Termites and subsocial roaches inherited many bacterial-borne carbohydrate-active enzymes (CAZymes) from their common ancestor

. 2024 Nov 06 ; 7 (1) : 1449. [epub] 20241106

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39506101
Odkazy

PubMed 39506101
PubMed Central PMC11541852
DOI 10.1038/s42003-024-07146-w
PII: 10.1038/s42003-024-07146-w
Knihovny.cz E-zdroje

Termites digest wood using Carbohydrate-Active Enzymes (CAZymes) produced by gut bacteria with whom they have cospeciated at geological timescales. Whether CAZymes were encoded in the genomes of their ancestor's gut bacteria and transmitted to modern termites or acquired more recently from bacteria not associated with termites is unclear. We used gut metagenomes from 195 termites and one Cryptocercus, the sister group of termites, to investigate the evolution of termite gut bacterial CAZymes. We found 420 termite-specific clusters in 81 bacterial CAZyme gene trees, including 404 clusters showing strong cophylogenetic patterns with termites. Of the 420 clusters, 131 included at least one bacterial CAZyme sequence associated with Cryptocercus or Mastotermes, the sister group of all other termites. Our results suggest many bacterial CAZymes have been encoded in the genomes of termite gut bacteria since termite origin, indicating termites rely upon many bacterial CAZymes endemic to their guts to digest wood.

Zobrazit více v PubMed

Engel, M. S., Barden, P., Riccio, M. L. & Grimaldi, D. A. Morphologically specialized termite castes and advanced sociality in the Early Cretaceous. Curr. Biol.26, 522–530 (2016). PubMed

Lo, N. et al. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr. Biol.10, 801–804 (2000). PubMed

Inward, D. J. G., Vogler, A. P. & Eggleton, P. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol.44, 953–967 (2007). PubMed

Donovan, S. E., Eggleton, P. & Bignell, D. E. Gut content analysis and a new feeding group classification of termites. Ecol. Entomol.26, 356–366 (2001).

Bourguignon, T. et al. Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol. Entomol.36, 261–269 (2011).

Watanabe, H., Noda, H., Tokuda, G. & Lo, N. A cellulase gene of termite origin. Nature394, 330–331 (1998). PubMed

Tokuda, G. et al. Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol. Ecol.13, 3219–3228 (2004). PubMed

Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol.12, 168–180 (2014). PubMed

Chouvenc, T., Šobotník, J., Engel, M. S. & Bourguignon, T. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell. Mol. Life Sci.78, 2749–2769 (2021). PubMed PMC

Rouland-Lefèvre, C. Symbiosis with Fungi. in Termites: Evolution, Sociality, Symbioses, Ecology (eds. Abe, T., Bignell, D.E., Higashi, M.) 289–306 (Springer Netherlands, Dordrecht, 2000). 10.1007/978-94-017-3223-9_14.

Lynd, L. R., Weimer, P. J., van Zyl, W. H. & Pretorius, I. S. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev.66, 506–77 (2002). PubMed PMC

Béguin, P. & Aubert, J.-P. The biological degradation of cellulose. FEMS Microbiol. Rev.13, 25–58 (1994). PubMed

Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res.37, D233–D238 (2009). PubMed PMC

Drula, E. et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res.50, D571–D577 (2022). PubMed PMC

Coutinho, P. M., Deleury, E., Davies, G. J. & Henrissat, B. An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol.328, 307–317 (2003). PubMed

Henrissat, B. & Davies, G. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol.7, 637–644 (1997). PubMed

Lombard, V. et al. A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem. J.432, 437–444 (2010). PubMed

Levasseur, A., Drula, E., Lombard, V., Coutinho, P. M. & Henrissat, B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels6, 41 (2013). PubMed PMC

Boraston, A. B., Bolam, D. N., Gilbert, H. J. & Davies, G. J. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J.382, 769–781 (2004). PubMed PMC

Arora, J. et al. The functional evolution of termite gut microbiota. Microbiome10, 78 (2022). PubMed PMC

Marynowska, M. et al. Compositional and functional characterisation of biomass-degrading microbial communities in guts of plant fibre- and soil-feeding higher termites. Microbiome8, 96 (2020). PubMed PMC

Warnecke, F. et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature450, 560–565 (2007). PubMed

Watanabe, H. & Tokuda, G. Cellulolytic systems in insects. Annu. Rev. Entomol.55, 609–632 (2010). PubMed

Albersheim, P., Darvill, A., Roberts, K., Sederoff, R. & Staehelin, A. Plant Cell Walls (Garland Science, 2010). 10.1201/9780203833476.

Brune, A. & Ohkuma, M. Role of the termite gut microbiota in symbiotic digestion. In Biology of Termites: a Modern Synthesis (eds. Bignell, D. E., Roisin, Y., Lo, N.) 439–475 (Springer Netherlands, 2010). 10.1007/978-90-481-3977-4_16.

Katsumata, K. S., Jin, Z., Hori, K. & Iiyama, K. Structural changes in lignin of tropical woods during digestion by termite, Cryptotermes brevis. J. Wood Sci.53, 419–426 (2007).

Ebert, D. The epidemiology and evolution of symbionts with mixed-mode transmission. Annu. Rev. Ecol. Evol. Syst.44, 623–643 (2013).

