Diversity and taxonomic revision of methanogens and other archaea in the intestinal tract of terrestrial arthropods

. 2023 ; 14 () : 1281628. [epub] 20231115

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38033561

Methane emission by terrestrial invertebrates is restricted to millipedes, termites, cockroaches, and scarab beetles. The arthropod-associated archaea known to date belong to the orders Methanobacteriales, Methanomassiliicoccales, Methanomicrobiales, and Methanosarcinales, and in a few cases also to non-methanogenic Nitrososphaerales and Bathyarchaeales. However, all major host groups are severely undersampled, and the taxonomy of existing lineages is not well developed. Full-length 16S rRNA gene sequences and genomes of arthropod-associated archaea are scarce, reference databases lack resolution, and the names of many taxa are either not validly published or under-classified and require revision. Here, we investigated the diversity of archaea in a wide range of methane-emitting arthropods, combining phylogenomic analysis of isolates and metagenome-assembled genomes (MAGs) with amplicon sequencing of full-length 16S rRNA genes. Our results allowed us to describe numerous new species in hitherto undescribed taxa among the orders Methanobacteriales (Methanacia, Methanarmilla, Methanobaculum, Methanobinarius, Methanocatella, Methanoflexus, Methanorudis, and Methanovirga, all gen. nova), Methanomicrobiales (Methanofilum and Methanorbis, both gen. nova), Methanosarcinales (Methanofrustulum and Methanolapillus, both gen. nova), Methanomassiliicoccales (Methanomethylophilaceae fam. nov., Methanarcanum, Methanogranum, Methanomethylophilus, Methanomicula, Methanoplasma, Methanoprimaticola, all gen. nova), and the new family Bathycorpusculaceae (Bathycorpusculum gen. nov.). Reclassification of amplicon libraries from this and previous studies using this new taxonomic framework revealed that arthropods harbor only CO2 and methyl-reducing hydrogenotrophic methanogens. Numerous genus-level lineages appear to be present exclusively in arthropods, suggesting long evolutionary trajectories with their termite, cockroach, and millipede hosts, and a radiation into various microhabitats and ecological niches provided by their digestive tracts (e.g., hindgut compartments, gut wall, or anaerobic protists). The distribution patterns among the different host groups are often complex, indicating a mixed mode of transmission and a parallel evolution of invertebrate and vertebrate-associated lineages.

Zobrazit více v PubMed

Andrews S. (2010).

Arora J., Kinjo Y., Šobotník J., Buèek A., Clitheroe C., Stiblik P., et al. (2022). The functional evolution of termite gut microbiota. PubMed DOI PMC

Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. PubMed DOI PMC

Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. PubMed DOI PMC

Borrel G., Harris H. M. B., Tottey W., Mihajlovski A., Parisot N., Peyretaillade E., et al. (2012). Genome sequence of “ PubMed DOI PMC

Borrel G., Parisot N., Harris H. M. B., Peyretaillade E., Gaci N., Tottey W., et al. (2014). Comparative genomics highlights the unique biology of PubMed DOI PMC

Bourguignon T., Lo N., Dietrich C., Šobotník J., Sidek S., Roisin Y., et al. (2018). Rampant host switching shaped the termite gut microbiome. PubMed DOI

Brauman A., Majeed M. Z., Buatois B., Robert A., Pablo A. L., Miambi E. (2015). Nitrous oxide (N PubMed DOI PMC

Brochier-Armanet C., Boussau B., Gribaldo S., Forterre P. (2008). Mesophilic Crenarchaeota: Proposal for a third archaeal phylum, the Thaumarchaeota. PubMed

Brune A. (2014). Symbiotic digestion of lignocellulose in termite guts. PubMed DOI

Brune A. (2018). “Methanogens in the digestive tract of termites,” in DOI

Brune A. (2019). “Methanogenesis in the digestive tracts of insects and other arthropods,” in DOI

Brune A., Emerson D., Breznak J. A. (1995). The termite gut microflora as an oxygen sink: Microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. PubMed PMC

