Evidence of cospeciation between termites and their gut bacteria on a geological time scale
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37339742
PubMed Central
PMC10281810
DOI
10.1098/rspb.2023.0619
Knihovny.cz E-zdroje
- Klíčová slova
- cophylogeny, endosymbionts, isoptera, metagenomics, vertical inheritance,
- MeSH
- Bacteria genetika MeSH
- fylogeneze MeSH
- Isoptera * MeSH
- savci MeSH
- střevní mikroflóra * MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Termites host diverse communities of gut microbes, including many bacterial lineages only found in this habitat. The bacteria endemic to termite guts are transmitted via two routes: a vertical route from parent colonies to daughter colonies and a horizontal route between colonies sometimes belonging to different termite species. The relative importance of both transmission routes in shaping the gut microbiota of termites remains unknown. Using bacterial marker genes derived from the gut metagenomes of 197 termites and one Cryptocercus cockroach, we show that bacteria endemic to termite guts are mostly transferred vertically. We identified 18 lineages of gut bacteria showing cophylogenetic patterns with termites over tens of millions of years. Horizontal transfer rates estimated for 16 bacterial lineages were within the range of those estimated for 15 mitochondrial genes, suggesting that horizontal transfers are uncommon and vertical transfers are the dominant transmission route in these lineages. Some of these associations probably date back more than 150 million years and are an order of magnitude older than the cophylogenetic patterns between mammalian hosts and their gut bacteria. Our results suggest that termites have cospeciated with their gut bacteria since first appearing in the geological record.
Zobrazit více v PubMed
McFall-Ngai M, et al. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229-3236. (10.1073/pnas.1218525110) PubMed DOI PMC
Janzen DH. 1980. When is it coevolution? Evolution 34, 611-612. (10.2307/2408229) PubMed DOI
de Vienne DM, Refrégier G, López-Villavicencio M, Tellier A, Hood ME, Giraud T. 2013. Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytol. 198, 347-385. (10.1111/nph.12150) PubMed DOI
Groussin M, Mazel F, Alm EJ. 2020. Co-evolution and co-speciation of host-gut bacteria systems. Cell Host Microbe 28, 12-22. (10.1016/j.chom.2020.06.013) PubMed DOI
Moran NA, McCutcheon JP, Nakabachi A. 2008. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165-190. (10.1146/annurev.genet.41.110306.130119) PubMed DOI
Jousselin E, Desdevises Y, Coeur d'acier A. 2009. Fine-scale cospeciation between Brachycaudus and Buchnera aphidicola: bacterial genome helps define species and evolutionary relationships in aphids. Proc. R. Soc. B 276, 187-196. (10.1098/rspb.2008.0679) PubMed DOI PMC
Kinjo Y, Lo N, Martín PV, Tokuda G, Pigolotti S, Bourguignon T. 2021. Enhanced mutation rate, relaxed selection, and the ‘domino effect’ are associated with gene loss in Blattabacterium, a cockroach endosymbiont. Mol. Biol. Evol. 38, 3820-3831. (10.1093/molbev/msab159) PubMed DOI PMC
Peek AS, Feldman RA, Lutz RA, Vrijenhoek RC. 1998. Cospeciation of chemoautotrophic bacteria and deep sea clams. Proc. Natl Acad. Sci. USA 95, 9962-9966. (10.1073/pnas.95.17.9962) PubMed DOI PMC
Gruber-Vodicka HR, et al. 2011. Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms. Proc. Natl Acad. Sci. USA 108, 12 078-12 083. (10.1073/pnas.1105347108) PubMed DOI PMC
Bright M, Bulgheresi S. 2010. A complex journey: transmission of microbial symbionts. Nat. Rev. Microbiol. 8, 218-230. (10.1038/nrmicro2262) PubMed DOI PMC
Onchuru TO, Javier Martinez A, Ingham CS, Kaltenpoth M. 2018. Transmission of mutualistic bacteria in social and gregarious insects. Curr. Opin. Insect Sci. 28, 50-58. (10.1016/j.cois.2018.05.002) PubMed DOI
Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T. 2006. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol. 4, e337. (10.1371/journal.pbio.0040337) PubMed DOI PMC
Salem H, et al. 2020. Symbiont digestive range reflects host plant breadth in herbivorous beetles. Curr. Biol. 30, 2875-2886. (10.1016/j.cub.2020.05.043) PubMed DOI
Koch H, Abrol DP, Li J, Schmid-Hempel P. 2013. Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol. Ecol. 22, 2028-2044. (10.1111/mec.12209) PubMed DOI
Kwong WK, Medina LA, Koch H, Sing KW, Soh EJ, Ascher JS, Jaffé R, Moran NA. 2017. Dynamic microbiome evolution in social bees. Sci. Adv. 3, e1600513. (10.1126/sciadv.1600513) PubMed DOI PMC
Ochman H, Elwyn S, Moran NA. 1999. Calibrating bacterial evolution. Proc. Natl Acad. Sci. USA 96, 12 638-12 643. (10.1073/pnas.96.22.12638) PubMed DOI PMC
Moeller AH, et al. 2016. Cospeciation of gut microbiota with hominids. Science 353, 380-382. (10.1126/science.aaf3951) PubMed DOI PMC
Suzuki TA, et al. 2022. Codiversification of gut microbiota with humans. Science 377, 1328-1332. (10.1126/science.abm7759) PubMed DOI PMC
Browne HP, et al. 2021. Host adaptation in gut Firmicutes is associated with sporulation loss and altered transmission cycle. Genome Biol. 22, 204. (10.1186/s13059-021-02428-6) PubMed DOI PMC
Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. 2019. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505-510. (10.1038/s41586-019-1058-x) PubMed DOI PMC
Brune A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168-180. (10.1038/nrmicro3182) PubMed DOI
Noda S, et al. 2007. Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol. Ecol. 16, 1257-1266. (10.1111/j.1365-294X.2006.03219.x) PubMed DOI
Ohkuma M, Noda H, Hongoh Y, Nalepa CA, Inoue T. 2009. Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Proc. R. Soc. B 276, 239-245. (10.1098/rspb.2008.1094) PubMed DOI PMC
Ohkuma M, Brune A. 2011. Diversity, structure, and evolution of the termite gut microbial community. In Biology of termites: a modern synthesis (eds Bignell DE, Roisin Y, Lo N). Berlin, Germany: Springer.
Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, Brune A. 2015. Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol. Ecol. 24, 5284-5295. (10.1111/mec.13376) PubMed DOI
Bourguignon T, Lo N, Dietrich C, Šobotník J, Sidek S, Roisin Y, Brune A, Evans TA. et al. 2018. Rampant host switching shaped the termite gut microbiome. Curr. Biol. 28, 649-654. (10.1016/j.cub.2018.01.035) PubMed DOI
Nalepa CA, Bignell DE, Bandi C. 2001. Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insectes Soc. 48, 194-201. (10.1007/PL00001767) DOI
Sunagawa S, et al. 2013. Metagenomic species profiling using universal phylogenetic marker genes. Nat. Methods 10, 1196-1199. (10.1038/nmeth.2693) PubMed DOI
Bourguignon T, et al. 2015. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32, 406-421. (10.1093/molbev/msu308) PubMed DOI
Bucek A, et al. 2019. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr. Biol. 29, 3728-3734. (10.1016/j.cub.2019.08.076) PubMed DOI
Arora J, et al. 2022. The functional evolution of termite gut microbiota. Microbiome 10, 78. (10.1186/s40168-022-01258-3) PubMed DOI PMC
Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin EM. 2007. Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318, 1449-1452. (10.1126/science.1147112) PubMed DOI
Milanese A, et al. 2019. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun. 10, 1014. (10.1038/s41467-019-08844-4) PubMed DOI PMC
Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. 2020. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079-1086. (10.1038/s41587-020-0501-8) PubMed DOI
Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59-60. (10.1038/nmeth.3176) PubMed DOI
Wiens JJ, Chippindale PT, Hillis DM. 2003. When are phylogenetic analyses misled by convergence? A case study in Texas cave salamanders. Syst. Biol. 52, 501-514. (10.1080/10635150309320) PubMed DOI
von Mering C, Hugenholtz P, Raes J, Tringe SG, Doerks T, Jensen LJ, Ward N, Bork P. 2007. Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315, 1126-1130. (10.1126/science.1133420) PubMed DOI
Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. (10.1093/molbev/mst010) PubMed DOI PMC
Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609-W612. (10.1093/nar/gkl315) PubMed DOI PMC
Criscuolo A, Gribaldo S. 2010. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210. (10.1186/1471-2148-10-210) PubMed DOI PMC
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2014. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. (10.1093/molbev/msu300) PubMed DOI PMC
Minh BQ, Nguyen MAT, von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188-1195. (10.1093/molbev/mst024) PubMed DOI PMC
Parks DH, et al. 2017. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533-1542. (10.1038/s41564-017-0012-7) PubMed DOI
Bourguignon T, Lo N, Šobotník J, Sillam-Dussès D, Roisin Y, Evans TA. 2016. Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proc. R. Soc. B 283, 20160179. (10.1098/rspb.2016.0179) PubMed DOI PMC
Bourguignon T, et al. 2017. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol. Biol. Evol. 34, 589-597. (10.1093/molbev/msw253) PubMed DOI
Bucek A, et al. 2022. Molecular phylogeny reveals the past transoceanic voyages of drywood termites (Isoptera, Kalotermitidae). Mol. Biol. Evol. 39, msac093. (10.1093/molbev/msac093) PubMed DOI PMC
Wang M, Buček A, Šobotník J, Sillam-Dussès D, Evans TA, Roisin Y, Lo N, Bourguignon T. 2019. Historical biogeography of the termite clade Rhinotermitinae (Blattodea: Isoptera). Mol. Phylogenet. Evol. 132, 100-104. (10.1016/j.ympev.2018.11.005) PubMed DOI
Wang M, et al. 2022. Phylogeny, biogeography and classification of Teletisoptera (Blattaria: Isoptera). Syst. Entomol. 47, 581-590. (10.1111/syen.12548) DOI
Wang M, et al. 2023. Neoisoptera repeatedly colonised Madagascar after the Middle Miocene climatic optimum. Ecography 2023, e06463. (10.1111/ecog.06463) DOI
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410. (10.1016/S0022-2836(05)80360-2) PubMed DOI
Bernt M, et al. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313-319. (10.1016/j.ympev.2012.08.023) PubMed DOI
Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016. (10.1093/ve/vey016) PubMed DOI PMC
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88. (10.1371/journal.pbio.0040088) PubMed DOI PMC
Gernhard T. 2008. The conditioned reconstructed process. J. Theor. Biol. 253, 769-778. (10.1016/j.jtbi.2008.04.005) PubMed DOI
Hellemans S, Wang M, Hasegawa N, Šobotník J, Scheffrahn RH, Bourguignon T. 2022. Using ultraconserved elements to reconstruct the termite tree of life. Mol. Phylogenet. Evol. 173, 107520. (10.1016/j.ympev.2022.107520) PubMed DOI
Faircloth BC. 2016. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32, 786-788. (10.1093/bioinformatics/btv646) PubMed DOI
Harris RS. 2007. Improved pairwise alignment of genomic DNA. Ph.D. dissertation, The Pennsylvania State University.
Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540-552. (10.1093/oxfordjournals.molbev.a026334) PubMed DOI
Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. (10.1080/10635150701472164) PubMed DOI
Terrapon N, et al. 2014. Molecular traces of alternative social organization in a termite genome. Nat. Commun.. 5, 3636. (10.1038/ncomms4636) PubMed DOI
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518-522. (10.1093/molbev/msx281) PubMed DOI PMC
Balbuena JA, Míguez-Lozano R, Blasco-Costa I. 2013. PACo: a novel procrustes application to cophylogenetic analysis. PLoS ONE 8, e61048. (10.1371/journal.pone.0061048) PubMed DOI PMC
Oksanen J, et al. 2015. Vegan: community ecology package. R package version 2.2-0. See http://CRAN.Rproject.org/package=vegan.
Hutchinson MC, Cagua EF, Balbuena JA, Stouffer DB, Poisot T. 2017. PACo: implementing Procrustean Approach to Cophylogeny in R. Methods Ecol. Evol. 8, 932-940. (10.1111/2041-210X.12736) DOI
Smith MR. 2020. Information theoretic generalized Robinson–Foulds metrics for comparing phylogenetic trees. Bioinformatics 36, 5007-5013. (10.1093/bioinformatics/btaa614) PubMed DOI
Nye TMW, Liò P, Gilks WR. 2006. A novel algorithm and web-based tool for comparing two alternative phylogenetic trees. Bioinformatics 22, 117-119. (10.1093/bioinformatics/bti720) PubMed DOI
Perez-Lamarque B, Morlon H. 2019. Characterizing symbiont inheritance during host–microbiota evolution: application to the great apes gut microbiota. Mol. Ecol. Resour. 19, 1659-1671. (10.1111/1755-0998.13063) PubMed DOI
Satler JD, Herre EA, Jandér KC, Eaton DA, Machado CA, Heath TA, Nason JD. et al. 2019. Inferring processes of coevolutionary diversification in a community of Panamanian strangler figs and associated pollinating wasps. Evolution 73, 2295-2311. (10.1111/evo.13809) PubMed DOI
Morel B, Kozlov AM, Stamatakis A, Szöllősi GJ. 2020. GeneRax: a tool for species-tree-aware maximum likelihood-based gene family tree inference under gene duplication, transfer, and loss. Mol. Biol. Evol. 37, 2763-2774. (10.1093/molbev/msaa141) PubMed DOI PMC
Leadbetter JR, Schmidt TM, Graber JR, Breznak JA. 1999. Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283, 686-689. (10.1126/science.283.5402.686) PubMed DOI
Song Y, Hervé V, Radek R, Pfeiffer F, Zheng H, Brune A. 2021. Characterization and phylogenomic analysis of Breznakiella homolactica gen. nov. sp. nov. indicate that termite gut treponemes evolved from non-acetogenic spirochetes in cockroaches. Environ. Microbiol. 23, 4228-4245. (10.1111/1462-2920.15600) PubMed DOI
Brune A, Song Y, Oren A, Paster BJ. 2022. A new family for ‘termite gut treponemes': description of Breznakiellaceae fam. nov., Gracilinema caldarium gen. nov., comb. nov., Leadbettera azotonutricia gen. nov., comb. nov., Helmutkoenigia isoptericolens gen. nov., comb. nov., and Zuelzera stenostrepta gen. nov., comb. nov., and proposal of Rectinemataceae fam. nov. Int. J. Syst. Evol. Microbiol. 72, 005439. (10.1099/ijsem.0.005439) PubMed DOI
Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T. 2005. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl. Environ. Microbiol. 71, 6590-6599. (10.1128/AEM.71.11.6590-6599.2005) PubMed DOI PMC
Brune A, Dietrich C. 2015. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu. Rev. Microbiol. 69, 145-166. (10.1146/annurev-micro-092412-155715) PubMed DOI
Arora J, et al. 2023. Data from: Evidence of cospeciation between termites and their gut bacteria on a geological time scale. Dryad Digital Repository. (10.5061/dryad.tmpg4f53w) PubMed DOI PMC
Arora J, et al. 2023. Evidence of cospeciation between termites and their gut bacteria on a geological time scale. Figshare. (10.6084/m9.figshare.c.6673724) PubMed DOI PMC
Genomic data provide insights into the classification of extant termites
Evidence of cospeciation between termites and their gut bacteria on a geological time scale
figshare
10.6084/m9.figshare.c.6673724