Diversity and taxonomic revision of methanogens and other archaea in the intestinal tract of terrestrial arthropods

. 2023 ; 14 () : 1281628. [epub] 20231115

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38033561

Methane emission by terrestrial invertebrates is restricted to millipedes, termites, cockroaches, and scarab beetles. The arthropod-associated archaea known to date belong to the orders Methanobacteriales, Methanomassiliicoccales, Methanomicrobiales, and Methanosarcinales, and in a few cases also to non-methanogenic Nitrososphaerales and Bathyarchaeales. However, all major host groups are severely undersampled, and the taxonomy of existing lineages is not well developed. Full-length 16S rRNA gene sequences and genomes of arthropod-associated archaea are scarce, reference databases lack resolution, and the names of many taxa are either not validly published or under-classified and require revision. Here, we investigated the diversity of archaea in a wide range of methane-emitting arthropods, combining phylogenomic analysis of isolates and metagenome-assembled genomes (MAGs) with amplicon sequencing of full-length 16S rRNA genes. Our results allowed us to describe numerous new species in hitherto undescribed taxa among the orders Methanobacteriales (Methanacia, Methanarmilla, Methanobaculum, Methanobinarius, Methanocatella, Methanoflexus, Methanorudis, and Methanovirga, all gen. nova), Methanomicrobiales (Methanofilum and Methanorbis, both gen. nova), Methanosarcinales (Methanofrustulum and Methanolapillus, both gen. nova), Methanomassiliicoccales (Methanomethylophilaceae fam. nov., Methanarcanum, Methanogranum, Methanomethylophilus, Methanomicula, Methanoplasma, Methanoprimaticola, all gen. nova), and the new family Bathycorpusculaceae (Bathycorpusculum gen. nov.). Reclassification of amplicon libraries from this and previous studies using this new taxonomic framework revealed that arthropods harbor only CO2 and methyl-reducing hydrogenotrophic methanogens. Numerous genus-level lineages appear to be present exclusively in arthropods, suggesting long evolutionary trajectories with their termite, cockroach, and millipede hosts, and a radiation into various microhabitats and ecological niches provided by their digestive tracts (e.g., hindgut compartments, gut wall, or anaerobic protists). The distribution patterns among the different host groups are often complex, indicating a mixed mode of transmission and a parallel evolution of invertebrate and vertebrate-associated lineages.

Zobrazit více v PubMed

Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Cambridge: Babraham Bioinformatics.

Arora J., Kinjo Y., Šobotník J., Buèek A., Clitheroe C., Stiblik P., et al. (2022). The functional evolution of termite gut microbiota. Microbiome 10:78. 10.1186/s40168-022-01258-3 PubMed DOI PMC

Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 455–477. 10.1089/cmb.2012.0021 PubMed DOI PMC

Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC

Borrel G., Harris H. M. B., Tottey W., Mihajlovski A., Parisot N., Peyretaillade E., et al. (2012). Genome sequence of “Candidatus Methanomethylophilus alvus” Mx1201, a methanogenic archaeon from the human gut belonging to a seventh order of methanogens. J. Bacteriol. 194, 6940–6941. 10.1128/JB.01867-12 PubMed DOI PMC

Borrel G., Parisot N., Harris H. M. B., Peyretaillade E., Gaci N., Tottey W., et al. (2014). Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 15:679. 10.1186/1471-2164-15-679 PubMed DOI PMC

Bourguignon T., Lo N., Dietrich C., Šobotník J., Sidek S., Roisin Y., et al. (2018). Rampant host switching shaped the termite gut microbiome. Curr. Biol. 28 649–654. 10.1016/j.cub.2018.01.035 PubMed DOI

Brauman A., Majeed M. Z., Buatois B., Robert A., Pablo A. L., Miambi E. (2015). Nitrous oxide (N2O) emissions by termites: Does the feeding guild matter? PLoS One 10:0144340. 10.1371/journal.pone.0144340 PubMed DOI PMC

Brochier-Armanet C., Boussau B., Gribaldo S., Forterre P. (2008). Mesophilic Crenarchaeota: Proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6 245–252. PubMed

Brune A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12 168–180. 10.1038/nrmicro3182 PubMed DOI

Brune A. (2018). “Methanogens in the digestive tract of termites,” in (Endo)symbiotic Methanogenic Archaea, ed. Hackstein J. (Berlin: Springer; ), 10.1007/978-3-642-13615-3_6 DOI

Brune A. (2019). “Methanogenesis in the digestive tracts of insects and other arthropods,” in Handbook of Hydrocarbon and Lipid Microbiology, eds Stams A., Sousa D. (Cham: Springer; ), 10.1007/978-3-540-77587-4_56 DOI

Brune A., Emerson D., Breznak J. A. (1995). The termite gut microflora as an oxygen sink: Microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl. Environ. Microbiol. 61 2681–2687. PubMed PMC

Campanaro S., Treu L., Rodriguez-R L. M., Kovalovszki A., Ziels R. M., Maus I., et al. (2020). New insights from the biogas microbiome by comprehensive genome-resolved metagenomics of nearly 1600 species originating from multiple anaerobic digesters. Biotechnol. Biofuels 13 1–18. 10.1186/s13068-020-01679-y PubMed DOI PMC

Carrillo-Reyes J., Celis L. B., Alatriste-Mondragón F., Montoya L., Razo-Flores E. (2014). Strategies to cope with methanogens in hydrogen producing UASB reactors: Community dynamics. Int. J. Hydrogen Energy 39 11423–11432. 10.1016/j.ijhydene.2014.05.099 DOI

Chaumeil P.-A., Mussig A. J., Hugenholtz P., Parks D. H. (2022). GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38 5315–5316. 10.1093/bioinformatics/btac672 PubMed DOI PMC

Chen S., Zhou Y., Chen Y., Gu J. (2018). Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34 i884–i890. 10.1093/bioinformatics/bty560 PubMed DOI PMC

Chibani C. M., Mahnert A., Borrel G., Almeida A., Werner A., Brugère J.-F., et al. (2022). A catalogue of 1,167 genomes from the human gut archaeome. Nat. Microbiol. 7, 48–61. 10.1038/s41564-021-01020-9 PubMed DOI PMC

Choosai C., Mathieu J., Hanboonsong Y., Jouquet P. (2009). Termite mounds and dykes are biodiversity refuges in paddy fields in north-eastern Thailand. Environ. Conserv. 36 71–79. 10.1017/S0376892909005475 DOI

Deevong P., Hattori S., Yamada A., Trakulnaleamsai S., Ohkuma M., Noparatnaraporn N., et al. (2004). Isolation and detection of methanogens from the gut of higher termites. Microbes Environ. 19 221–226. 10.1264/jsme2.19.221 PubMed DOI

Dighe A. S., Jangid K., González J. M., Pidiyar V. J., Patole M. S., Ranade D. R., et al. (2004). Comparison of 16S rRNA gene sequences of genus Methanobrevibacter. BMC Microbiol. 4:20. 10.1186/1471-2180-4-20 PubMed DOI PMC

Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27 2194–2200. 10.1093/bioinformatics/btr381 PubMed DOI PMC

Egert M., Stingl U., Bruun L. D., Pommerenke B., Brune A., Friedrich M. W. (2005). Structure and topology of microbial communities in the major gut compartments of Melolontha melolontha larvae (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol. 71 4556–4566. 10.1128/AEM.71.8.4556-4566.2005 PubMed DOI PMC

Egert M., Wagner B., Lemke T., Brune A., Friedrich M. W. (2003). Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol. 69 6659–6668. 10.1128/AEM.69.11.6659-6668.2003 PubMed DOI PMC

Evans P. N., Boyd J. A., Leu A. O., Woodcroft B. J., Parks D. H., Hugenholtz P., et al. (2019). An evolving view of methane metabolism in the Archaea. Nat. Rev. Microbiol. 17 219–232. 10.1038/s41579-018-0136-7 PubMed DOI

Feldewert C., Lang K., Brune A. (2020). The hydrogen threshold of obligately methyl-reducing methanogens. FEMS Microbiol. Lett. 367:fnaa137. 10.1093/femsle/fnaa137 PubMed DOI PMC

Fenchel T., Finlay B. J. (2018). “Free-living protozoa with endosymbiotic methanogens,” in (Endo) symbiotic methanogenic archaea, ed. Hackstein J. (Berlin: Springer; ), 1–11.

Fricke W. F., Seedorf H., Henne A., Krüer M., Liesegang H., Hedderich R., et al. (2006). The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J. Bacteriol. 188 642–658. 10.1128/JB.188.2.642-658.2006 PubMed DOI PMC

Friedrich M. W., Schmitt-Wagner D., Lueders T., Brune A. (2001). Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl. Environ. Microbiol. 67 4880–4890. 10.1128/AEM.67.10.4880-4890.2001 PubMed DOI PMC

Gaci N., Borrel G., Tottey W., O’Toole P. W., Brugére J. F. (2014). Archaea and the human gut: New beginning of an old story. World J. Gastroenterol. 20, 16062–16078. 10.3748/wjg.v20.i43.16062 PubMed DOI PMC

García-Alcalde F., Okonechnikov K., Carbonell J., Cruz L. M., Götz S., Tarazona S., et al. (2012). Qualimap: Evaluating next-generation sequencing alignment data. Bioinformatics 28 2678–2679. 10.1093/bioinformatics/bts503 PubMed DOI

Gijzen H. J., Broers C. A. M., Barughare M., Stumm C. K. (1991). Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut. Appl. Environ. Microbiol. 57 1630–1634. 10.1128/aem.57.6.1630-1634.1991 PubMed DOI PMC

Gilroy R., Ravi A., Getino M., Pursley I., Horton D. L., Alikhan N. F., et al. (2021). Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PeerJ 9 1–142. 10.7717/peerj.10941 PubMed DOI PMC

Grieco M. A. B., Cavalcante J. J., Cardoso A. M., Vieira R. P., Machado E. A., Clementino M. M., et al. (2013). Microbial community diversity in the gut of the South American termite Cornitermes cumulans (Isoptera: Termitidae). Microb. Ecol. 65 197–204. PubMed

Grüning B., Dale R., Sjödin A., Rowe J., Chapman B. A., Tomkins-Tinch C. H., et al. (2018). Bioconda: Sustainable and comprehensive software distribution for the life sciences. Nat. Methods 15 475–476. 10.1038/s41592-018-0046-7 PubMed DOI PMC

Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59 307–321. PubMed

Hackstein J. H. P., Stumm C. K. (1994). Methane production in terrestrial arthropods. Proc. Natl. Acad. Sci. U. S. A. 91 5441–5445. 10.1073/pnas.91.12.5441 PubMed DOI PMC

Hackstein J. H. P., van Alen T. A. (2018). “Methanogens in the gastro-intestinal tract of animals,” in (Endo)symbiotic Methanogenic Archaea, ed. Hackstein J. H. P. (Berlin: Springer; ), 10.1007/978-3-642-13615-3_8 DOI

Hara K., Shinzato N., Oshima T., Yamagishi A. (2004). Endosymbiotic Methanobrevibacter species living in symbiotic protists of the termite Reticulitermes speratus detected by fluorescent in situ hybridization. Microbes Environ. 19 120–127. 10.1264/jsme2.19.120 PubMed DOI

Hedlund B. P., Chuvochina M., Hugenholtz P., Konstantinidis K. T., Murray A. E., Palmer M., et al. (2022). SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat. Microbiol. 7 1702–1708. 10.1038/s41564-022-01214-9 PubMed DOI PMC

Henderson G., Cox F., Ganesh S., Jonker A., Young W., Janssen P. H., et al. (2015). Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5:14567. 10.1038/srep14567 PubMed DOI PMC

Hervé V., Liu P., Dietrich C., Sillam-Dussès D., Stiblik P., Šobotník J., et al. (2020). Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites. PeerJ 8:e8614. PubMed PMC

Hoang D. T., Chernomor O., Von Haeseler A., Minh B. Q., Vinh L. S. (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35 518–522. 10.1093/molbev/msx281 PubMed DOI PMC

Hoedt E. C., Parks D. H., Volmer J. G., Rosewarne C. P., Denman S. E., McSweeney C. S., et al. (2018). Culture- and metagenomics-enabled analyses of the Methanosphaera genus reveals their monophyletic origin and differentiation according to genome size. ISME J. 12 2942–2953. 10.1038/s41396-018-0225-7 PubMed DOI PMC

Huang X. D., Martinez-Fernandez G., Padmanabha J., Long R., Denman S. E., McSweeney C. S. (2016). Methanogen diversity in indigenous and introduced ruminant species on the Tibetan plateau. Archaea 2016:5916067. 10.1155/2016/5916067 PubMed DOI PMC

Iino T., Tamaki H., Tamazawa S., Ueno Y., Ohkuma M., Suzuki K. I., et al. (2013). Candidatus Methanogranum caenicola: A novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microbes Environ. 28 244–250. 10.1264/jsme2.ME12189 PubMed DOI PMC

Inoue J. I., Noda S., Hongoh Y., Ui S., Ohkuma M. (2008). Identification of endosymbiotic methanogen and ectosymbiotic spirochetes of gut protists of the termite Coptotermes formosanus. Microbes Environ. 23 94–97. 10.1264/jsme2.23.94 PubMed DOI

Inward D., Beccaloni G., Eggleton P. (2007). Death of an order: A comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol. Lett. 3 331–335. 10.1098/rsbl.2007.0102 PubMed DOI PMC

Janssen P. H., Kirs M. (2008). Structure of the archaeal community of the rumen. Appl. Environ. Microbiol. 74 3619–3625. 10.1128/AEM.02812-07 PubMed DOI PMC

Ji R., Brune A. (2006). Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochemistry 78 267–283. 10.1007/s10533-005-4279-z DOI

Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., Von Haeseler A., Jermiin L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14 587–589. 10.1038/nmeth.4285 PubMed DOI PMC

Khomyakova M. A., Merkel A. Y., Mamiy D. D., Klyukina A. A., Slobodkin A. I. (2023). Phenotypic and genomic characterization of Bathyarchaeum tardum gen. nov., sp. nov., a cultivated representative of the archaeal class Bathyarchaeia. Front. Microbiol. 14:1214631. 10.3389/fmicb.2023.1214631 PubMed DOI PMC

Köhler T., Dietrich C., Scheffrahn R. H., Brune A. (2012). High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl. Environ. Microbiol. 78 4691–4701. 10.1128/aem.00683-12 PubMed DOI PMC

Lang K., Schuldes J., Klingl A., Poehlein A., Daniel R., Brune A. (2015). New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum.” Appl. Environ. Microbiol. 81 1338–1352. 10.1128/AEM.03389-14 PubMed DOI PMC

Leadbetter J. R., Breznak J. A. (1996). Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl. Environ. Microbiol. 62 3620–3631. 10.1128/aem.62.10.3620-3631.1996 PubMed DOI PMC

Leadbetter J. R., Crosby L. D., Breznak J. A. (1998). Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch. Microbiol. 169 287–292. PubMed

Lee M. J., Schreurs P. J., Messer A. C., Zinder S. H. (1987). Association of methanogenic bacteria with flagellated protozoa from a termite hindgut. Curr. Microbiol. 15 337–341. 10.1007/BF01577591 DOI

Letunic I., Bork P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49 W293–W296. 10.1093/nar/gkab301 PubMed DOI PMC

Lind A. E., Lewis W. H., Spang A., Guy L., Embley T. M., Ettema T. J. G. (2018). Genomes of two archaeal endosymbionts show convergent adaptations to an intracellular lifestyle. ISME J. 12 2655–2667. 10.1038/s41396-018-0207-9 PubMed DOI PMC

Loh H. Q., Hervé V., Brune A. (2021). Metabolic potential for reductive acetogenesis and a novel energy-converting [NiFe] hydrogenase in Bathyarchaeia from termite guts – a genome-centric analysis. Front. Microbiol. 11:635786. 10.3389/fmicb.2020.635786 PubMed DOI PMC

Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar A., et al. (2004). ARB: A software environment for sequence data. Nucleic Acids Res. 32 1363–1371. 10.1093/nar/gkh293 PubMed DOI PMC

Lundin D., Andersson A. (2021). SBDI Sativa curated 16S GTDB database. SciLifeLab. Dataset. 10.17044/scilifelab.14869077.v3 DOI

Lwin K. O., Matsui H. (2014). Comparative analysis of the methanogen diversity in horse and pony by using mcrA gene and archaeal 16S rRNA gene clone libraries. Archaea 2014 1–11. 10.1155/2014/483574 PubMed DOI PMC

Majeed M. Z., Miambi E., Barois I., Randriamanantsoa R., Blanchart E., Brauman A. (2014). Contribution of white grubs (Scarabaeidae: Coleoptera) to N2O emissions from tropical soils. Soil Biol. Biochem. 75 37–44. 10.1016/j.soilbio.2014.03.025 DOI

Martijn J., Lind A. E., Spiers I., Juzokaite L., Bunikis I., Vinnere Pettersson O., et al. (2017). Amplicon sequencing of the 16S-ITS-23S rRNA operon with long-read technology for improved phylogenetic classification of uncultured prokaryotes. BioRxiv [Preprint]. 10.1101/234690 DOI

Meng J., Xu J., Qin D., He Y., Xiao X., Wang F. (2014). Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J. 8 650–659. 10.1038/ismej.2013.174 PubMed DOI PMC

Miambi E., Jusselme T. M. D., Châtelliers C. C., des, Robert A., Delort A., et al. (2022). Potential gross and net N2O production by the gut of different termite species are related to the abundance of nitrifier and denitrifier groups. Front. Microbiomes 1:1017006. 10.3389/frmbi.2022.1017006 DOI

Mikaelyan A., Köhler T., Lampert N., Rohland J., Boga H., Meuser K., et al. (2015). Classifying the bacterial gut microbiota of termites and cockroaches: A curated phylogenetic reference database (DictDb). Syst. Appl. Microbiol. 38 472–482. 10.1016/j.syapm.2015.07.004 PubMed DOI

Miller T. L., Wolin M. J. (1985). Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141 116–122. 10.1007/BF00423270 PubMed DOI

Minh B. Q., Schmidt H. A., Chernomor O., Schrempf D., Woodhams M. D., Von Haeseler A., et al. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37 1530–1534. 10.1093/molbev/msaa015 PubMed DOI PMC

Müller N., Timmers P., Plugge C. M., Stams A. J., Schink B. (2018). “Syntrophy in methanogenic degradation,” in (Endo)symbiotic methanogenic archaea, ed. Hackstein J. H. (Heidelberg: Springer; ), 10.1007/978-3-642-13615-3 DOI

Mwabvu T. (2005). The density and distribution of millipedes on termite mounds in miombo woodland, Zimbabwe. Afr. J. Ecol. 6 101–103. 10.1016/s1468-1641(10)60322-2 DOI

Nalepa C. A., Bignell D. E., Bandi C. (2001). Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insectes Soc. 48 194–201. 10.1007/PL00001767 DOI

Ngugi D. K., Brune A. (2012). Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environ. Microbiol. 14 860–871. 10.1111/j.1462-2920.2011.02648.x PubMed DOI

Ngugi D. K., Ji R., Brune A. (2011). Nitrogen mineralization, denitrification, and nitrate ammonification by soil-feeding termites: A15N-based approach. Biogeochemistry 103 355–369. 10.1007/s10533-010-9478-6 DOI

Odelson D. A., Breznak J. A. (1985). Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl. Environ. Microbiol. 49 614–621. 10.1128/aem.49.3.614-621.1985 PubMed DOI PMC

Ohkuma M., Noda S., Horikoshi K., Kudo T. (1995). Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol. Lett. 134 45–50. 10.1016/0378-1097(95)00379-J PubMed DOI

Ohkuma M., Noda S., Kudo T. (1999). Phylogenetic relationships of symbiotic methanogens in diverse termites. FEMS Microbiol. Lett. 171 147–153. 10.1016/S0378-1097(98)00593-X PubMed DOI

Oren A., Garrity G. M. (2021). Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 71:005056. PubMed

Parks D. H., Chuvochina M., Rinke C., Mussig A. J., Chaumeil P., Hugenholtz P. (2021). GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 202 1–10. 10.1093/nar/gkab776 PubMed DOI PMC

Parks D. H., Chuvochina M., Waite D. W., Rinke C., Skarshewski A., Chaumeil P. A., et al. (2018). A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36:996. 10.1038/nbt.4229 PubMed DOI

Paul K., Nonoh J. O., Mikulski L., Brune A. (2012). Methanoplasmatales,” Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl. Environ. Microbiol. 78 8245–8253. 10.1128/aem.02193-12 PubMed DOI PMC

Pester M., Brune A. (2006). Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. Environ. Microbiol. 8 1261–1270. 10.1111/j.1462-2920.2006.01020.x PubMed DOI

Pester M., Schleper C., Wagner M. (2011). The Thaumarchaeota: An emerging view of their phylogeny and ecophysiology. Curr. Opin. Microbiol. 14 300–306. 10.1016/j.mib.2011.04.007 PubMed DOI PMC

Poehlein A., Schneider D., Soh M., Daniel R., Seedorf H. (2018). Comparative genomic analysis of members of the genera Methanosphaera and Methanobrevibacter reveals distinct clades with specific potential metabolic functions. Archaea 2018:7609847. 10.1155/2018/7609847 PubMed DOI PMC

Pruesse E., Peplies J., Glöckner F. O. (2012). SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28 1823–1829. 10.1093/bioinformatics/bts252 PubMed DOI PMC

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41 590–596. 10.1093/nar/gks1219 PubMed DOI PMC

Regensbogenova M., McEwan N. R., Javorsky P., Kisidayova S., Michalowski T., Newbold C. J., et al. (2004). A re-appraisal of the diversity of the methanogens associated with the rumen ciliates. FEMS Microbiol. Lett. 238 307–313. 10.1016/j.femsle.2004.07.049 PubMed DOI

Rinke C., Chuvochina M., Mussig A. J., Chaumeil P.-A., Davín A. A., Waite D. W., et al. (2021). A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat. Microbiol. 6 946–959. 10.1038/s41564-021-00918-8 PubMed DOI

Rognes T., Flouri T., Nichols B., Quince C., Mahé F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016 1–22. 10.7717/peerj.2584 PubMed DOI PMC

Schauer C., Thompson C. L., Brune A. (2012). The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl. Environ. Microbiol. 78 2758–2767. 10.1128/aem.07788-11 PubMed DOI PMC

Schloss P. D. (2020). Reintroducing mothur: 10 Years Later. Appl. Environ. Microbiol. 86 1–13. PubMed PMC

Seedorf H., Dreisbach A., Hedderich R., Shima S., Thauer R. K. (2004). F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification. Arch. Microbiol. 182 126–137. 10.1007/s00203-004-0675-3 PubMed DOI

Seemann T. (2014). Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30 2068–2069. 10.1093/bioinformatics/btu153 PubMed DOI

Shi Y., Huang Z., Han S., Fan S., Yang H. (2015). Phylogenetic diversity of Archaea in the intestinal tract of termites from different lineages. J. Basic Microbiol. 55 1021–1028. PubMed

Shinzato N., Watanabe I., Meng X. Y., Sekiguchi Y., Tamaki H., Matsui T., et al. (2007). Phylogenetic analysis and fluorescence in situ hybridization detection of archaeal and bacterial endosymbionts in the anaerobic ciliate Trimyema compressum. Microb. Ecol. 54 627–636. 10.1007/s00248-007-9218-1 PubMed DOI

Söllinger A., Schwab C., Weinmaier T., Loy A., Tveit A. T., Schleper C., et al. (2016). Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat. FEMS Microbiol. Ecol. 92 1–12. 10.1093/femsec/fiv149 PubMed DOI

Sprenger W. W., Hackstein J. H. P., Keltjens J. T. (2007). The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics. FEMS Microbiol. Ecol. 60 266–275. 10.1111/j.1574-6941.2007.00287.x PubMed DOI

Sprenger W. W., Van Belzen M. C., Rosenberg J., Hackstein J. H. P., Keltjens J. T. (2000). Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int. J. Syst. Evol. Microbiol. 50 1989–1999. 10.1099/00207713-50-6-1989 PubMed DOI

Šustr V., Chroňáková A., Semanová S., Tajovský K., Šimek M. (2014). Methane production and methanogenic archaea in the digestive tracts of millipedes (Diplopoda). PLoS One 9:e102659. 10.1371/journal.pone.0102659 PubMed DOI PMC

Tholen A., Brune A. (2000). Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ. Microbiol. 2 436–449. 10.1046/j.1462-2920.2000.00127.x PubMed DOI

Tholen A., Pester M., Brune A. (2007). Simultaneous methanogenesis and oxygen reduction by Methanobrevibacter cuticularis at low oxygen fluxes. FEMS Microbiol. Ecol. 62 303–312. 10.1111/j.1574-6941.2007.00390.x PubMed DOI

Thomas C. M., Quéméner E. D., Gribaldo S., Borrel G. (2022). Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. Nat. Commun. 13:3358. 10.1038/s41467-022-31038-4 PubMed DOI PMC

Thomas C. M., Taib N., Gribaldo S., Borrel G. (2021). Comparative genomic analysis of Methanimicrococcus blatticola provides insights into host-adaptation in archaea and the evolution of methanogenesis. ISME Commun. 1:47. 10.1038/s43705-021-00050-y PubMed DOI PMC

Tokura M., Ohkuma M., Kudo T. (2000). Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol. Ecol. 33 233–240. 10.1016/S0168-6496(00)00065-9 PubMed DOI

Tokura M., Tajima K., Ushida K. (1999). Isolation of Methanobrevibacter sp. as a ciliate-associated ruminal methanogen. J. Gen. Appl. Microbiol. 45 43–47. 10.2323/jgam.45.43 PubMed DOI

Treitli S., Hanousková P., Benes V., Brune A., Čepička I., Hampl V. (2023). Hydrogenotrophic methanogenesis is the key process in the obligately syntrophic consortium of the anaerobic amoeba Pelomyxa schiedti. ISME J. 17, 1884–1894. 10.1038/s41396-023-01499-6 PubMed DOI PMC

van Hoek A. H. A. M., van Alen T. A., Sprakel V. S. I., Leunissen J. A. M., Brigge T., Vogels G. D., et al. (2000). Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol. Biol. Evol. 17 251–258. 10.1093/oxfordjournals.molbev.a026304 PubMed DOI

Volmer J. G., Soo R. M., Evans P. N., Hoedt E. C., Alsina A. L. A., Woodcroft B. J., et al. (2023). Isolation and characterisation of novel Methanocorpusculum species indicates the genus is ancestrally host - associated. BMC Biol. 21:59. 10.1186/s12915-023-01524-2 PubMed DOI PMC

Weil M., Hoff K. J., Meißner W., Schäfer F., Söllinger A., Wang H., et al. (2021). Full genome sequence of a Methanomassiliicoccales representative enriched from peat soil. Microbiol. Resour. Announc. 10 e443–e421. PubMed PMC

Whitman W. B., Chuvochina M., Hedlund B. P., Hugenholtz P., Konstantinidis K. T., Murray A. E., et al. (2022). Development of the SeqCode: A proposed nomenclatural code for uncultivated prokaryotes with DNA sequences as type. Syst. Appl. Microbiol. 45:126305. 10.1016/j.syapm.2022.126305 PubMed DOI PMC

Xie F., Jin W., Si H., Yuan Y., Tao Y., Liu J., et al. (2021). An integrated gene catalog and over from the gastrointestinal microbiome of ruminants. Microbiome 9 1–20. PubMed PMC

Yilmaz P., Parfrey L. W., Yarza P., Gerken J., Pruesse E., Quast C., et al. (2014). The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42 643–648. 10.1093/nar/gkt1209 PubMed DOI PMC

Youngblut N. D., Reischer G. H., Dauser S., Maisch S., Walzer C., Stalder G., et al. (2021). Vertebrate host phylogeny influences gut archaeal diversity. Nature microbiology 6 1443–1454. PubMed PMC

Zinke L. A., Evans P. N., Santos-Medellín C., Schroeder A. L., Parks D. H., Varner R. K., et al. (2021). Evidence for non-methanogenic metabolisms in globally distributed archaeal clades basal to the Methanomassiliicoccales. Environ. Microbiol. 23 340–357. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...