Campanaro S., Treu L., Rodriguez-R L. M., Kovalovszki A., Ziels R. M., Maus I., et al. (2020). New insights from the biogas microbiome by comprehensive genome-resolved metagenomics of nearly 1600 species originating from multiple anaerobic digesters. PubMed DOI PMC

Carrillo-Reyes J., Celis L. B., Alatriste-Mondragón F., Montoya L., Razo-Flores E. (2014). Strategies to cope with methanogens in hydrogen producing UASB reactors: Community dynamics. DOI

Chaumeil P.-A., Mussig A. J., Hugenholtz P., Parks D. H. (2022). GTDB-Tk v2: memory friendly classification with the genome taxonomy database. PubMed DOI PMC

Chen S., Zhou Y., Chen Y., Gu J. (2018). Fastp: An ultra-fast all-in-one FASTQ preprocessor. PubMed DOI PMC

Chibani C. M., Mahnert A., Borrel G., Almeida A., Werner A., Brugère J.-F., et al. (2022). A catalogue of 1,167 genomes from the human gut archaeome. PubMed DOI PMC

Choosai C., Mathieu J., Hanboonsong Y., Jouquet P. (2009). Termite mounds and dykes are biodiversity refuges in paddy fields in north-eastern Thailand. DOI

Deevong P., Hattori S., Yamada A., Trakulnaleamsai S., Ohkuma M., Noparatnaraporn N., et al. (2004). Isolation and detection of methanogens from the gut of higher termites. DOI

Dighe A. S., Jangid K., González J. M., Pidiyar V. J., Patole M. S., Ranade D. R., et al. (2004). Comparison of 16S rRNA gene sequences of genus PubMed DOI PMC

Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. PubMed DOI PMC

Egert M., Stingl U., Bruun L. D., Pommerenke B., Brune A., Friedrich M. W. (2005). Structure and topology of microbial communities in the major gut compartments of PubMed DOI PMC

Egert M., Wagner B., Lemke T., Brune A., Friedrich M. W. (2003). Microbial community structure in midgut and hindgut of the humus-feeding larva of PubMed DOI PMC

Evans P. N., Boyd J. A., Leu A. O., Woodcroft B. J., Parks D. H., Hugenholtz P., et al. (2019). An evolving view of methane metabolism in the Archaea. PubMed DOI

Feldewert C., Lang K., Brune A. (2020). The hydrogen threshold of obligately methyl-reducing methanogens. PubMed DOI PMC

Fenchel T., Finlay B. J. (2018). “Free-living protozoa with endosymbiotic methanogens,” in

Fricke W. F., Seedorf H., Henne A., Krüer M., Liesegang H., Hedderich R., et al. (2006). The genome sequence of PubMed DOI PMC

Friedrich M. W., Schmitt-Wagner D., Lueders T., Brune A. (2001). Axial differences in community structure of PubMed DOI PMC

Gaci N., Borrel G., Tottey W., O’Toole P. W., Brugére J. F. (2014). Archaea and the human gut: New beginning of an old story. PubMed DOI PMC

García-Alcalde F., Okonechnikov K., Carbonell J., Cruz L. M., Götz S., Tarazona S., et al. (2012). Qualimap: Evaluating next-generation sequencing alignment data. PubMed DOI

Gijzen H. J., Broers C. A. M., Barughare M., Stumm C. K. (1991). Methanogenic bacteria as endosymbionts of the ciliate PubMed DOI PMC

Gilroy R., Ravi A., Getino M., Pursley I., Horton D. L., Alikhan N. F., et al. (2021). Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PubMed DOI PMC

Grieco M. A. B., Cavalcante J. J., Cardoso A. M., Vieira R. P., Machado E. A., Clementino M. M., et al. (2013). Microbial community diversity in the gut of the South American termite PubMed

Grüning B., Dale R., Sjödin A., Rowe J., Chapman B. A., Tomkins-Tinch C. H., et al. (2018). Bioconda: Sustainable and comprehensive software distribution for the life sciences. PubMed DOI PMC

Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. PubMed

Hackstein J. H. P., Stumm C. K. (1994). Methane production in terrestrial arthropods. PubMed DOI PMC

Hackstein J. H. P., van Alen T. A. (2018). “Methanogens in the gastro-intestinal tract of animals,” in DOI

Hara K., Shinzato N., Oshima T., Yamagishi A. (2004). Endosymbiotic DOI

Hedlund B. P., Chuvochina M., Hugenholtz P., Konstantinidis K. T., Murray A. E., Palmer M., et al. (2022). SeqCode: a nomenclatural code for prokaryotes described from sequence data. PubMed DOI PMC

Henderson G., Cox F., Ganesh S., Jonker A., Young W., Janssen P. H., et al. (2015). Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. PubMed DOI PMC

Hervé V., Liu P., Dietrich C., Sillam-Dussès D., Stiblik P., Šobotník J., et al. (2020). Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites. PubMed PMC

Hoang D. T., Chernomor O., Von Haeseler A., Minh B. Q., Vinh L. S. (2018). UFBoot2: Improving the ultrafast bootstrap approximation. PubMed DOI PMC

Hoedt E. C., Parks D. H., Volmer J. G., Rosewarne C. P., Denman S. E., McSweeney C. S., et al. (2018). Culture- and metagenomics-enabled analyses of the PubMed DOI PMC

Huang X. D., Martinez-Fernandez G., Padmanabha J., Long R., Denman S. E., McSweeney C. S. (2016). Methanogen diversity in indigenous and introduced ruminant species on the Tibetan plateau. PubMed DOI PMC

Iino T., Tamaki H., Tamazawa S., Ueno Y., Ohkuma M., Suzuki K. I., et al. (2013). Candidatus Methanogranum caenicola: A novel methanogen from the anaerobic digested sludge, and proposal of PubMed DOI PMC

Inoue J. I., Noda S., Hongoh Y., Ui S., Ohkuma M. (2008). Identification of endosymbiotic methanogen and ectosymbiotic spirochetes of gut protists of the termite PubMed DOI

Inward D., Beccaloni G., Eggleton P. (2007). Death of an order: A comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. PubMed DOI PMC

Janssen P. H., Kirs M. (2008). Structure of the archaeal community of the rumen. PubMed DOI PMC

Ji R., Brune A. (2006). Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH DOI

Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., Von Haeseler A., Jermiin L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. PubMed DOI PMC

Khomyakova M. A., Merkel A. Y., Mamiy D. D., Klyukina A. A., Slobodkin A. I. (2023). Phenotypic and genomic characterization of PubMed DOI PMC

Köhler T., Dietrich C., Scheffrahn R. H., Brune A. (2012). High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites ( PubMed DOI PMC

Lang K., Schuldes J., Klingl A., Poehlein A., Daniel R., Brune A. (2015). New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “ PubMed DOI PMC

Leadbetter J. R., Breznak J. A. (1996). Physiological ecology of PubMed DOI PMC

Leadbetter J. R., Crosby L. D., Breznak J. A. (1998). PubMed

Lee M. J., Schreurs P. J., Messer A. C., Zinder S. H. (1987). Association of methanogenic bacteria with flagellated protozoa from a termite hindgut. DOI

Letunic I., Bork P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. PubMed DOI PMC

Lind A. E., Lewis W. H., Spang A., Guy L., Embley T. M., Ettema T. J. G. (2018). Genomes of two archaeal endosymbionts show convergent adaptations to an intracellular lifestyle. PubMed DOI PMC

Loh H. Q., Hervé V., Brune A. (2021). Metabolic potential for reductive acetogenesis and a novel energy-converting [NiFe] hydrogenase in PubMed DOI PMC

Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar A., et al. (2004). ARB: A software environment for sequence data. PubMed DOI PMC

Lundin D., Andersson A. (2021). SBDI Sativa curated 16S GTDB database. DOI

Lwin K. O., Matsui H. (2014). Comparative analysis of the methanogen diversity in horse and pony by using mcrA gene and archaeal 16S rRNA gene clone libraries. PubMed DOI PMC

Majeed M. Z., Miambi E., Barois I., Randriamanantsoa R., Blanchart E., Brauman A. (2014). Contribution of white grubs (Scarabaeidae: Coleoptera) to N DOI

Martijn J., Lind A. E., Spiers I., Juzokaite L., Bunikis I., Vinnere Pettersson O., et al. (2017). Amplicon sequencing of the 16S-ITS-23S rRNA operon with long-read technology for improved phylogenetic classification of uncultured prokaryotes. DOI

Meng J., Xu J., Qin D., He Y., Xiao X., Wang F. (2014). Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. PubMed DOI PMC

Miambi E., Jusselme T. M. D., Châtelliers C. C., des, Robert A., Delort A., et al. (2022). Potential gross and net N DOI

Mikaelyan A., Köhler T., Lampert N., Rohland J., Boga H., Meuser K., et al. (2015). Classifying the bacterial gut microbiota of termites and cockroaches: A curated phylogenetic reference database (DictDb). PubMed DOI

Miller T. L., Wolin M. J. (1985). PubMed DOI

Minh B. Q., Schmidt H. A., Chernomor O., Schrempf D., Woodhams M. D., Von Haeseler A., et al. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. PubMed DOI PMC

Müller N., Timmers P., Plugge C. M., Stams A. J., Schink B. (2018). “Syntrophy in methanogenic degradation,” in DOI

Mwabvu T. (2005). The density and distribution of millipedes on termite mounds in miombo woodland, Zimbabwe. DOI

Nalepa C. A., Bignell D. E., Bandi C. (2001). Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. DOI

Ngugi D. K., Brune A. (2012). Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites ( PubMed DOI

Ngugi D. K., Ji R., Brune A. (2011). Nitrogen mineralization, denitrification, and nitrate ammonification by soil-feeding termites: A DOI

Odelson D. A., Breznak J. A. (1985). Nutrition and growth characteristics of PubMed DOI PMC

Ohkuma M., Noda S., Horikoshi K., Kudo T. (1995). Phylogeny of symbiotic methanogens in the gut of the termite PubMed DOI

Ohkuma M., Noda S., Kudo T. (1999). Phylogenetic relationships of symbiotic methanogens in diverse termites. PubMed DOI

Oren A., Garrity G. M. (2021). Valid publication of the names of forty-two phyla of prokaryotes. PubMed

Parks D. H., Chuvochina M., Rinke C., Mussig A. J., Chaumeil P., Hugenholtz P. (2021). GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. PubMed DOI PMC

Parks D. H., Chuvochina M., Waite D. W., Rinke C., Skarshewski A., Chaumeil P. A., et al. (2018). A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. PubMed DOI

Paul K., Nonoh J. O., Mikulski L., Brune A. (2012). PubMed DOI PMC

Pester M., Brune A. (2006). Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. PubMed DOI

Pester M., Schleper C., Wagner M. (2011). The Thaumarchaeota: An emerging view of their phylogeny and ecophysiology. PubMed DOI PMC

Poehlein A., Schneider D., Soh M., Daniel R., Seedorf H. (2018). Comparative genomic analysis of members of the genera PubMed DOI PMC

Pruesse E., Peplies J., Glöckner F. O. (2012). SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. PubMed DOI PMC

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. PubMed DOI PMC

Regensbogenova M., McEwan N. R., Javorsky P., Kisidayova S., Michalowski T., Newbold C. J., et al. (2004). A re-appraisal of the diversity of the methanogens associated with the rumen ciliates. PubMed DOI

Rinke C., Chuvochina M., Mussig A. J., Chaumeil P.-A., Davín A. A., Waite D. W., et al. (2021). A standardized archaeal taxonomy for the Genome Taxonomy Database. PubMed DOI

