Genomic data provide insights into the classification of extant termites
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-20548S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
39112457
PubMed Central
PMC11306793
DOI
10.1038/s41467-024-51028-y
PII: 10.1038/s41467-024-51028-y
Knihovny.cz E-zdroje
- MeSH
- fylogeneze * MeSH
- genom hmyzu MeSH
- genomika * metody MeSH
- Isoptera * genetika klasifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The higher classification of termites requires substantial revision as the Neoisoptera, the most diverse termite lineage, comprise many paraphyletic and polyphyletic higher taxa. Here, we produce an updated termite classification using genomic-scale analyses. We reconstruct phylogenies under diverse substitution models with ultraconserved elements analyzed as concatenated matrices or within the multi-species coalescence framework. Our classification is further supported by analyses controlling for rogue loci and taxa, and topological tests. We show that the Neoisoptera are composed of seven family-level monophyletic lineages, including the Heterotermitidae Froggatt, Psammotermitidae Holmgren, and Termitogetonidae Holmgren, raised from subfamilial rank. The species-rich Termitidae are composed of 18 subfamily-level monophyletic lineages, including the new subfamilies Crepititermitinae, Cylindrotermitinae, Forficulitermitinae, Neocapritermitinae, Protohamitermitinae, and Promirotermitinae; and the revived Amitermitinae Kemner, Microcerotermitinae Holmgren, and Mirocapritermitinae Kemner. Building an updated taxonomic classification on the foundation of unambiguously supported monophyletic lineages makes it highly resilient to potential destabilization caused by the future availability of novel phylogenetic markers and methods. The taxonomic stability is further guaranteed by the modularity of the new termite classification, designed to accommodate as-yet undescribed species with uncertain affinities to the herein delimited monophyletic lineages in the form of new families or subfamilies.
Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
CEFE CNRS University of Montpellier EPHE IRD Montpellier Cedex 5 France
Departamento de Zoologia Universidade de Brasília Brasília DF Brazil
Département de Biologie des Organismes Université libre de Bruxelles Brussels Belgium
Department of Entomology and Plant Pathology Auburn University Auburn AL USA
Department of Entomology National Chung Hsing University Taichug Taiwan
Department of Entomology Texas A and M University College Station TX USA
Department of Entomology University of California Riverside CA USA
Department of Life Sciences Natural History Museum London UK
Department of Plant Sciences Laboratory of Genetics Wageningen University Wageningen The Netherlands
Division of Invertebrate Zoology American Museum of Natural History New York NY USA
Evolutionary Biology and Ecology Université libre de Bruxelles Brussels Belgium
Facultad de Ciencias Biológicas Universidad Nacional Mayor de San Marcos Lima Perú
Faculty of Science Academic Assembly University of Toyama Toyama Japan
Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Czech Republic
Géosciences Rennes Université de Rennes CNRS Rennes France
Institute for Evolution and Biodiversity University of Münster Hüfferstrasße 1 Münster Germany
Institute of Biology Freie Universität Berlin Berlin Germany
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Museu de Zoologia da Universidade de São Paulo Ipiranga São Paulo SP Brazil
Okinawa Institute of Science and Technology Graduate University Okinawa Japan
Royal Museum for Central Africa Entomology Tervuren Belgium
School of Biological Sciences The University of Western Australia Perth WA Australia
School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
Tropical Biosphere Research Center University of the Ryukyus 1 Senbaru Nishihara Okinawa Japan
Zobrazit více v PubMed
Lo, N. et al. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr. Biol.10, 801–804 (2000). 10.1016/S0960-9822(00)00561-3 PubMed DOI
Grimaldi, D. A. & Engel, M. S. Evolution of the Insects. (Cambridge University Press, 2005).
Inward, D. J. G., Vogler, A. P. & Eggleton, P. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol.44, 953–967 (2007). 10.1016/j.ympev.2007.05.014 PubMed DOI
Engel, M. S., Barden, P., Riccio, M. L. & Grimaldi, D. A. Morphologically specialized termite castes and advanced sociality in the early Cretaceous. Curr. Biol.26, 522–530 (2016). 10.1016/j.cub.2015.12.061 PubMed DOI
Bourguignon, T. et al. Transoceanic dispersal and plate tectonics shaped global cockroach distributions: evidence from mitochondrial phylogenomics. Mol. Biol. Evol.35, 970–983 (2018). 10.1093/molbev/msy013 PubMed DOI
Evangelista, D. A. et al. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proc. R. Soc. B. 286, 20182076 (2019). 10.1098/rspb.2018.2076 PubMed DOI PMC
Krishna, K., Grimaldi, D. A., Krishna, V. & Engel, M. S. Treatise on the Isoptera of the World. 1. Introduction. Bull. Am. Mus. Nat. Hist.377, 1–200 (2013).10.1206/377.1 DOI
Eggleton, P. et al. The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philos. Trans. R. Soc. B. 351, 51–68 (1996).10.1098/rstb.1996.0004 DOI
Bignell, D. E. & Eggleton, P. Termites in ecosystems. in Termites: Evolution, Sociality, Symbioses, Ecology (eds. Abe, T., Bignell, D. E. & Higashi, M.) 363–387 (Kluwer Academic Publishers, 2000).
Holt, J. A. & Lepage, M. Termite and soil properties. in Termites: Evolution, Sociality, Symbioses, Ecology (eds. Abe, T., Bignell, D. E. & Higashi, M.) 389–407 (Kluwer Academic Publishers, 2000).
Evans, T. A., Dawes, T. Z., Ward, P. R. & Lo, N. Ants and termites increase crop yield in a dry climate. Nat. Commun.2, 262 (2011). 10.1038/ncomms1257 PubMed DOI PMC
Jouquet, P., Traoré, S., Choosai, C., Hartmann, C. & Bignell, D. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur. J. Soil Biol.47, 215–222 (2011).10.1016/j.ejsobi.2011.05.005 DOI
Bonachela, J. A. et al. Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science347, 651–655 (2015). 10.1126/science.1261487 PubMed DOI
Ashton, L. A. et al. Termites mitigate the effects of drought in tropical rainforest. Science363, 174–177 (2019). 10.1126/science.aau9565 PubMed DOI
Elizalde, L. et al. The ecosystem services provided by social insects: traits, management tools and knowledge gaps. Biol. Rev.95, 1418–1441 (2020). 10.1111/brv.12616 PubMed DOI
Evans, T. A., Forschler, B. T. & Kenneth Grace, J. Biology of invasive termites: a worldwide review. Annu. Rev. Entomol.58, 455–474 (2013). 10.1146/annurev-ento-120811-153554 PubMed DOI
Gerozisis, J., Hadlington, P. & Staunton, I. Urban Pest Management in Australia. (University of New South Wales Press, 2008).
Dhang, P. Urban Pest Management: An Environmental Perspective. (CABI, 2011).
Rust, M. K. & Su, N. Y. Managing social insects of urban importance. Annu. Rev. Entomol.57, 355–375 (2012). 10.1146/annurev-ento-120710-100634 PubMed DOI
Romero Arias, J. et al. Mitochondrial phylogenetics position a new Afrotropical termite species into its own subfamily, the Engelitermitinae (Blattodea: Termitidae). Syst. Entomol.49, 72–83 (2024).10.1111/syen.12607 DOI
Froggatt, W. W. Australian Termitidae. Part II. Proc. Linn. Soc. N. South Wales21, 510–552 (1897).10.5962/bhl.part.8483 DOI
Desneux, J. À propos de la phylogénie des termitides. Ann. Soc. Entomol. Belgique48, 278–286 (1904).
Holmgren, N. Das System der Termiten. Zool. Anz.35, 284–286 (1910).
Holmgren, N. Termitenstudien. 2. Systematik der Termiten. Die Familien Mastotermitidae, Protermitidae und Mesotermitidae. K. Sven. Vetensk. Akad. Handl.46, 1–86 (1911).
Holmgren, N. Termitenstudien. 3. Systematik der Termiten. Die Familie Metatermitidae. K. Sven. Vetensk. Akad. Handl.48, 1–166 (1912).
Snyder, T. E. Catalog of the termites (Isoptera) of the world. Smithson. Misc. Collect.112, 1–490 (1949).
Grassé, P.-P. Ordre des Isoptères ou Termites. in Traité de Zoologie IX (ed. Grassé, P.-P.) 408–544 (Masson, 1949).
Emerson, A. E. Geographical origins and dispersions of termite genera. Fieldiana Zool.37, 465–521 (1955).
Krishna, K. Taxonomy, phylogeny, and distribution of termites. in Biology of Termites, Vol. 2 (eds. Krishna, K. & Weesner, F. M.) 127–152 (Academic Press, 1970).
Roonwal, M. L. & Chhotani, O. B. The Fauna of India and the Adjacent Countries. Isoptera (termites), Vol. 1. (Zoological Survey of India, 1989).
Engel, M. S., Grimaldi, D. A. & Krishna, K. Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am. Mus. Novit.3650, 1–27 (2009).
Jiang, R.-X. et al. Further evidence of Cretaceous termitophily: description of new termite hosts of the trichopseniine Cretotrichopsenius (Coleoptera: Staphylinidae), with emendations to the classification of lower termites (Isoptera). Palaeoentomology4, 374–389 (2021).10.11646/palaeoentomology.4.4.13 DOI
Wang, M. et al. Phylogeny, biogeography and classification of Teletisoptera (Blattaria: Isoptera). Syst. Entomol.47, 581–590 (2022).10.1111/syen.12548 DOI
Legendre, F. et al. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol. Phylogenet. Evol.48, 615–627 (2008). 10.1016/j.ympev.2008.04.017 PubMed DOI
Ware, J. L., Grimaldi, D. A. & Engel, M. S. The effects of fossil placement and calibration on divergence times and rates: an example from the termites (Insecta: Isoptera). Arthropod Struct. Dev.39, 204–219 (2010). 10.1016/j.asd.2009.11.003 PubMed DOI
Cameron, S. L., Lo, N., Bourguignon, T., Svenson, G. J. & Evans, T. A. A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades. Mol. Phylogenet. Evol.65, 163–173 (2012). 10.1016/j.ympev.2012.05.034 PubMed DOI
Bourguignon, T. et al. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol.32, 406–421 (2015). 10.1093/molbev/msu308 PubMed DOI
Donovan, S. E., Jones, D. T., Sands, W. A. & Eggleton, P. Morphological phylogenetics of termites (Isoptera). Biol. J. Linn. Soc.70, 467–513 (2000).10.1111/j.1095-8312.2000.tb01235.x DOI
Jouault, C., Legendre, F., Grandcolas, P. & Nel, A. Revising dating estimates and the antiquity of eusociality in termites using the fossilized birth–death process. Syst. Entomol.46, 592–610 (2021).10.1111/syen.12477 DOI
Lo, N., Kitade, O., Miura, T., Constantino, R. & Matsumoto, T. Molecular phylogeny of the Rhinotermitidae. Insectes Soc.51, 365–371 (2004).10.1007/s00040-004-0759-8 DOI
Legendre, F. et al. Phylogeny of Dictyoptera: dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLoS ONE10, e0130127 (2015). 10.1371/journal.pone.0130127 PubMed DOI PMC
Lo, N. & Eggleton, P. Termite phylogenetics and co-cladogenesis with symbionts. in Biology of Termites: A Modern Synthesis (eds. Bignell, D. E., Roisin, Y. & Lo, N.) 27–50 (Springer, 2011).
Bucek, A. et al. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr. Biol.29, 3728–3734 (2019). 10.1016/j.cub.2019.08.076 PubMed DOI
Hellemans, S. et al. Using ultraconserved elements to reconstruct the termite tree of life. Mol. Phylogenet. Evol.173, 107520 (2022). 10.1016/j.ympev.2022.107520 PubMed DOI
Bourguignon, T. et al. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol. Biol. Evol.34, 589–597 (2017). PubMed
Bejerano, G. et al. Ultraconserved elements in the human genome. Science304, 1321–1325 (2004). 10.1126/science.1098119 PubMed DOI
Faircloth, B. C. et al. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst. Biol.61, 717–726 (2012). 10.1093/sysbio/sys004 PubMed DOI
Hedin, M., Derkarabetian, S., Alfaro, A., Ramírez, M. J. & Bond, J. E. Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci. PeerJ7, e6864 (2019). 10.7717/peerj.6864 PubMed DOI PMC
Van Dam, M. H., Henderson, J. B., Esposito, L. & Trautwein, M. Genomic characterization and curation of UCEs improves species tree reconstruction. Syst. Biol.70, 307–321 (2021). 10.1093/sysbio/syaa063 PubMed DOI PMC
Minh, B. Q., Hahn, M. W. & Lanfear, R. New methods to calculate concordance factors for phylogenomic datasets. Mol. Biol. Evol.37, 2727–2733 (2020). 10.1093/molbev/msaa106 PubMed DOI PMC
Wang, M. et al. Neoisoptera repeatedly colonised Madagascar after the Middle Miocene climatic optimum. Ecography2023, e06463 (2023).10.1111/ecog.06463 DOI
Rocha, M. M. Redescription of the enigmatic genus Genuotermes Emerson (Isoptera, Termitidae, Termitinae). Zookeys340, 107–117 (2013).10.3897/zookeys.340.6131 PubMed DOI PMC
Rocha, M. M., Morales-Corrêa e Castro, A. C., Cuezzo, C. & Cancello, E. M. Phylogenetic reconstruction of Syntermitinae (Isoptera, Termitidae) based on morphological and molecular data. PLoS ONE12, e0174366 (2017). 10.1371/journal.pone.0174366 PubMed DOI PMC
Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science339, 74–78 (2013). 10.1126/science.1228282 PubMed DOI
Noirot, C. The gut of termites (Isoptera): comparative anatomy, systematics, phylogeny. II. - Higher termites (Termitidae). Ann. Soc. Entomol. France (N.S.) 37, 431–471 (2001).
Hagen, H. A. Monographie der Termiten. Linnaea Entomol.12, 1–342 (1858).
Holmgren, N. Termitenstudien. 4. Versuch einer systematischen Monographie der Termiten der Orientalischen Region. K. Sven. Vetensk. Akad. Handl.50, 1–276 (1913).
Desneux, J. Remarques critiques sur la phylogénie et la division systématique des Termitides (réponse à M. Wasmann). Ann. Soc. Entomol. Belgique48, 372–378 (1904).
Desneux, J. Termites du Sahara algérien recueillis par M. le professeur Lameere. Ann. Soc. Entomol. Belgique46, 436–440 (1902).
Quennedey, A. & Deligne, J. L’arme frontale des soldats de termites. I. Rhinotermitidae. Insectes Soc.22, 243–267 (1975).10.1007/BF02223076 DOI
Silvestri, F. Isoptera. in Die Fauna Südwest-Australiens. Ergebnisse der Hamburger Südwest-Australischen Forschungsreise 1905. Vol. 2 (eds. Michaelsen, W. & Hartmeyer, R.) 279–314 (Gustav Fischer, 1909).
Jankásek, M., Kotyková Varadínová, Z. & Stáhlavský, F. Blattodea karyotype database. Eur. J. Entomol.118, 192–199 (2021).10.14411/eje.2021.020 DOI
Chouvenc, T., Šobotník, J., Engel, M. S. & Bourguignon, T. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell. Mol. Life Sci.78, 2749–2769 (2021). 10.1007/s00018-020-03728-z PubMed DOI PMC
Silvestri, F. Nota preliminare sui Termitidi sud-americani. Boll. Mus. Zool. Anat. Comp. R. Univ. Torino16, 1–8 (1901).
Wasmann, E. Viaggio di Leonardo Fea in Birmania e regioni vicine LXXII. Neue Termitophilen und Termiten aus Indien. I–III. Ann. del Mus. Civ. di Stor. Nat. di Genova (Ser. 2)16, 613–630 (1896).
Sjöstedt, Y. Revision der Termiten Afrikas. 3. Monographie. K. Sven. Vetensk. Handl. (Ser. 3)3, 1–419, 16pl. (1926).
Wasmann, E. Termiten, Termitophilen und Myrmekophilen, gesammelt auf Ceylon von Dr. W. Horn 1899, mit anderm ostindischen Material bearbeitet. Zool. Jahrb. Abt. Syst. Geog. Biol. Tiere 17, 99–164 (1902).
Constantino, R. Key to the soldiers of South American Heterotermes with a new species from Brazil (Isoptera: Rhinotermitidae). Insect Syst. Evol.31, 463–472 (2000).10.1163/187631200X00499 DOI
Kemner, N. A. Systematische und biologische Studien über die Termiten Javas und Celebes’. K. Sven. Vetensk. Akad. Handl.13, 1–241 (1934).
Miller, L. R. Invasitermes, a new genus of soldierless termites from Northern Australia (Isoptera: Termitidae). Aust. J. Entomol.23, 33–37 (1984).10.1111/j.1440-6055.1984.tb01902.x DOI
Emerson, A. E. The termites of Kartabo, Bartica District, British Guiana. Zoologica6, 291–459 (1925).
Rocha, M. M. & Cuezzo, C. Redescription of the monotypic Neotropical genus Crepititermes Emerson (Termitidae: Termitinae). Neotrop. Entomol.44, 457–465 (2015). 10.1007/s13744-015-0307-4 PubMed DOI
Holmgren, N. Studien über südamerikanische Termiten. Zool. Jahrb. Abt. Syst. Geog. Biol. Tiere23, 521–676 (1906).
Emerson, A. E. Six new genera of Termitinae from the Belgian Congo (Isoptera, Termitidae). Am. Mus. Novit.1988, 1–49 (1960).
Scheffrahn, R. H. & Křeček, J. Redescription and reclassification of the African termite, Forficulitermes planifrons (Isoptera, Termitidae, Termitinae). Zootaxa3946, 591–594 (2015). 10.11646/zootaxa.3946.4.9 PubMed DOI
Holmgren, N. The Percy Sladen Trust expedition to the Indian Ocean in 1905. Isoptera. Trans. Linn. Soc. Lond., Zool.14, 135–148 (1910).10.1111/j.1096-3642.1910.tb00527.x DOI
Holmgren, N. Wissenschaftliche Ergebnisse einer Forschungsreise nach Ostindien, ausgeführt im Auftrage der Kgl. Preuss. Akademie der Wissenschaften zu Berlin von H. v. Buttel-Reepen. III. Termiten aus Sumatra, Java, Malacca und Ceylon. Zool. Jahrb. Abt. Syst. Geog. Biol. Tiere36, 229–290 (1914).
Roisin, Y. Schievitermes globicornis, a new genus and species of Termitinae (Blattodea, Termitidae) from French Guiana. ZooKeys1125, 103–114 (2022). 10.3897/zookeys.1125.91124 PubMed DOI PMC
Silvestri, F. Contribuzione alla conoscenza dei Termitidi e Termitofili dell’Africa occidentale. I. Termitidi. Boll. Lab. Zool. Gen. Agrar. R. Sc. Super. Agricoltura Portici9, 1–146 (1914).
Latreille, P. A. Histoire Naturelle, Générale et Particulière des Crustacés et des Insectes. Vol. 3. (F. Dufart, 1802).
Linnaeus, C. Systema Naturae per Regna Tria Natura, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis [10th ed. (revised), Vol. 1]. (Laurentius Salvius, 1758).
Weidner, H. Beiträge zur Kenntnis der Termiten Angolas, hauptsächlich auf Grund der Sammlungen und Beobachtungen von A. de Barros Machado (I. Beitrag). Publicações Cult. Cia. Diam. Angola29, 55–106 (1956).
Wasmann, E. Termiten von Madagaskar und Ostafrika. Abh. Senckenbergi. Naturf. Ges.21, 137–182 (1897).
Hare, L. Termite phylogeny as evidenced by soldier mandible development. Ann. Entomol. Soc. Am.37, 459–486 (1937).10.1093/aesa/30.3.459 DOI
Whitfield, J. B. & Lockhart, P. J. Deciphering ancient rapid radiations. Trends Ecol. Evol.22, 258–265 (2007). 10.1016/j.tree.2007.01.012 PubMed DOI
Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol.24, 332–340 (2009). 10.1016/j.tree.2009.01.009 PubMed DOI
Arora, J. et al. Evidence of cospeciation between termites and their gut bacteria on a geological time scale. Proc. R. Soc. B. 290, 20230619 (2023). 10.1098/rspb.2023.0619 PubMed DOI PMC
Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics34, i884–i890 (2018). 10.1093/bioinformatics/bty560 PubMed DOI PMC
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res.27, 824–834 (2017). 10.1101/gr.213959.116 PubMed DOI PMC
Faircloth, B. C. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics32, 786–788 (2016). 10.1093/bioinformatics/btv646 PubMed DOI
Harris, R. S. Improved Pairwise Alignment of Genomic DNA. (The Pennsylvania State University, 2007).
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol.30, 772–780 (2013). 10.1093/molbev/mst010 PubMed DOI PMC
Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol.17, 540–552 (2000). 10.1093/oxfordjournals.molbev.a026334 PubMed DOI
Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol.56, 564–577 (2007). 10.1080/10635150701472164 PubMed DOI
Fleming, J. F. & Struck, T. H. nRCFV: a new, dataset-size-independent metric to quantify compositional heterogeneity in nucleotide and amino acid datasets. BMC Bioinformatics24, 145 (2023). 10.1186/s12859-023-05270-8 PubMed DOI PMC
Kück, P. & Struck, T. H. BaCoCa - A heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. Mol. Phylogenet. Evol.70, 94–98 (2014). 10.1016/j.ympev.2013.09.011 PubMed DOI
Terrapon, N. et al. Molecular traces of alternative social organization in a termite genome. Nat. Commun.5, 3636 (2014). 10.1038/ncomms4636 PubMed DOI
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics26, 841–842 (2010). 10.1093/bioinformatics/btq033 PubMed DOI PMC
Rice, P., Longden, L. & Bleasby, A. EMBOSS: the European molecular biology open software suite. Trends Genet.16, 276–277 (2000). 10.1016/S0168-9525(00)02024-2 PubMed DOI
Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res.34, W609–W612 (2006). 10.1093/nar/gkl315 PubMed DOI PMC
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol.32, 268–274 (2015). 10.1093/molbev/msu300 PubMed DOI PMC
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol.35, 518–522 (2018). 10.1093/molbev/msx281 PubMed DOI PMC
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods14, 587–589 (2017). 10.1038/nmeth.4285 PubMed DOI PMC
Kosiol, C., Holmes, I. & Goldman, N. An empirical codon model for protein sequence evolution. Mol. Biol. Evol.24, 1464–1479 (2007). 10.1093/molbev/msm064 PubMed DOI
Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol.25, 1307–1320 (2008). 10.1093/molbev/msn067 PubMed DOI
Le, S. Q., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics24, 2317–2323 (2008). 10.1093/bioinformatics/btn445 PubMed DOI
Kosiol, C. & Goldman, N. Different versions of the Dayhoff rate matrix. Mol. Biol. Evol.22, 193–199 (2005). 10.1093/molbev/msi005 PubMed DOI
Minh, B. Q., Dang, C. C., Vinh, L. S. & Lanfear, R. QMaker: fast and accurate method to estimate empirical models of protein evolution. Syst. Biol.70, 1046–1060 (2021). 10.1093/sysbio/syab010 PubMed DOI PMC
Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science346, 763–767 (2014). 10.1126/science.1257570 PubMed DOI
Chernomor, O., Von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol.65, 997–1008 (2016). 10.1093/sysbio/syw037 PubMed DOI PMC
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol.34, 772–773 (2017). PubMed
Aberer, A. J., Krompass, D. & Stamatakis, A. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Syst. Biol.62, 162–166 (2013). 10.1093/sysbio/sys078 PubMed DOI PMC
Mendes, F. K. & Hahn, M. W. Why concatenation fails near the anomaly zone. Syst. Biol.67, 158–169 (2018). 10.1093/sysbio/syx063 PubMed DOI
Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19, 153 (2018). 10.1186/s12859-018-2129-y PubMed DOI PMC
Mai, U. & Mirarab, S. TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics19, 272 (2018). 10.1186/s12864-018-4620-2 PubMed DOI PMC
Sayyari, E. & Mirarab, S. Fast coalescent-based computation of local branch support from quartet frequencies. Mol. Biol. Evol.33, 1654–1668 (2016). 10.1093/molbev/msw079 PubMed DOI PMC
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol.3, 217–223 (2012).10.1111/j.2041-210X.2011.00169.x DOI
R Core Team. R: a Language and Environment for Statistical Computing. (2020).
Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol.51, 492–508 (2002). 10.1080/10635150290069913 PubMed DOI
Hellemans, S. et al. Data from: Using ultraconserved elements to reconstruct the termite tree of life. Dryad, Dataset10.5061/dryad.x0k6djhn0 (2022). PubMed
Arora, J. et al. Evidence of cospeciation between termites and their gut bacteria on a geological time scale. Dryad, Dataset10.5061/dryad.tmpg4f53w (2023). PubMed PMC
Hellemans, S., Wang, M., Kaymak, E. & Bourguignon, T. Data from: Genomic data provide insights into the classification of extant termites. Dryad, Dataset10.5061/dryad.02v6wwqbm (2024). PubMed PMC
Hagen, H. A. Hr. Peters Berichtete über die von ihm gesammelten und von Hrn. Dr. Hermann Hagen bearbeiteten Neuropteren aus Mossambique. Ber. Akad. Wiss. Berlin18, 479–484 (1853).
Desneux, J. Isoptera Fam. Termitidæ. in Genera Insectorum (ed. Wytsman, P.) 25, 1–52+2pls (P. Wytsman, 1904).
Emerson, A. E. The relations of a relict South African Termite (Isoptera, Hodotermitidae, Stolotermes). Am. Museum Novit. 1–12 (1942).
Holmgren, K. & Holmgren, N. Report on a collection of termites from India. Mem. Dep. Agric. India5, 135–171 (1917).
Engel, M. S. & Krishna, K. Family-group names for termites (Isoptera). Am. Mus. Novit.3432, 1–9 (2004).10.1206/0003-0082(2004)432<0001:FNFTI>2.0.CO;2 DOI
Holmgren, N. Termitenstudien. 1. Anatomische Untersuchungen. K. Sven. Vetensk. Akad. Handl.44, 1–215 (1909).
Grassé, P.-P. & Noirot, C. Apicotermes arquieri (Isoptère): ses constructions, sa biologie. Considérations générales sur la sous-famille des Apicotermitinae nov. Ann. des Sci. Nat., Zool. (11e Série) 16, 345–388 (1955).
Dudley, P. H. Termites of the isthmus of Panama.–Part II. Trans. N. Y. Acad. Sci.9, 157–180 (1890).
Wasmann, E. Beispiele rezenter Artenbildung bei Ameisengästen und Termitengästen. Biol. Cent.26, 565–580 (1906).
Genomic data provide insights into the classification of extant termites