Arora, J. et al. Evidence of cospeciation between termites and their gut bacteria on a geological time scale. Proc. Biol. Sci.290, 20230619 (2023). PubMed PMC

Bourguignon, T. et al. Rampant host switching shaped the termite gut microbiome. Curr. Biol.28, 649–654 (2018). PubMed

Noda, S. et al. Endosymbiotic Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the termite Coptotermes formosanus. Appl. Environ. Microbiol.71, 8811–8817 (2005). PubMed PMC

Ohkuma, M., Noda, S. & Kudo, T. Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Appl. Environ. Microbiol.65, 4926–4934 (1999). PubMed PMC

Ohkuma, M. & Brune, A. Diversity, structure, and evolution of the termite gut microbial community. in Biology of Termites: a Modern Synthesis (eds. Bignell, D.E. Roisin, Y., Lo, N.) 413–438 (Springer Netherlands, 2010). 10.1007/978-90-481-3977-4_15.

Michaud, C. et al. Efficient but occasionally imperfect vertical transmission of gut mutualistic protists in a wood-feeding termite. Mol. Ecol.29, 308–324 (2020). PubMed

Nalepa, C. A., Bignell, D. E. & Bandi, C. Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insectes Soc.48, 194–201 (2001).

Sinotte, V. M., Renelies-Hamilton, J., Andreu-Sánchez, S., Vasseur-Cognet, M. & Poulsen, M. Selective enrichment of founding reproductive microbiomes allows extensive vertical transmission in a fungus-farming termite. Proc. Biol. Sci.290, 20231559 (2023). PubMed PMC

Dietrich, C., Köhler, T. & Brune, A. The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl. Environ. Microbiol.80, 2261–2269 (2014). PubMed PMC

Chouvenc, T., Elliott, M. L., Šobotník, J., Efstathion, C. A. & Su, N.-Y. The Termite Fecal Nest: A Framework for the Opportunistic Acquisition of Beneficial Soil Streptomyces (Actinomycetales: Streptomycetaceae). Environ. Entomol.47, 1431–1439 (2018). PubMed

Visser, A. A., Nobre, T., Currie, C. R., Aanen, D. K. & Poulsen, M. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites. Microb. Ecol.63, 975–985 (2012). PubMed

Hellemans, S. et al. Genomic data provide insights into the classification of extant termites. Nat. Commun.15, 6724 (2024). PubMed PMC

Bucek, A. et al. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr. Biol.29, 3728–3734.e4 (2019). PubMed

Hellemans, S. et al. Using ultraconserved elements to reconstruct the termite tree of life. Mol. Phylogenet. Evol.173, 107520 (2022). PubMed

Balbuena, J. A., Míguez-Lozano, R. & Blasco-Costa, I. PACo: A novel Procrustes Application to Cophylogenetic analysis. PLoS One8, e61048 (2013). PubMed PMC

Smith, M. R. Information theoretic generalized Robinson-Foulds metrics for comparing phylogenetic trees. Bioinformatics36, 5007–5013 (2020). PubMed

Nye, T. M. W., Liò, P. & Gilks, W. R. A novel algorithm and web-based tool for comparing two alternative phylogenetic trees. Bioinformatics22, 117–119 (2006). PubMed

Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods12, 59–60 (2015). PubMed

Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res.50, D785–D794 (2022). PubMed PMC

Tokuda, G. et al. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proc. Natl Acad. Sci. USA115, E11996–E12004 (2018). PubMed PMC

Hongoh, Y. et al. Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science322, 1108–1109 (2008). PubMed

Kitade, O. & Matsumoto, T. Characteristics of the symbiotic flagellate composition within the termite family Rhinotermitidae (Isoptera). Symbiosis25, 271–278 (1998).

Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol.38, 1079–1086 (2020). PubMed

Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res.46, W95–W101 (2018). PubMed PMC

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990). PubMed

Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: A Cross-pPlatform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS One11, e0163962 (2016). PubMed PMC

Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res.30, 3059–3066 (2002). PubMed PMC

Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol.30, 772–780 (2013). PubMed PMC

Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res.34, W609–W612 (2006). PubMed PMC

Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol.26, 1641–1650 (2009). PubMed PMC

Terrapon, N. et al. Molecular traces of alternative social organization in a termite genome. Nat. Commun.5, 3636 (2014). PubMed

Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol.35, 518–522 (2018). PubMed PMC

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol.32, 268–274 (2015). PubMed PMC

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics25, 1754–1760 (2009). PubMed PMC

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics25, 2078–2079 (2009). PubMed PMC

Oksanen, J., Blanchet, F. G., Kindt, R. & Legendre, R. vegan: Community Ecology Package. R package version 2.0-10, edn. (2014). https://CRAN.R-project.org/package=vegan.

Hutchinson, M. C., Fernando Cagua, E., Balbuena, J. A., Stouffer, D. B. & Poisot, T. paco: implementing Procrustean Approach to Cophylogeny in R. Methods Ecol. Evol.8, 932–940 (2017).

Perez-Lamarque, B. & Morlon, H. Characterizing symbiont inheritance during host-microbiota evolution: Application to the great apes gut microbiota. Mol. Ecol. Resour.19, 1659–1671 (2019). PubMed

Satler, J. D. et al. Inferring processes of coevolutionary diversification in a community of Panamanian strangler figs and associated pollinating wasps. Evolution73, 2295–2311 (2019). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace