;64(4):525–533. doi: 10.1007/s00040-017-0572-9. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Termites and subsocial roaches inherited many bacterial-borne carbohydrate-active enzymes (CAZymes) from their common ancestor

. 2024 Nov 06 ; 7 (1) : 1449. [epub] 20241106

Genomic data provide insights into the classification of extant termites

. 2024 Aug 07 ; 15 (1) : 6724. [epub] 20240807

Impact of Wood Age on Termite Microbial Assemblages

. 2023 May 31 ; 89 (5) : e0036123. [epub] 20230417

Mycophagy: A Global Review of Interactions between Invertebrates and Fungi

. 2023 Jan 26 ; 9 (2) : . [epub] 20230126

Alarm communication predates eusociality in termites

. 2023 Jan 21 ; 6 (1) : 83. [epub] 20230121

The functional evolution of termite gut microbiota

. 2022 May 27 ; 10 (1) : 78. [epub] 20220527

Termite dispersal is influenced by their diet

. 2022 May 25 ; 289 (1975) : 20220246. [epub] 20220525

Termite nest evolution fostered social parasitism by termitophilous rove beetles

. 2022 May ; 76 (5) : 1064-1072. [epub] 20220331

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace