Genomic data provide insights into the classification of extant termites
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-20548S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
39112457
PubMed Central
PMC11306793
DOI
10.1038/s41467-024-51028-y
PII: 10.1038/s41467-024-51028-y
Knihovny.cz E-zdroje
- MeSH
- fylogeneze * MeSH
- genom hmyzu MeSH
- genomika * metody MeSH
- Isoptera * genetika klasifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The higher classification of termites requires substantial revision as the Neoisoptera, the most diverse termite lineage, comprise many paraphyletic and polyphyletic higher taxa. Here, we produce an updated termite classification using genomic-scale analyses. We reconstruct phylogenies under diverse substitution models with ultraconserved elements analyzed as concatenated matrices or within the multi-species coalescence framework. Our classification is further supported by analyses controlling for rogue loci and taxa, and topological tests. We show that the Neoisoptera are composed of seven family-level monophyletic lineages, including the Heterotermitidae Froggatt, Psammotermitidae Holmgren, and Termitogetonidae Holmgren, raised from subfamilial rank. The species-rich Termitidae are composed of 18 subfamily-level monophyletic lineages, including the new subfamilies Crepititermitinae, Cylindrotermitinae, Forficulitermitinae, Neocapritermitinae, Protohamitermitinae, and Promirotermitinae; and the revived Amitermitinae Kemner, Microcerotermitinae Holmgren, and Mirocapritermitinae Kemner. Building an updated taxonomic classification on the foundation of unambiguously supported monophyletic lineages makes it highly resilient to potential destabilization caused by the future availability of novel phylogenetic markers and methods. The taxonomic stability is further guaranteed by the modularity of the new termite classification, designed to accommodate as-yet undescribed species with uncertain affinities to the herein delimited monophyletic lineages in the form of new families or subfamilies.
Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
CEFE CNRS University of Montpellier EPHE IRD Montpellier Cedex 5 France
Departamento de Zoologia Universidade de Brasília Brasília DF Brazil
Département de Biologie des Organismes Université libre de Bruxelles Brussels Belgium
Department of Entomology and Plant Pathology Auburn University Auburn AL USA
Department of Entomology National Chung Hsing University Taichug Taiwan
Department of Entomology Texas A and M University College Station TX USA
Department of Entomology University of California Riverside CA USA
Department of Life Sciences Natural History Museum London UK
Department of Plant Sciences Laboratory of Genetics Wageningen University Wageningen The Netherlands
Division of Invertebrate Zoology American Museum of Natural History New York NY USA
Evolutionary Biology and Ecology Université libre de Bruxelles Brussels Belgium
Facultad de Ciencias Biológicas Universidad Nacional Mayor de San Marcos Lima Perú
Faculty of Science Academic Assembly University of Toyama Toyama Japan
Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Czech Republic
Géosciences Rennes Université de Rennes CNRS Rennes France
Institute for Evolution and Biodiversity University of Münster Hüfferstrasße 1 Münster Germany
Institute of Biology Freie Universität Berlin Berlin Germany
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Museu de Zoologia da Universidade de São Paulo Ipiranga São Paulo SP Brazil
Okinawa Institute of Science and Technology Graduate University Okinawa Japan
Royal Museum for Central Africa Entomology Tervuren Belgium
School of Biological Sciences The University of Western Australia Perth WA Australia
School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
Tropical Biosphere Research Center University of the Ryukyus 1 Senbaru Nishihara Okinawa Japan
Zobrazit více v PubMed
Lo, N. et al. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. PubMed DOI
Grimaldi, D. A. & Engel, M. S.
Inward, D. J. G., Vogler, A. P. & Eggleton, P. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. PubMed DOI
Engel, M. S., Barden, P., Riccio, M. L. & Grimaldi, D. A. Morphologically specialized termite castes and advanced sociality in the early Cretaceous. PubMed DOI
Bourguignon, T. et al. Transoceanic dispersal and plate tectonics shaped global cockroach distributions: evidence from mitochondrial phylogenomics. PubMed DOI
Evangelista, D. A. et al. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). PubMed DOI PMC
Krishna, K., Grimaldi, D. A., Krishna, V. & Engel, M. S. Treatise on the Isoptera of the World. 1. Introduction. DOI
Eggleton, P. et al. The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. DOI
Bignell, D. E. & Eggleton, P. Termites in ecosystems. in
Holt, J. A. & Lepage, M. Termite and soil properties. in
Evans, T. A., Dawes, T. Z., Ward, P. R. & Lo, N. Ants and termites increase crop yield in a dry climate. PubMed DOI PMC
Jouquet, P., Traoré, S., Choosai, C., Hartmann, C. & Bignell, D. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. DOI
Bonachela, J. A. et al. Termite mounds can increase the robustness of dryland ecosystems to climatic change. PubMed DOI
Ashton, L. A. et al. Termites mitigate the effects of drought in tropical rainforest. PubMed DOI
Elizalde, L. et al. The ecosystem services provided by social insects: traits, management tools and knowledge gaps. PubMed DOI
Evans, T. A., Forschler, B. T. & Kenneth Grace, J. Biology of invasive termites: a worldwide review. PubMed DOI
Gerozisis, J., Hadlington, P. & Staunton, I.
Dhang, P.
Rust, M. K. & Su, N. Y. Managing social insects of urban importance. PubMed DOI
Romero Arias, J. et al. Mitochondrial phylogenetics position a new Afrotropical termite species into its own subfamily, the Engelitermitinae (Blattodea: Termitidae). DOI
Froggatt, W. W. Australian Termitidae. Part II. DOI
Desneux, J. À propos de la phylogénie des termitides.
Holmgren, N. Das System der Termiten.
Holmgren, N. Termitenstudien. 2. Systematik der Termiten. Die Familien Mastotermitidae, Protermitidae und Mesotermitidae.
Holmgren, N. Termitenstudien. 3. Systematik der Termiten. Die Familie Metatermitidae.
Snyder, T. E. Catalog of the termites (Isoptera) of the world.
Grassé, P.-P. Ordre des Isoptères ou Termites. in
Emerson, A. E. Geographical origins and dispersions of termite genera.
Krishna, K. Taxonomy, phylogeny, and distribution of termites. in
Roonwal, M. L. & Chhotani, O. B.
Engel, M. S., Grimaldi, D. A. & Krishna, K. Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance.
Jiang, R.-X. et al. Further evidence of Cretaceous termitophily: description of new termite hosts of the trichopseniine DOI
Wang, M. et al. Phylogeny, biogeography and classification of Teletisoptera (Blattaria: Isoptera). DOI
Legendre, F. et al. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. PubMed DOI
Ware, J. L., Grimaldi, D. A. & Engel, M. S. The effects of fossil placement and calibration on divergence times and rates: an example from the termites (Insecta: Isoptera). PubMed DOI
Cameron, S. L., Lo, N., Bourguignon, T., Svenson, G. J. & Evans, T. A. A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades. PubMed DOI
Bourguignon, T. et al. The evolutionary history of termites as inferred from 66 mitochondrial genomes. PubMed DOI
Donovan, S. E., Jones, D. T., Sands, W. A. & Eggleton, P. Morphological phylogenetics of termites (Isoptera). DOI
Jouault, C., Legendre, F., Grandcolas, P. & Nel, A. Revising dating estimates and the antiquity of eusociality in termites using the fossilized birth–death process. DOI
Lo, N., Kitade, O., Miura, T., Constantino, R. & Matsumoto, T. Molecular phylogeny of the Rhinotermitidae. DOI
Legendre, F. et al. Phylogeny of Dictyoptera: dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PubMed DOI PMC
Lo, N. & Eggleton, P. Termite phylogenetics and co-cladogenesis with symbionts. in
Bucek, A. et al. Evolution of termite symbiosis informed by transcriptome-based phylogenies. PubMed DOI
Hellemans, S. et al. Using ultraconserved elements to reconstruct the termite tree of life. PubMed DOI
Bourguignon, T. et al. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. PubMed
Bejerano, G. et al. Ultraconserved elements in the human genome. PubMed DOI
Faircloth, B. C. et al. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. PubMed DOI
Hedin, M., Derkarabetian, S., Alfaro, A., Ramírez, M. J. & Bond, J. E. Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci. PubMed DOI PMC
Van Dam, M. H., Henderson, J. B., Esposito, L. & Trautwein, M. Genomic characterization and curation of UCEs improves species tree reconstruction. PubMed DOI PMC
Minh, B. Q., Hahn, M. W. & Lanfear, R. New methods to calculate concordance factors for phylogenomic datasets. PubMed DOI PMC
Wang, M. et al. Neoisoptera repeatedly colonised Madagascar after the Middle Miocene climatic optimum. DOI
Rocha, M. M. Redescription of the enigmatic genus PubMed DOI PMC
Rocha, M. M., Morales-Corrêa e Castro, A. C., Cuezzo, C. & Cancello, E. M. Phylogenetic reconstruction of Syntermitinae (Isoptera, Termitidae) based on morphological and molecular data. PubMed DOI PMC
Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. PubMed DOI
Noirot, C. The gut of termites (Isoptera): comparative anatomy, systematics, phylogeny. II. - Higher termites (Termitidae).
Hagen, H. A. Monographie der Termiten.
Holmgren, N. Termitenstudien. 4. Versuch einer systematischen Monographie der Termiten der Orientalischen Region.
Desneux, J. Remarques critiques sur la phylogénie et la division systématique des Termitides (réponse à M. Wasmann).
Desneux, J. Termites du Sahara algérien recueillis par M. le professeur Lameere.
Quennedey, A. & Deligne, J. L’arme frontale des soldats de termites. I. Rhinotermitidae. DOI
Silvestri, F. Isoptera. in
Jankásek, M., Kotyková Varadínová, Z. & Stáhlavský, F. Blattodea karyotype database. DOI
Chouvenc, T., Šobotník, J., Engel, M. S. & Bourguignon, T. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. PubMed DOI PMC
Silvestri, F. Nota preliminare sui Termitidi sud-americani.
Wasmann, E. Viaggio di Leonardo Fea in Birmania e regioni vicine LXXII. Neue Termitophilen und Termiten aus Indien. I–III.
Sjöstedt, Y. Revision der Termiten Afrikas. 3. Monographie.
Wasmann, E. Termiten, Termitophilen und Myrmekophilen, gesammelt auf Ceylon von Dr. W. Horn 1899, mit anderm ostindischen Material bearbeitet.
Constantino, R. Key to the soldiers of South American DOI
Kemner, N. A. Systematische und biologische Studien über die Termiten Javas und Celebes’.
Miller, L. R. DOI
Emerson, A. E. The termites of Kartabo, Bartica District, British Guiana.
Rocha, M. M. & Cuezzo, C. Redescription of the monotypic Neotropical genus PubMed DOI
Holmgren, N. Studien über südamerikanische Termiten.
Emerson, A. E. Six new genera of Termitinae from the Belgian Congo (Isoptera, Termitidae).
Scheffrahn, R. H. & Křeček, J. Redescription and reclassification of the African termite, PubMed DOI
Holmgren, N. The Percy Sladen Trust expedition to the Indian Ocean in 1905. Isoptera. DOI
Holmgren, N. Wissenschaftliche Ergebnisse einer Forschungsreise nach Ostindien, ausgeführt im Auftrage der Kgl. Preuss. Akademie der Wissenschaften zu Berlin von H. v. Buttel-Reepen. III. Termiten aus Sumatra, Java, Malacca und Ceylon.
Silvestri, F. Contribuzione alla conoscenza dei Termitidi e Termitofili dell’Africa occidentale. I. Termitidi.
Latreille, P. A.
Linnaeus, C.
Weidner, H. Beiträge zur Kenntnis der Termiten Angolas, hauptsächlich auf Grund der Sammlungen und Beobachtungen von A. de Barros Machado (I. Beitrag).
Wasmann, E. Termiten von Madagaskar und Ostafrika.
Hare, L. Termite phylogeny as evidenced by soldier mandible development. DOI
Whitfield, J. B. & Lockhart, P. J. Deciphering ancient rapid radiations. PubMed DOI
Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and the multispecies coalescent. PubMed DOI
Arora, J. et al. Evidence of cospeciation between termites and their gut bacteria on a geological time scale. PubMed DOI PMC
Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. PubMed DOI PMC
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. PubMed DOI PMC
Faircloth, B. C. PHYLUCE is a software package for the analysis of conserved genomic loci. PubMed DOI
Harris, R. S.
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. PubMed DOI PMC
Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. PubMed DOI
Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. PubMed DOI
Fleming, J. F. & Struck, T. H. nRCFV: a new, dataset-size-independent metric to quantify compositional heterogeneity in nucleotide and amino acid datasets. PubMed DOI PMC
Kück, P. & Struck, T. H. BaCoCa - A heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. PubMed DOI
Terrapon, N. et al. Molecular traces of alternative social organization in a termite genome. PubMed DOI
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. PubMed DOI PMC
Rice, P., Longden, L. & Bleasby, A. EMBOSS: the European molecular biology open software suite. PubMed DOI
Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. PubMed DOI PMC
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. PubMed DOI PMC
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. PubMed DOI PMC
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. PubMed DOI PMC
Kosiol, C., Holmes, I. & Goldman, N. An empirical codon model for protein sequence evolution. PubMed DOI
Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. PubMed DOI
Le, S. Q., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. PubMed DOI
Kosiol, C. & Goldman, N. Different versions of the Dayhoff rate matrix. PubMed DOI
Minh, B. Q., Dang, C. C., Vinh, L. S. & Lanfear, R. QMaker: fast and accurate method to estimate empirical models of protein evolution. PubMed DOI PMC
Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. PubMed DOI
Chernomor, O., Von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. PubMed DOI PMC
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. PubMed
Aberer, A. J., Krompass, D. & Stamatakis, A. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. PubMed DOI PMC
Mendes, F. K. & Hahn, M. W. Why concatenation fails near the anomaly zone. PubMed DOI
Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. PubMed DOI PMC
Mai, U. & Mirarab, S. TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. PubMed DOI PMC
Sayyari, E. & Mirarab, S. Fast coalescent-based computation of local branch support from quartet frequencies. PubMed DOI PMC
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). DOI
R Core Team. R: a Language and Environment for Statistical Computing. (2020).
Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. PubMed DOI
Hellemans, S. et al. Data from: Using ultraconserved elements to reconstruct the termite tree of life. PubMed
Arora, J. et al. Evidence of cospeciation between termites and their gut bacteria on a geological time scale. PubMed PMC
Hellemans, S., Wang, M., Kaymak, E. & Bourguignon, T. Data from: Genomic data provide insights into the classification of extant termites. PubMed PMC
Hagen, H. A. Hr. Peters Berichtete über die von ihm gesammelten und von Hrn. Dr. Hermann Hagen bearbeiteten Neuropteren aus Mossambique.
Desneux, J. Isoptera Fam. Termitidæ. in
Emerson, A. E. The relations of a relict South African Termite (Isoptera, Hodotermitidae,
Holmgren, K. & Holmgren, N. Report on a collection of termites from India.
Engel, M. S. & Krishna, K. Family-group names for termites (Isoptera). DOI
Holmgren, N. Termitenstudien. 1. Anatomische Untersuchungen.
Grassé, P.-P. & Noirot, C.
Dudley, P. H. Termites of the isthmus of Panama.–Part II.
Wasmann, E. Beispiele rezenter Artenbildung bei Ameisengästen und Termitengästen.
Genomic data provide insights into the classification of extant termites