The functional evolution of termite gut microbiota

. 2022 May 27 ; 10 (1) : 78. [epub] 20220527

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, audiovizuální média, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35624491
Odkazy

PubMed 35624491
PubMed Central PMC9137090
DOI 10.1186/s40168-022-01258-3
PII: 10.1186/s40168-022-01258-3
Knihovny.cz E-zdroje

BACKGROUND: Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species but remains largely unknown in other taxa. We intend to fill this gap and provide a global understanding of the functional evolution of termite gut microbiota. RESULTS: We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that essential nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. CONCLUSIONS: Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ~ 150 million years ago. Therefore, the "world's smallest bioreactor" has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception. Video Abstract.

Zobrazit více v PubMed

Abdul Rahman N, Parks DH, Willner DL, Engelbrektson AL, Goffredi SK, Warnecke F, Scheffrahn RH, Hugenholtz P. A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome. 2015;3:5. doi: 10.1186/s40168-015-0067-8. PubMed DOI PMC

Adams DC, Otárola-Castillo E. Geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol. 2013;4:393–399. doi: 10.1111/2041-210X.12035. DOI

Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–1146. doi: 10.1038/nmeth.3103. PubMed DOI

Altschup SF, Warren G, Miller W, Myers EW, Lipman D. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Apprill A, Mcnally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–137. doi: 10.3354/ame01753. DOI

Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, Nilsson RH. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Mol Ecol Resour. 2015;15:1403–1414. doi: 10.1111/1755-0998.12399. PubMed DOI

Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69:313–319. doi: 10.1016/j.ympev.2012.08.023. PubMed DOI

Bignell DE, Eggleton P. On the elevated intestinal pH of higher termites (Isoptera: Termitidae) Ins Soc. 1995;42:57–69. doi: 10.1007/BF01245699. DOI

Bignell D, Eggleton P, Nunes L, Thomas K. Termites as mediators of forest carbon fluxes in tropical forests: budgets for carbon dioxide and methane emissions. In: Watt AD, Stork NE, Hunter MD, editors. Forests and insects. London: Chapman and Hall; 1997. pp. 109–134.

Bignell DE. The role of symbionts in the evolution of termites and their rise to ecological dominance in the tropics. In: Hurst CJ, editor. The mechanistic benefits of microbial symbionts. Dordrecht: Springer; 2016. p. 121–72.

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Bourguignon T, Šobotník J, Lepoint G, Martin JM, Hardy OJ, Dejean A, Roisin Y. Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol Entomol. 2011;36:261–269. doi: 10.1111/j.1365-2311.2011.01265.x. DOI

Bourguignon T, Lo N, Cameron SL, Šobotník J, Hayashi Y, Shigenobu S, Watanabe D, Roisin Y, Miura T, Evans TA. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol Biol Evol. 2015;32:406–421. doi: 10.1093/molbev/msu308. PubMed DOI

Bourguignon T, Lo N, Šobotník J, Sillam-Dussès D, Roisin Y, Evans TA. Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proc R Soc B. 2016;283:20160179. doi: 10.1098/rspb.2016.0179. PubMed DOI PMC

Bourguignon T, Lo N, Šobotník J, Ho SYW, Iqbal N, Coissac E, Lee M, Jendryka MM, Sillam-Dussès D, Krizkova B, et al. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol Biol Evol. 2017;34:589–597. PubMed

Bourguignon T, Lo N, Dietrich C, Šobotník J, Sidek S, Roisin Y, Brune A, Evans TA. Rampant host switching shaped the termite gut microbiome. Curr Biol. 2018;28:649–654. doi: 10.1016/j.cub.2018.01.035. PubMed DOI

Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–731. doi: 10.1038/nbt.3893. PubMed DOI PMC

Brauman A, Koenig JF, Dutreix J, Garcia JL. Characterization of two sulfate-reducing bacteria from the gut of the soil-feeding termite, Cubitermes speciosus. Antonie Van Leeuwenhoek. 1990;58:271–275. doi: 10.1007/BF00399339. PubMed DOI

Brauman A, Kane MD, Labat M, Breznak JA. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science. 1992;257:1384–1387. doi: 10.1126/science.257.5075.1384. PubMed DOI

Breznak JA, Switzer JM. Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol. 1986;52:623–630. doi: 10.1128/aem.52.4.623-630.1986. PubMed DOI PMC

Breznak JA, Brune A. Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol. 1994;39:453–487. doi: 10.1146/annurev.en.39.010194.002321. DOI

Breznak JA. Ecology of prokaryotic microbes in the guts of wood and litter-feeding termites. In: Abe T, Bignell DE, Higashi M, editors. Termites: evolution, sociality, symbioses, ecology. Dordrecht: Kluwer Academic Publishers; 2000. p. 209–31.

Brune A, Ohkuma M. Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N, editors. Biology of termites: a modern synthesis. Springer; 2011. p. 439–75.

Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol. 2014;12:168–180. doi: 10.1038/nrmicro3182. PubMed DOI

Brune A. Methanogens in the digestive tract of termites. In (Endo)symbiotic methanogenic archaea. In: Hackstein JHP, editor. Book series: Microbiology monographs. 2. Cham: Springer; 2018. pp. 81–101.

Brune A. Methanogenesis in the digestive tracts of insects and other arthropods. In: Stams AJM, Sousa DE, editors. Biogenesis of hydrocarbons. Cham: Springer; 2019. pp. 229–260.

Bucek A, Šobotník J, He S, Shi M, McMahon DP, Holmes EC, Roisin Y, Lo N, Bourguignon T. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr Biol. 2019;29:3728–3734. doi: 10.1016/j.cub.2019.08.076. PubMed DOI

Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI

Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta. 2013;1827:94–113. doi: 10.1016/j.bbabio.2012.07.002. PubMed DOI

Calusinska M, Marynowska M, Bertucci M, Untereiner B, Klimek D, Goux X, Sillam-Dussès D, Gawron P, Halder R, Wilmes P, et al. Integrative omics analysis of the termite gut system adaptation to Miscanthus diet identifies lignocellulose degradation enzymes. Commun Biol. 2020;3:275. doi: 10.1038/s42003-020-1004-3. PubMed DOI PMC

Chan PP, Lowe TM. tRNAscan-SE: Searching for tRNA genes in genomic sequences. Methods Mol Biol. 2019;1962:1–14. doi: 10.1007/978-1-4939-9173-0_1. PubMed DOI PMC

Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–1927. PubMed PMC

Chouvenc T, Šobotník J, Engel MS, Bourguignon T. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell Mol Life Sci. 2021;78:2749–2769. doi: 10.1007/s00018-020-03728-z. PubMed DOI PMC

Cleveland LR. The physiological and symbiotic relationships between the intestinal protozoa of termites and their host, with special reference to Reticulitermes flavipes Kollar. Biol Bull. 1924;46:203–227. doi: 10.2307/1536724. DOI

Desai MS, Brune A. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J. 2012;6:1302–1313. doi: 10.1038/ismej.2011.194. PubMed DOI PMC

Dietrich C, Köhler T, Brune A. The cockroach origin of the termite gut microbiota: Patterns in bacterial community structure reflect major evolutionary events. Appl Environ Microbiol. 2014;80:2261–2269. doi: 10.1128/AEM.04206-13. PubMed DOI PMC

Donovan SE, Eggleton P, Bignell DE. Gut content analysis and a new feeding group classification of termites. Ecol Entomol. 2001;26:356–366. doi: 10.1046/j.1365-2311.2001.00342.x. DOI

Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics. 2012;13:162. doi: 10.1186/1471-2164-13-162. PubMed DOI PMC

Dröge S, Limper U, Emtiazi F, Schönig I, Pavlus N, Drzyzga O, Fischer U, König H. In vitro and in vivo sulfate reduction in the gut contents of the termite Mastotermes darwiniensis and the rose-chafer Pachnoda marginata. J Gen Appl Microbiol. 2005;51:57–64. doi: 10.2323/jgam.51.57. PubMed DOI

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:e88. doi: 10.1371/journal.pbio.0040088. PubMed DOI PMC

Edgar RC. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ. 2018;6:e4652. doi: 10.7717/peerj.4652. PubMed DOI PMC

Eggleton P, Bignell DE, Sands WA, Mawdsley NA, Lawton JH, Wood TG, Bignell NC. The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philos Trans R Soc B Biol Sci. 1996;351:51–68. doi: 10.1098/rstb.1996.0004. DOI

El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D432. doi: 10.1093/nar/gky995. PubMed DOI PMC

Evans TA. Invasive termites. In: Bignell DE, Roisin Y, Lo N, editors. Biology of termites: a modern synthesis. Dordrecht Heidelberg London New York: Springer; 2011. pp. 519–562.

Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, Tyson GW. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol. 2019;17:219–232. doi: 10.1038/s41579-018-0136-7. PubMed DOI

Gernhard T. The conditioned reconstructed process. J Theor Biol. 2008;253:769–778. doi: 10.1016/j.jtbi.2008.04.005. PubMed DOI

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:2224. doi: 10.3389/fmicb.2017.02224. PubMed DOI PMC

Graber JR, Breznak JA. Physiology and nutrition of Treponema primitia, an H-2/CO2-acetogenic spirochete from termite hindguts. Appl Environ Microbiol. 2004;70:1307–1314. doi: 10.1128/AEM.70.3.1307-1314.2004. PubMed DOI PMC

Graham ED, Heidelberg JF, Tully BJ. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 2018;12:1861–1866. doi: 10.1038/s41396-018-0091-3. PubMed DOI PMC

Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC

He S, Ivanova N, Kirton E, Allgaier M, Bergin C, Scheffrahn RH, Kyrpides NC, Warnecke F, Tringe SG, Hugenholtz P. Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS One. 2013;8:e61126. doi: 10.1371/journal.pone.0061126. PubMed DOI PMC

Hervé V, Liu P, Dietrich C, Sillam-Dussès D, Stiblik P, Šobotník J, Brune A. Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites. PeerJ. 2020;8:e8614. doi: 10.7717/peerj.8614. PubMed DOI PMC

Holt JA, Lepage M. Termites and soil properties. In: Abe T, Bignell DE, Higashi M, editors. Termites: evolution, sociality, symbioses, ecology. Dordrecht: Kluwer Academic Publishers; 2000. p. 389–407.

Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, et al. Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science. 2008;322:1108–1109. doi: 10.1126/science.1165578. PubMed DOI

Hongoh Y, Ohkuma M. Termite gut flagellates and their methanogenic and eubacterial symbionts. In: Hackstein JH, editor. (Endo)symbiotic methanogenic archaea. Springer-Verlag; 2010. p. 55–79.

Hongoh Y. Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci. 2011;68:1311–1325. doi: 10.1007/s00018-011-0648-z. PubMed DOI PMC

Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–D293. doi: 10.1093/nar/gkv1248. PubMed DOI PMC

Hungate RE. Experiments on the nutrition of Zootermopsis. III. The anaerobic carbohydrate dissimilation by the intestinal protozoa. Ecology. 1939;20:230–245. doi: 10.2307/1930742. DOI

Ikeda-Ohtsubo W, Brune A. Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and ʻCandidatus Endomicrobium trichonymphaeʼ. Mol Ecol. 2009;18:332–342. doi: 10.1111/j.1365-294X.2008.04029.x. PubMed DOI

Ikeda-Ohtsubo W, Faivre N, Brune A. Putatively free-living ʻEndomicrobiaʼ – ancestors of the intracellular symbionts of termite gut flagellates? Environ Microbiol Rep. 2010;2:554–559. doi: 10.1111/j.1758-2229.2009.00124.x. PubMed DOI

Ikeda-Ohtsubo W, Strassert JFH, Köhler T, Mikaelyan A, Gregor I, McHardy AC, Tringe SG, Hugenholtz P, Radek R, Brune A. ‘Candidatus Adiutrix intracellularis’, an endosymbiont of termite gut flagellates, is the first representative of a deep-branching clade of Deltaproteobacteria and a putative homoacetogen. Environ Microbiol. 2016;18:2548–2564. doi: 10.1111/1462-2920.13234. PubMed DOI

Inoue T, Kitade O, Yoshimura T, Yamaoka I. Symbiotic associations with protists. In: Abe T, Bignell DE, Higashi M, editors. Termites: evolution, sociality, symbioses, ecology. Dordrecht: Kluwer Academic Publishers; 2000. p. 275–88.

Inoue JI, Oshima K, Suda W, Sakamoto M, Iino T, Noda S, Hongoh Y, Hattori M, Ohkuma M. Distribution and evolution of nitrogen fixation genes in the phylum Bacteroidetes. Microbes Environ. 2015;30:44–50. doi: 10.1264/jsme2.ME14142. PubMed DOI PMC

Iwadate Y, Kato JI. Identification of a formate-dependent uric acid degradation pathway in Escherichia coli. J Bacteriol. 2019;201:e00573–e00518. doi: 10.1128/JB.00573-18. PubMed DOI PMC

Ji R, Brune A. Transformation and mineralization of 14C-labeled cellulose, peptidoglycan, and protein by the soil-feeding termite Cubitermes Orthognathus. Biol Fertil Soils. 2001;33:166–174. doi: 10.1007/s003740000310. DOI

Ji R, Brune A. Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biol Biochem. 2005;37:1648–1655. doi: 10.1016/j.soilbio.2005.01.026. DOI

Jouquet P, Bottinelli N, Shanbhag RR, Bourguignon T, Traoré S, Abbasi SA. Termites: The neglected soil engineers of tropical soils. Soil Sci. 2016;181:157–165. doi: 10.1097/SS.0000000000000119. DOI

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–D462. doi: 10.1093/nar/gkv1070. PubMed DOI PMC

Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Keck F, Rimet F, Bouchez A, Franc A. Phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol Evol. 2016;6:2774–2780. doi: 10.1002/ece3.2051. PubMed DOI PMC

Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–5120. doi: 10.1128/AEM.01043-13. PubMed DOI PMC

Krishna K, Grimaldi DA, Engel MS. Treatise on the Isoptera of the world: Vol. 1. Bull Am Museum Nat Hist. 2013;377:1–196. doi: 10.1206/377.1. DOI

Kuhnigk T, Branke J, Krekeler D, Cypionka H, König H. A feasible role of sulfate-reducing bacteria in the termite gut. Syst Appl Microbiol. 1996;19:139–149. doi: 10.1016/S0723-2020(96)80039-7. DOI

Kuwahara H, Yuki M, Izawa K, Ohkuma M, Hongoh Y. Genome of ‘Ca. Desulfovibrio trichonymphae’, an H2-oxidizing bacterium in a tripartite symbiotic system within a protist cell in the termite gut. ISME J. 2017;11:766–776. doi: 10.1038/ismej.2016.143. PubMed DOI PMC

Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brune A. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum.”. Appl Environ Microbiol. 2015;81:1338–1352. doi: 10.1128/AEM.03389-14. PubMed DOI PMC

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie2. Nat Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI

Leadbetter JR, Schmidt TM, Graber JR, Breznak JA. Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science. 1999;283:686–689. doi: 10.1126/science.283.5402.686. PubMed DOI

Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA. Nitrogen fixation by symbiotic and free living spirochetes. Science. 2001;292:2495–2498. doi: 10.1126/science.1060281. PubMed DOI

Liu C, Zou G, Yan X, Zhou X. Screening of multimeric β-xylosidases from the gut microbiome of a higher termite, Globitermes brachycerastes. Int J Biol Sci. 2018;14:608–615. doi: 10.7150/ijbs.22763. PubMed DOI PMC

Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M, Maekawa K, Bandi C, Noda H. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol. 2000;10:801–804. doi: 10.1016/S0960-9822(00)00561-3. PubMed DOI

Loh HQ, Hervé V, Brune A. Metabolic potential for reductive acetogenesis and a novel energy-converting [NiFe] hydrogenase in Bathyarchaeia from termite guts – A genome-centric analysis. Front Microbiol. 2021;11:635786. doi: 10.3389/fmicb.2020.635786. PubMed DOI PMC

Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495. doi: 10.1093/nar/gkt1178. PubMed DOI PMC

Marynowska M, Goux X, Sillam-Dussès D, Rouland-Lefèvre C, Halder R, Wilmes P, Gawron P, Roisin Y, Delfosse P, Calusinska M. Compositional and functional characterisation of biomass-degrading microbial communities in guts of plant fibre- and soil-feeding higher termites. Microbiome. 2020;8:96. doi: 10.1186/s40168-020-00872-3. PubMed DOI PMC

Mendler K, Chen H, Parks DH, Lobb B, Hug LA, Doxey AC. AnnoTree: visualization and exploration of a functionally annotated microbial tree of life. Nucleic Acids Res. 2019;47:4442–4448. doi: 10.1093/nar/gkz246. PubMed DOI PMC

Michaud C, Hervé V, Dupont S, Dubreuil G, Bézier AM, Meunier J, Brune A, Dedeine F. Efficient but occasionally imperfect vertical transmission of gut mutualistic protists in a wood-feeding termite. Mol Ecol. 2020;29:308–324. doi: 10.1111/mec.15322. PubMed DOI

Mikaelyan A, Strassert JFH, Tokuda G, Brune A. The fibre-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.) Environ Microbiol. 2014;16:2711–2722. doi: 10.1111/1462-2920.12425. DOI

Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, Brune A. Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol. 2015;24:5284–5295. doi: 10.1111/mec.13376. PubMed DOI

Mikaelyan A, Thompson CL, Meuser K, Zheng H, Rani P, Plarre R, Brune A. High-resolution phylogenetic analysis of Endomicrobia reveals multiple acquisitions of endosymbiotic lineages by termite gut flagellates. Environ Microbiol Rep. 2017;9:477–483. doi: 10.1111/1758-2229.12565. PubMed DOI

Nalepa C. What kills the hindgut flagellates of lower termites during the host molting cycle? Microorganisms. 2017;5:82. doi: 10.3390/microorganisms5040082. PubMed DOI PMC

Nalepa CA. Ancestral transfer of symbionts between cockroaches and termites: an unlikely scenario. Proc R Soc B. 1991;246:185–189. doi: 10.1098/rspb.1991.0143. PubMed DOI

Ngugi DK, Ji R, Brune A. Nitrogen mineralization, denitrification, and nitrate ammonification by soil-feeding termites: a 15N-based approach. Biogeochemistry. 2011;103:355–369. doi: 10.1007/s10533-010-9478-6. DOI

Ngugi DK, Brune A. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.) Environ Microbiol. 2012;14:860–871. doi: 10.1111/j.1462-2920.2011.02648.x. PubMed DOI

Nishimura Y, Otagiri M, Yuki M, Shimizu M, Inoue J, Moriya S, Ohkuma M. Division of functional roles for termite gut protists revealed by single-cell transcriptomes. ISME J. 2020;14:2449–2460. doi: 10.1038/s41396-020-0698-z. PubMed DOI PMC

Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–834. doi: 10.1101/gr.213959.116. PubMed DOI PMC

Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405:299–304. doi: 10.1038/35012500. PubMed DOI

Ohkuma M, Noda S, Kudo T. Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Appl Environ Microbiol. 1999;65:4926–4934. doi: 10.1128/AEM.65.11.4926-4934.1999. PubMed DOI PMC

Ohkuma M, Noda S, Hongoh Y, Kudo T. Coevolution of symbiotic systems of termites and their gut microorganisms. Riken review. 2001;41:73–74.

Ohkuma M, Brune A. Diversity, structure, and evolution of the termite gut microbial community. In: Bignell DE, Roisin Y, Lo N, editors. Biology of termites: a modern synthesis. Dordrecht, The Netherlands: Springer; 2011. pp. 413–138.

Ohkuma M, Noda S, Hattori S, Iida T, Yuki M, Starns D, Inoue JI, Darby AC, Hongoh Y. Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. Proc Natl Acad Sci U S A. 2015;112:10224–10230. doi: 10.1073/pnas.1423979112. PubMed DOI PMC

Papudeshi B, Haggerty JM, Doane M, Morris MM, Walsh K, Beattie DT, Pande D, Zaeri P, Silva GGZ, Thompson F, et al. Optimizing and evaluating the reconstruction of metagenome-assembled microbial genomes. BMC Genomics. 2017;18:915. doi: 10.1186/s12864-017-4294-1. PubMed DOI PMC

Parada AE, Needham DM, Fuhrman JA. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–1414. doi: 10.1111/1462-2920.13023. PubMed DOI

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–1055. doi: 10.1101/gr.186072.114. PubMed DOI PMC

Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for bacteria and archaea. Nat Biotechnol. 2020;38:1079–1086. doi: 10.1038/s41587-020-0501-8. PubMed DOI

Paul K, Nonoh JO, Mikulski L, Brune A. “Methanoplasmatales”, Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol. 2012;78:8245–8253. doi: 10.1128/AEM.02193-12. PubMed DOI PMC

Pester M, Brune A. Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J. 2007;1:551–565. doi: 10.1038/ismej.2007.62. PubMed DOI

Potrikus CJ, Breznak JA. Uric acid-degrading bacteria in guts of termites [Reticulitermes flavipes (Kollar)] Appl Environ Microbiol. 1980;40:117–124. doi: 10.1128/aem.40.1.117-124.1980. PubMed DOI PMC

Potrikus CJ, Breznak JA. Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci U S A. 1981;78:4601–4605. doi: 10.1073/pnas.78.7.4601. PubMed DOI PMC

Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, Nygaard S, Nobre T, Klaubauf S, Schindler PM, et al. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci U S A. 2014;111:14500–14505. doi: 10.1073/pnas.1319718111. PubMed DOI PMC

Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–1650. doi: 10.1093/molbev/msp077. PubMed DOI PMC

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Glo FO, Yarza P. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC

Quinn TP, Richardson MF, Lovell D, Crowley TM. propr: an R-package for identifying proportionally abundant features using compositional data analysis. Sci Rep. 2017;7:16252. doi: 10.1038/s41598-017-16520-0. PubMed DOI PMC

R Core Team . R: A language and environment for statistical computing. 2014.

Rambaut A, Drummond A, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. doi: 10.7717/peerj.2584. PubMed DOI PMC

Rouland-Lefèvre C. Symbiosis with fungi. In: Abe T, Bignell DE, Higashi T, editors. Termites: evolution, sociality, symbioses, ecology. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2000. pp. 289–306.

Sato T, Hongoh Y, Noda S, Hattori S, Ui S, Ohkuma M. Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut. Environ Microbiol. 2009;11:1007–1015. doi: 10.1111/j.1462-2920.2008.01827.x. PubMed DOI

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09. PubMed DOI PMC

Schuchmann K, Müller V. A bacterial electron-bifurcating hydrogenase. J Biol Chem. 2012;287:31165–31171. doi: 10.1074/jbc.M112.395038. PubMed DOI PMC

Schuchmann K, Müller V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol. 2014;12:809–821. doi: 10.1038/nrmicro3365. PubMed DOI

Schuchmann K, Chowdhury NP, Müller V. Complex multimeric [FeFe] hydrogenases: biochemistry, physiology and new opportunities for the hydrogen economy. Front Microbiol. 2018;9:2911. doi: 10.3389/fmicb.2018.02911. PubMed DOI PMC

Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI

Shinzato N, Matsumoto T, Yamaoka I, Oshima T, Yamagishi A. Methanogenic symbionts and the locality of their host lower termites. Microbes Environ. 2001;16:43–47. doi: 10.1264/jsme2.2001.43. DOI

Søndergaard D, Pedersen CNS, Greening C. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:34212. doi: 10.1038/srep34212. PubMed DOI PMC

Song Y, Hervé V, Radek R, Pfeiffer F, Zheng H, Brune A. Characterization and phylogenomic analysis of Breznakiella homolactica gen. nov. sp. nov. indicate that termite gut treponemes evolved from non-acetogenic spirochetes in cockroaches. Environ Microbiol. 2021; 23:4228–45. PubMed

Srivastava A, Malik L, Sarkar H, Zakeri M, Almodaresi F, Soneson C, Love MI, Kingsford C, Patro R. Alignment and mapping methodology influence transcript abundance estimation. Genome Biol. 2020;21:239. doi: 10.1186/s13059-020-02151-8. PubMed DOI PMC

Stingl U, Radek R, Yang H, Brune A. “Endomicrobia”: cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl Environ Microbiol. 2005;71:1473–1479. doi: 10.1128/AEM.71.3.1473-1479.2005. PubMed DOI PMC

Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4:vey016. doi: 10.1093/ve/vey016. PubMed DOI PMC

Sugimoto A, Bignell DE, Macdonald JA. Global impact of termites on the carbon cycle and atmospheric trace gases. In: Abe T, Bignell DE, Higashi M, editors. Termites: evolution, sociality, symbioses, ecology. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2000. pp. 409–435.

Sugimoto A, Inoue T, Tayasu I, Miller L, Takeichi S, Abe T. Methane and hydrogen production in a termite-symbiont system. Ecol Res. 1998;13:241–257. doi: 10.1046/j.1440-1703.1998.00262.x. DOI

Sunagawa S, Mende DR, Zeller G, Izquierdo-Carrasco F, Berger SA, Kultima JR, Coelho LP, Arumugam M, Tap J, Nielsen HB, et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat Methods. 2013;10:1196–1199. doi: 10.1038/nmeth.2693. PubMed DOI

Tai V, James ER, Nalepa CA, Scheffrahn RH, Perlman SJ, Keeling PJ. The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl Environ Microbiol. 2015;81:1059–1070. doi: 10.1128/AEM.02945-14. PubMed DOI PMC

Tai V, Carpenter KJ, Weber PK, Nalepa CA, Perlman SJ, Keeling PJ. Genome evolution and nitrogen fixation in bacterial ectosymbionts of a protist inhabiting wood-feeding cockroaches. Appl Environ Microbiol. 2016;82:4682–4695. doi: 10.1128/AEM.00611-16. PubMed DOI PMC

Tartar A, Wheeler MM, Zhou X, Coy MR, Boucias DG, Scharf ME. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels. 2009;2:25. doi: 10.1186/1754-6834-2-25. PubMed DOI PMC

Terrapon N, Lombard V, Gilbert HJ, Henrissat B. Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics. 2015;31:647–655. doi: 10.1093/bioinformatics/btu716. PubMed DOI

Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol. 2008;6:579–591. doi: 10.1038/nrmicro1931. PubMed DOI

Tholen A, Brune A. Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.) Appl Environ Microbiol. 1999;65:4497–4505. doi: 10.1128/AEM.65.10.4497-4505.1999. PubMed DOI PMC

Thong-On A, Suzuki K, Noda S, Inoue JI, Kajiwara S, Ohkuma M. Isolation and characterization of anaerobic bacteria for symbiotic recycling of uric acid nitrogen in the gut of various termites. Microbes Environ. 2012;27:186–192. doi: 10.1264/jsme2.ME11325. PubMed DOI PMC

Tokuda G, Lo N, Watanabe H, Arakawa G, Matsumoto T, Noda H. Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol Ecol. 2004;13:3219–3228. doi: 10.1111/j.1365-294X.2004.02276.x. PubMed DOI

Tokuda G, Mikaelyan A, Fukui C, Matsuura Y, Watanabe H, Fujishima M, Brune A. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proc Natl Acad Sci U S A. 2018;115:E11996–E12004. doi: 10.1073/pnas.1810550115. PubMed DOI PMC

Treitli SC, Kolisko M, Husník F, Keeling PJ, Hampl V. Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single-cell metagenomics. Proc Natl Acad Sci U S A. 2019;116:19675–19684. doi: 10.1073/pnas.1910793116. PubMed DOI PMC

Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP - a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:158. doi: 10.1186/s40168-018-0541-1. PubMed DOI PMC

Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One. 2013;8:e57923. doi: 10.1371/journal.pone.0057923. PubMed DOI PMC

Vu VQ. ggbiplot: a ggplot2 based biplot. R package version 0.55. 2011.

Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07. PubMed DOI PMC

Wang M, Buček A, Šobotník J, Sillam-Dussès D, Evans TA, Roisin Y, Lo N, Bourguignon T. Historical biogeography of the termite clade Rhinotermitinae (Blattodea: Isoptera) Mol Phylogenet Evol. 2019;132:100–104. doi: 10.1016/j.ympev.2018.11.005. PubMed DOI

Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, Mchardy AC, Djordjevic G, Aboushadi N, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 2007;450:560–565. doi: 10.1038/nature06269. PubMed DOI

Watanabe H, Noda H, Tokuda G, Lo N. A cellulase gene of termite origin. Nature. 1998;394:330–331. doi: 10.1038/28527. PubMed DOI

Watanabe H, Tokuda G. Cellulolytic systems in insects. Annu Rev Entomol. 2010;55:609–632. doi: 10.1146/annurev-ento-112408-085319. PubMed DOI

Wu D, Jospin G, Eisen JA. Systematic identification of gene families for use as ‘markers’ for fhylogenetic and phylogeny-driven ecological studies of bacteria and archaea and their major subgroups. PLoS One. 2013;8:e77033. doi: 10.1371/journal.pone.0077033. PubMed DOI PMC

Wu H. Characterizing xylan-degrading enzymes from a putative xylan utilization system derived from termite gut metagenome. 2018.

Yamada A, Inoue T, Noda S, Hongoh Y, Ohkuma M. Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol Ecol. 2007;16:3768–3777. doi: 10.1111/j.1365-294X.2007.03326.x. PubMed DOI

Yamin M. Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science. 1981;211:58–59. doi: 10.1126/science.211.4477.58. PubMed DOI

Yan D. Protection of the glutamate pool concentration in enteric bacteria. 2007;104:9475–80. PubMed PMC

Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445–W451. doi: 10.1093/nar/gks479. PubMed DOI PMC

Yuki M, Kuwahara H, Shintani M, Izawa K, Sato T, Starns D, Hongoh Y, Ohkuma M. Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose. Environ Microbiol. 2015;17:4942–4953. doi: 10.1111/1462-2920.12945. PubMed DOI

Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y. dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101. doi: 10.1093/nar/gky418. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...