Genomic data provide insights into the classification of extant termites

. 2024 Aug 07 ; 15 (1) : 6724. [epub] 20240807

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39112457

Grantová podpora
20-20548S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)

Odkazy

PubMed 39112457
PubMed Central PMC11306793
DOI 10.1038/s41467-024-51028-y
PII: 10.1038/s41467-024-51028-y
Knihovny.cz E-zdroje

The higher classification of termites requires substantial revision as the Neoisoptera, the most diverse termite lineage, comprise many paraphyletic and polyphyletic higher taxa. Here, we produce an updated termite classification using genomic-scale analyses. We reconstruct phylogenies under diverse substitution models with ultraconserved elements analyzed as concatenated matrices or within the multi-species coalescence framework. Our classification is further supported by analyses controlling for rogue loci and taxa, and topological tests. We show that the Neoisoptera are composed of seven family-level monophyletic lineages, including the Heterotermitidae Froggatt, Psammotermitidae Holmgren, and Termitogetonidae Holmgren, raised from subfamilial rank. The species-rich Termitidae are composed of 18 subfamily-level monophyletic lineages, including the new subfamilies Crepititermitinae, Cylindrotermitinae, Forficulitermitinae, Neocapritermitinae, Protohamitermitinae, and Promirotermitinae; and the revived Amitermitinae Kemner, Microcerotermitinae Holmgren, and Mirocapritermitinae Kemner. Building an updated taxonomic classification on the foundation of unambiguously supported monophyletic lineages makes it highly resilient to potential destabilization caused by the future availability of novel phylogenetic markers and methods. The taxonomic stability is further guaranteed by the modularity of the new termite classification, designed to accommodate as-yet undescribed species with uncertain affinities to the herein delimited monophyletic lineages in the form of new families or subfamilies.

Biology Centre Czech Academy of Sciences České Budějovice Czech Republic

CEFE CNRS University of Montpellier EPHE IRD Montpellier Cedex 5 France

Departamento de Entomología Museo de Historia Natural Universidad Nacional Mayor de San Marcos Lima 14 Perú

Departamento de Zoologia Universidade de Brasília Brasília DF Brazil

Département de Biologie des Organismes Université libre de Bruxelles Brussels Belgium

Department for Materials and the Environment BAM Federal Institute for Materials Research and Testing Berlin Germany

Department of Entomology and Plant Pathology Auburn University Auburn AL USA

Department of Entomology Keladi Shivappa Nayaka University of Agricultural and Horticultural Sciences Shivamogga Karnataka India

Department of Entomology National Chung Hsing University Taichug Taiwan

Department of Entomology Texas A and M University College Station TX USA

Department of Entomology University of California Riverside CA USA

Department of Life Sciences Natural History Museum London UK

Department of Plant Sciences Laboratory of Genetics Wageningen University Wageningen The Netherlands

Division of Invertebrate Zoology American Museum of Natural History New York NY USA

Evolutionary Biology and Ecology Université libre de Bruxelles Brussels Belgium

Evolutionary Biology and Ecology University of Freiburg Hauptstrasse 1 79104 Freiburg Germany and Charles Darwin University Darwin Australia

Facultad de Ciencias Biológicas Universidad Nacional Mayor de San Marcos Lima Perú

Faculty of Science Academic Assembly University of Toyama Toyama Japan

Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Czech Republic

Géosciences Rennes Université de Rennes CNRS Rennes France

Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS Université de Tours Faculté des Sciences et Techniques Parc Grandmont Tours France

Institut de Systématique Évolution Biodiversité CNRS Sorbonne Université EPHE Université des Antilles CP50 Paris France

Institut des Sciences de l'Évolution de Montpellier Université de Montpellier CNRS F Montpellier France

Institute for Evolution and Biodiversity University of Münster Hüfferstrasße 1 Münster Germany

Institute of Biology Freie Universität Berlin Berlin Germany

Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic

Instituto de Estudos em Saúde e Biológicas Universidade Federal do Sul e Sudeste do Pará Marabá PA Brazil

Laboratory of Insect Ecology Graduate School of Agriculture Kyoto University Kitashirakawa Oiwake cho Sakyo ku Kyoto Japan

Museu de Zoologia da Universidade de São Paulo Ipiranga São Paulo SP Brazil

Okinawa Institute of Science and Technology Graduate University Okinawa Japan

Royal Museum for Central Africa Entomology Tervuren Belgium

School of Biological Sciences The University of Western Australia Perth WA Australia

School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia

Section for Ecology and Evolution Department of Biology University of Copenhagen Copenhagen East Denmark

Total Hadbara Gedera Israel

Tropical Biosphere Research Center University of the Ryukyus 1 Senbaru Nishihara Okinawa Japan

UMR Evolution Génomes Comportement Ecologie IDEEV Université Paris Saclay CNRS IRD 12 route 128 Gif sur Yvette France

Universidade Federal do ABC Santo André SP Brazil

University of Florida Fort Lauderdale Research and Education Center 3205 College Avenue Davie Florida USA

University Sorbonne Paris Nord Laboratory of Experimental and Comparative Ethology LEEC UR 4443 Villetaneuse France

Zobrazit více v PubMed

Lo, N. et al. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr. Biol.10, 801–804 (2000). 10.1016/S0960-9822(00)00561-3 PubMed DOI

Grimaldi, D. A. & Engel, M. S. Evolution of the Insects. (Cambridge University Press, 2005).

Inward, D. J. G., Vogler, A. P. & Eggleton, P. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol.44, 953–967 (2007). 10.1016/j.ympev.2007.05.014 PubMed DOI

Engel, M. S., Barden, P., Riccio, M. L. & Grimaldi, D. A. Morphologically specialized termite castes and advanced sociality in the early Cretaceous. Curr. Biol.26, 522–530 (2016). 10.1016/j.cub.2015.12.061 PubMed DOI

Bourguignon, T. et al. Transoceanic dispersal and plate tectonics shaped global cockroach distributions: evidence from mitochondrial phylogenomics. Mol. Biol. Evol.35, 970–983 (2018). 10.1093/molbev/msy013 PubMed DOI

Evangelista, D. A. et al. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proc. R. Soc. B. 286, 20182076 (2019). 10.1098/rspb.2018.2076 PubMed DOI PMC

Krishna, K., Grimaldi, D. A., Krishna, V. & Engel, M. S. Treatise on the Isoptera of the World. 1. Introduction. Bull. Am. Mus. Nat. Hist.377, 1–200 (2013).10.1206/377.1 DOI

Eggleton, P. et al. The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philos. Trans. R. Soc. B. 351, 51–68 (1996).10.1098/rstb.1996.0004 DOI

Bignell, D. E. & Eggleton, P. Termites in ecosystems. in Termites: Evolution, Sociality, Symbioses, Ecology (eds. Abe, T., Bignell, D. E. & Higashi, M.) 363–387 (Kluwer Academic Publishers, 2000).

Holt, J. A. & Lepage, M. Termite and soil properties. in Termites: Evolution, Sociality, Symbioses, Ecology (eds. Abe, T., Bignell, D. E. & Higashi, M.) 389–407 (Kluwer Academic Publishers, 2000).

Evans, T. A., Dawes, T. Z., Ward, P. R. & Lo, N. Ants and termites increase crop yield in a dry climate. Nat. Commun.2, 262 (2011). 10.1038/ncomms1257 PubMed DOI PMC

Jouquet, P., Traoré, S., Choosai, C., Hartmann, C. & Bignell, D. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur. J. Soil Biol.47, 215–222 (2011).10.1016/j.ejsobi.2011.05.005 DOI

Bonachela, J. A. et al. Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science347, 651–655 (2015). 10.1126/science.1261487 PubMed DOI

Ashton, L. A. et al. Termites mitigate the effects of drought in tropical rainforest. Science363, 174–177 (2019). 10.1126/science.aau9565 PubMed DOI

Elizalde, L. et al. The ecosystem services provided by social insects: traits, management tools and knowledge gaps. Biol. Rev.95, 1418–1441 (2020). 10.1111/brv.12616 PubMed DOI

Evans, T. A., Forschler, B. T. & Kenneth Grace, J. Biology of invasive termites: a worldwide review. Annu. Rev. Entomol.58, 455–474 (2013). 10.1146/annurev-ento-120811-153554 PubMed DOI

Gerozisis, J., Hadlington, P. & Staunton, I. Urban Pest Management in Australia. (University of New South Wales Press, 2008).

Dhang, P. Urban Pest Management: An Environmental Perspective. (CABI, 2011).

Rust, M. K. & Su, N. Y. Managing social insects of urban importance. Annu. Rev. Entomol.57, 355–375 (2012). 10.1146/annurev-ento-120710-100634 PubMed DOI

Romero Arias, J. et al. Mitochondrial phylogenetics position a new Afrotropical termite species into its own subfamily, the Engelitermitinae (Blattodea: Termitidae). Syst. Entomol.49, 72–83 (2024).10.1111/syen.12607 DOI

Froggatt, W. W. Australian Termitidae. Part II. Proc. Linn. Soc. N. South Wales21, 510–552 (1897).10.5962/bhl.part.8483 DOI

Desneux, J. À propos de la phylogénie des termitides. Ann. Soc. Entomol. Belgique48, 278–286 (1904).

Holmgren, N. Das System der Termiten. Zool. Anz.35, 284–286 (1910).

Holmgren, N. Termitenstudien. 2. Systematik der Termiten. Die Familien Mastotermitidae, Protermitidae und Mesotermitidae. K. Sven. Vetensk. Akad. Handl.46, 1–86 (1911).

Holmgren, N. Termitenstudien. 3. Systematik der Termiten. Die Familie Metatermitidae. K. Sven. Vetensk. Akad. Handl.48, 1–166 (1912).

Snyder, T. E. Catalog of the termites (Isoptera) of the world. Smithson. Misc. Collect.112, 1–490 (1949).

Grassé, P.-P. Ordre des Isoptères ou Termites. in Traité de Zoologie IX (ed. Grassé, P.-P.) 408–544 (Masson, 1949).

Emerson, A. E. Geographical origins and dispersions of termite genera. Fieldiana Zool.37, 465–521 (1955).

Krishna, K. Taxonomy, phylogeny, and distribution of termites. in Biology of Termites, Vol. 2 (eds. Krishna, K. & Weesner, F. M.) 127–152 (Academic Press, 1970).

Roonwal, M. L. & Chhotani, O. B. The Fauna of India and the Adjacent Countries. Isoptera (termites), Vol. 1. (Zoological Survey of India, 1989).

Engel, M. S., Grimaldi, D. A. & Krishna, K. Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am. Mus. Novit.3650, 1–27 (2009).

Jiang, R.-X. et al. Further evidence of Cretaceous termitophily: description of new termite hosts of the trichopseniine Cretotrichopsenius (Coleoptera: Staphylinidae), with emendations to the classification of lower termites (Isoptera). Palaeoentomology4, 374–389 (2021).10.11646/palaeoentomology.4.4.13 DOI

Wang, M. et al. Phylogeny, biogeography and classification of Teletisoptera (Blattaria: Isoptera). Syst. Entomol.47, 581–590 (2022).10.1111/syen.12548 DOI

Legendre, F. et al. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol. Phylogenet. Evol.48, 615–627 (2008). 10.1016/j.ympev.2008.04.017 PubMed DOI

Ware, J. L., Grimaldi, D. A. & Engel, M. S. The effects of fossil placement and calibration on divergence times and rates: an example from the termites (Insecta: Isoptera). Arthropod Struct. Dev.39, 204–219 (2010). 10.1016/j.asd.2009.11.003 PubMed DOI

Cameron, S. L., Lo, N., Bourguignon, T., Svenson, G. J. & Evans, T. A. A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades. Mol. Phylogenet. Evol.65, 163–173 (2012). 10.1016/j.ympev.2012.05.034 PubMed DOI

Bourguignon, T. et al. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol.32, 406–421 (2015). 10.1093/molbev/msu308 PubMed DOI

Donovan, S. E., Jones, D. T., Sands, W. A. & Eggleton, P. Morphological phylogenetics of termites (Isoptera). Biol. J. Linn. Soc.70, 467–513 (2000).10.1111/j.1095-8312.2000.tb01235.x DOI

Jouault, C., Legendre, F., Grandcolas, P. & Nel, A. Revising dating estimates and the antiquity of eusociality in termites using the fossilized birth–death process. Syst. Entomol.46, 592–610 (2021).10.1111/syen.12477 DOI

Lo, N., Kitade, O., Miura, T., Constantino, R. & Matsumoto, T. Molecular phylogeny of the Rhinotermitidae. Insectes Soc.51, 365–371 (2004).10.1007/s00040-004-0759-8 DOI

Legendre, F. et al. Phylogeny of Dictyoptera: dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLoS ONE10, e0130127 (2015). 10.1371/journal.pone.0130127 PubMed DOI PMC

Lo, N. & Eggleton, P. Termite phylogenetics and co-cladogenesis with symbionts. in Biology of Termites: A Modern Synthesis (eds. Bignell, D. E., Roisin, Y. & Lo, N.) 27–50 (Springer, 2011).

Bucek, A. et al. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr. Biol.29, 3728–3734 (2019). 10.1016/j.cub.2019.08.076 PubMed DOI

Hellemans, S. et al. Using ultraconserved elements to reconstruct the termite tree of life. Mol. Phylogenet. Evol.173, 107520 (2022). 10.1016/j.ympev.2022.107520 PubMed DOI

Bourguignon, T. et al. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol. Biol. Evol.34, 589–597 (2017). PubMed

Bejerano, G. et al. Ultraconserved elements in the human genome. Science304, 1321–1325 (2004). 10.1126/science.1098119 PubMed DOI

Faircloth, B. C. et al. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst. Biol.61, 717–726 (2012). 10.1093/sysbio/sys004 PubMed DOI

Hedin, M., Derkarabetian, S., Alfaro, A., Ramírez, M. J. & Bond, J. E. Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci. PeerJ7, e6864 (2019). 10.7717/peerj.6864 PubMed DOI PMC

Van Dam, M. H., Henderson, J. B., Esposito, L. & Trautwein, M. Genomic characterization and curation of UCEs improves species tree reconstruction. Syst. Biol.70, 307–321 (2021). 10.1093/sysbio/syaa063 PubMed DOI PMC

Minh, B. Q., Hahn, M. W. & Lanfear, R. New methods to calculate concordance factors for phylogenomic datasets. Mol. Biol. Evol.37, 2727–2733 (2020). 10.1093/molbev/msaa106 PubMed DOI PMC

Wang, M. et al. Neoisoptera repeatedly colonised Madagascar after the Middle Miocene climatic optimum. Ecography2023, e06463 (2023).10.1111/ecog.06463 DOI

Rocha, M. M. Redescription of the enigmatic genus Genuotermes Emerson (Isoptera, Termitidae, Termitinae). Zookeys340, 107–117 (2013).10.3897/zookeys.340.6131 PubMed DOI PMC

Rocha, M. M., Morales-Corrêa e Castro, A. C., Cuezzo, C. & Cancello, E. M. Phylogenetic reconstruction of Syntermitinae (Isoptera, Termitidae) based on morphological and molecular data. PLoS ONE12, e0174366 (2017). 10.1371/journal.pone.0174366 PubMed DOI PMC

Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science339, 74–78 (2013). 10.1126/science.1228282 PubMed DOI

Noirot, C. The gut of termites (Isoptera): comparative anatomy, systematics, phylogeny. II. - Higher termites (Termitidae). Ann. Soc. Entomol. France (N.S.) 37, 431–471 (2001).

Hagen, H. A. Monographie der Termiten. Linnaea Entomol.12, 1–342 (1858).

Holmgren, N. Termitenstudien. 4. Versuch einer systematischen Monographie der Termiten der Orientalischen Region. K. Sven. Vetensk. Akad. Handl.50, 1–276 (1913).

Desneux, J. Remarques critiques sur la phylogénie et la division systématique des Termitides (réponse à M. Wasmann). Ann. Soc. Entomol. Belgique48, 372–378 (1904).

Desneux, J. Termites du Sahara algérien recueillis par M. le professeur Lameere. Ann. Soc. Entomol. Belgique46, 436–440 (1902).

Quennedey, A. & Deligne, J. L’arme frontale des soldats de termites. I. Rhinotermitidae. Insectes Soc.22, 243–267 (1975).10.1007/BF02223076 DOI

Silvestri, F. Isoptera. in Die Fauna Südwest-Australiens. Ergebnisse der Hamburger Südwest-Australischen Forschungsreise 1905. Vol. 2 (eds. Michaelsen, W. & Hartmeyer, R.) 279–314 (Gustav Fischer, 1909).

Jankásek, M., Kotyková Varadínová, Z. & Stáhlavský, F. Blattodea karyotype database. Eur. J. Entomol.118, 192–199 (2021).10.14411/eje.2021.020 DOI

Chouvenc, T., Šobotník, J., Engel, M. S. & Bourguignon, T. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell. Mol. Life Sci.78, 2749–2769 (2021). 10.1007/s00018-020-03728-z PubMed DOI PMC

Silvestri, F. Nota preliminare sui Termitidi sud-americani. Boll. Mus. Zool. Anat. Comp. R. Univ. Torino16, 1–8 (1901).

Wasmann, E. Viaggio di Leonardo Fea in Birmania e regioni vicine LXXII. Neue Termitophilen und Termiten aus Indien. I–III. Ann. del Mus. Civ. di Stor. Nat. di Genova (Ser. 2)16, 613–630 (1896).

Sjöstedt, Y. Revision der Termiten Afrikas. 3. Monographie. K. Sven. Vetensk. Handl. (Ser. 3)3, 1–419, 16pl. (1926).

Wasmann, E. Termiten, Termitophilen und Myrmekophilen, gesammelt auf Ceylon von Dr. W. Horn 1899, mit anderm ostindischen Material bearbeitet. Zool. Jahrb. Abt. Syst. Geog. Biol. Tiere 17, 99–164 (1902).

Constantino, R. Key to the soldiers of South American Heterotermes with a new species from Brazil (Isoptera: Rhinotermitidae). Insect Syst. Evol.31, 463–472 (2000).10.1163/187631200X00499 DOI

Kemner, N. A. Systematische und biologische Studien über die Termiten Javas und Celebes’. K. Sven. Vetensk. Akad. Handl.13, 1–241 (1934).

Miller, L. R. Invasitermes, a new genus of soldierless termites from Northern Australia (Isoptera: Termitidae). Aust. J. Entomol.23, 33–37 (1984).10.1111/j.1440-6055.1984.tb01902.x DOI

Emerson, A. E. The termites of Kartabo, Bartica District, British Guiana. Zoologica6, 291–459 (1925).

Rocha, M. M. & Cuezzo, C. Redescription of the monotypic Neotropical genus Crepititermes Emerson (Termitidae: Termitinae). Neotrop. Entomol.44, 457–465 (2015). 10.1007/s13744-015-0307-4 PubMed DOI

Holmgren, N. Studien über südamerikanische Termiten. Zool. Jahrb. Abt. Syst. Geog. Biol. Tiere23, 521–676 (1906).

Emerson, A. E. Six new genera of Termitinae from the Belgian Congo (Isoptera, Termitidae). Am. Mus. Novit.1988, 1–49 (1960).

Scheffrahn, R. H. & Křeček, J. Redescription and reclassification of the African termite, Forficulitermes planifrons (Isoptera, Termitidae, Termitinae). Zootaxa3946, 591–594 (2015). 10.11646/zootaxa.3946.4.9 PubMed DOI

Holmgren, N. The Percy Sladen Trust expedition to the Indian Ocean in 1905. Isoptera. Trans. Linn. Soc. Lond., Zool.14, 135–148 (1910).10.1111/j.1096-3642.1910.tb00527.x DOI

Holmgren, N. Wissenschaftliche Ergebnisse einer Forschungsreise nach Ostindien, ausgeführt im Auftrage der Kgl. Preuss. Akademie der Wissenschaften zu Berlin von H. v. Buttel-Reepen. III. Termiten aus Sumatra, Java, Malacca und Ceylon. Zool. Jahrb. Abt. Syst. Geog. Biol. Tiere36, 229–290 (1914).

Roisin, Y. Schievitermes globicornis, a new genus and species of Termitinae (Blattodea, Termitidae) from French Guiana. ZooKeys1125, 103–114 (2022). 10.3897/zookeys.1125.91124 PubMed DOI PMC

Silvestri, F. Contribuzione alla conoscenza dei Termitidi e Termitofili dell’Africa occidentale. I. Termitidi. Boll. Lab. Zool. Gen. Agrar. R. Sc. Super. Agricoltura Portici9, 1–146 (1914).

Latreille, P. A. Histoire Naturelle, Générale et Particulière des Crustacés et des Insectes. Vol. 3. (F. Dufart, 1802).

Linnaeus, C. Systema Naturae per Regna Tria Natura, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis [10th ed. (revised), Vol. 1]. (Laurentius Salvius, 1758).

Weidner, H. Beiträge zur Kenntnis der Termiten Angolas, hauptsächlich auf Grund der Sammlungen und Beobachtungen von A. de Barros Machado (I. Beitrag). Publicações Cult. Cia. Diam. Angola29, 55–106 (1956).

Wasmann, E. Termiten von Madagaskar und Ostafrika. Abh. Senckenbergi. Naturf. Ges.21, 137–182 (1897).

Hare, L. Termite phylogeny as evidenced by soldier mandible development. Ann. Entomol. Soc. Am.37, 459–486 (1937).10.1093/aesa/30.3.459 DOI

Whitfield, J. B. & Lockhart, P. J. Deciphering ancient rapid radiations. Trends Ecol. Evol.22, 258–265 (2007). 10.1016/j.tree.2007.01.012 PubMed DOI

Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol.24, 332–340 (2009). 10.1016/j.tree.2009.01.009 PubMed DOI

Arora, J. et al. Evidence of cospeciation between termites and their gut bacteria on a geological time scale. Proc. R. Soc. B. 290, 20230619 (2023). 10.1098/rspb.2023.0619 PubMed DOI PMC

Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics34, i884–i890 (2018). 10.1093/bioinformatics/bty560 PubMed DOI PMC

Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res.27, 824–834 (2017). 10.1101/gr.213959.116 PubMed DOI PMC

Faircloth, B. C. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics32, 786–788 (2016). 10.1093/bioinformatics/btv646 PubMed DOI

Harris, R. S. Improved Pairwise Alignment of Genomic DNA. (The Pennsylvania State University, 2007).

Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol.30, 772–780 (2013). 10.1093/molbev/mst010 PubMed DOI PMC

Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol.17, 540–552 (2000). 10.1093/oxfordjournals.molbev.a026334 PubMed DOI

Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol.56, 564–577 (2007). 10.1080/10635150701472164 PubMed DOI

Fleming, J. F. & Struck, T. H. nRCFV: a new, dataset-size-independent metric to quantify compositional heterogeneity in nucleotide and amino acid datasets. BMC Bioinformatics24, 145 (2023). 10.1186/s12859-023-05270-8 PubMed DOI PMC

Kück, P. & Struck, T. H. BaCoCa - A heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. Mol. Phylogenet. Evol.70, 94–98 (2014). 10.1016/j.ympev.2013.09.011 PubMed DOI

Terrapon, N. et al. Molecular traces of alternative social organization in a termite genome. Nat. Commun.5, 3636 (2014). 10.1038/ncomms4636 PubMed DOI

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics26, 841–842 (2010). 10.1093/bioinformatics/btq033 PubMed DOI PMC

Rice, P., Longden, L. & Bleasby, A. EMBOSS: the European molecular biology open software suite. Trends Genet.16, 276–277 (2000). 10.1016/S0168-9525(00)02024-2 PubMed DOI

Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res.34, W609–W612 (2006). 10.1093/nar/gkl315 PubMed DOI PMC

Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol.32, 268–274 (2015). 10.1093/molbev/msu300 PubMed DOI PMC

Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol.35, 518–522 (2018). 10.1093/molbev/msx281 PubMed DOI PMC

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods14, 587–589 (2017). 10.1038/nmeth.4285 PubMed DOI PMC

Kosiol, C., Holmes, I. & Goldman, N. An empirical codon model for protein sequence evolution. Mol. Biol. Evol.24, 1464–1479 (2007). 10.1093/molbev/msm064 PubMed DOI

Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol.25, 1307–1320 (2008). 10.1093/molbev/msn067 PubMed DOI

Le, S. Q., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics24, 2317–2323 (2008). 10.1093/bioinformatics/btn445 PubMed DOI

Kosiol, C. & Goldman, N. Different versions of the Dayhoff rate matrix. Mol. Biol. Evol.22, 193–199 (2005). 10.1093/molbev/msi005 PubMed DOI

Minh, B. Q., Dang, C. C., Vinh, L. S. & Lanfear, R. QMaker: fast and accurate method to estimate empirical models of protein evolution. Syst. Biol.70, 1046–1060 (2021). 10.1093/sysbio/syab010 PubMed DOI PMC

Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science346, 763–767 (2014). 10.1126/science.1257570 PubMed DOI

Chernomor, O., Von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol.65, 997–1008 (2016). 10.1093/sysbio/syw037 PubMed DOI PMC

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol.34, 772–773 (2017). PubMed

Aberer, A. J., Krompass, D. & Stamatakis, A. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Syst. Biol.62, 162–166 (2013). 10.1093/sysbio/sys078 PubMed DOI PMC

Mendes, F. K. & Hahn, M. W. Why concatenation fails near the anomaly zone. Syst. Biol.67, 158–169 (2018). 10.1093/sysbio/syx063 PubMed DOI

Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19, 153 (2018). 10.1186/s12859-018-2129-y PubMed DOI PMC

Mai, U. & Mirarab, S. TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics19, 272 (2018). 10.1186/s12864-018-4620-2 PubMed DOI PMC

Sayyari, E. & Mirarab, S. Fast coalescent-based computation of local branch support from quartet frequencies. Mol. Biol. Evol.33, 1654–1668 (2016). 10.1093/molbev/msw079 PubMed DOI PMC

Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol.3, 217–223 (2012).10.1111/j.2041-210X.2011.00169.x DOI

R Core Team. R: a Language and Environment for Statistical Computing. (2020).

Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol.51, 492–508 (2002). 10.1080/10635150290069913 PubMed DOI

Hellemans, S. et al. Data from: Using ultraconserved elements to reconstruct the termite tree of life. Dryad, Dataset10.5061/dryad.x0k6djhn0 (2022). PubMed

Arora, J. et al. Evidence of cospeciation between termites and their gut bacteria on a geological time scale. Dryad, Dataset10.5061/dryad.tmpg4f53w (2023). PubMed PMC

Hellemans, S., Wang, M., Kaymak, E. & Bourguignon, T. Data from: Genomic data provide insights into the classification of extant termites. Dryad, Dataset10.5061/dryad.02v6wwqbm (2024). PubMed PMC

Hagen, H. A. Hr. Peters Berichtete über die von ihm gesammelten und von Hrn. Dr. Hermann Hagen bearbeiteten Neuropteren aus Mossambique. Ber. Akad. Wiss. Berlin18, 479–484 (1853).

Desneux, J. Isoptera Fam. Termitidæ. in Genera Insectorum (ed. Wytsman, P.) 25, 1–52+2pls (P. Wytsman, 1904).

Emerson, A. E. The relations of a relict South African Termite (Isoptera, Hodotermitidae, Stolotermes). Am. Museum Novit. 1–12 (1942).

Holmgren, K. & Holmgren, N. Report on a collection of termites from India. Mem. Dep. Agric. India5, 135–171 (1917).

Engel, M. S. & Krishna, K. Family-group names for termites (Isoptera). Am. Mus. Novit.3432, 1–9 (2004).10.1206/0003-0082(2004)432<0001:FNFTI>2.0.CO;2 DOI

Holmgren, N. Termitenstudien. 1. Anatomische Untersuchungen. K. Sven. Vetensk. Akad. Handl.44, 1–215 (1909).

Grassé, P.-P. & Noirot, C. Apicotermes arquieri (Isoptère): ses constructions, sa biologie. Considérations générales sur la sous-famille des Apicotermitinae nov. Ann. des Sci. Nat., Zool. (11e Série) 16, 345–388 (1955).

Dudley, P. H. Termites of the isthmus of Panama.–Part II. Trans. N. Y. Acad. Sci.9, 157–180 (1890).

Wasmann, E. Beispiele rezenter Artenbildung bei Ameisengästen und Termitengästen. Biol. Cent.26, 565–580 (1906).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...