Rognes T., Flouri T., Nichols B., Quince C., Mahé F. (2016). VSEARCH: A versatile open source tool for metagenomics. PubMed DOI PMC

Schauer C., Thompson C. L., Brune A. (2012). The bacterial community in the gut of the cockroach PubMed DOI PMC

Schloss P. D. (2020). Reintroducing mothur: 10 Years Later. PubMed PMC

Seedorf H., Dreisbach A., Hedderich R., Shima S., Thauer R. K. (2004). F PubMed DOI

Seemann T. (2014). Prokka: Rapid prokaryotic genome annotation. PubMed DOI

Shi Y., Huang Z., Han S., Fan S., Yang H. (2015). Phylogenetic diversity of Archaea in the intestinal tract of termites from different lineages. PubMed

Shinzato N., Watanabe I., Meng X. Y., Sekiguchi Y., Tamaki H., Matsui T., et al. (2007). Phylogenetic analysis and fluorescence in situ hybridization detection of archaeal and bacterial endosymbionts in the anaerobic ciliate PubMed DOI

Söllinger A., Schwab C., Weinmaier T., Loy A., Tveit A. T., Schleper C., et al. (2016). Phylogenetic and genomic analysis of PubMed DOI

Sprenger W. W., Hackstein J. H. P., Keltjens J. T. (2007). The competitive success of PubMed DOI

Sprenger W. W., Van Belzen M. C., Rosenberg J., Hackstein J. H. P., Keltjens J. T. (2000). Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach PubMed DOI

Šustr V., Chroňáková A., Semanová S., Tajovský K., Šimek M. (2014). Methane production and methanogenic archaea in the digestive tracts of millipedes (Diplopoda). PubMed DOI PMC

Tholen A., Brune A. (2000). Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite PubMed DOI

Tholen A., Pester M., Brune A. (2007). Simultaneous methanogenesis and oxygen reduction by PubMed DOI

Thomas C. M., Quéméner E. D., Gribaldo S., Borrel G. (2022). Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. PubMed DOI PMC

Thomas C. M., Taib N., Gribaldo S., Borrel G. (2021). Comparative genomic analysis of PubMed DOI PMC

Tokura M., Ohkuma M., Kudo T. (2000). Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. PubMed DOI

Tokura M., Tajima K., Ushida K. (1999). Isolation of PubMed DOI

Treitli S., Hanousková P., Benes V., Brune A., Čepička I., Hampl V. (2023). Hydrogenotrophic methanogenesis is the key process in the obligately syntrophic consortium of the anaerobic amoeba PubMed DOI PMC

van Hoek A. H. A. M., van Alen T. A., Sprakel V. S. I., Leunissen J. A. M., Brigge T., Vogels G. D., et al. (2000). Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. PubMed DOI

Volmer J. G., Soo R. M., Evans P. N., Hoedt E. C., Alsina A. L. A., Woodcroft B. J., et al. (2023). Isolation and characterisation of novel PubMed DOI PMC

Weil M., Hoff K. J., Meißner W., Schäfer F., Söllinger A., Wang H., et al. (2021). Full genome sequence of a PubMed PMC

Whitman W. B., Chuvochina M., Hedlund B. P., Hugenholtz P., Konstantinidis K. T., Murray A. E., et al. (2022). Development of the SeqCode: A proposed nomenclatural code for uncultivated prokaryotes with DNA sequences as type. PubMed DOI PMC

Xie F., Jin W., Si H., Yuan Y., Tao Y., Liu J., et al. (2021). An integrated gene catalog and over from the gastrointestinal microbiome of ruminants. PubMed PMC

Yilmaz P., Parfrey L. W., Yarza P., Gerken J., Pruesse E., Quast C., et al. (2014). The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. PubMed DOI PMC

Youngblut N. D., Reischer G. H., Dauser S., Maisch S., Walzer C., Stalder G., et al. (2021). Vertebrate host phylogeny influences gut archaeal diversity. PubMed PMC

Zinke L. A., Evans P. N., Santos-Medellín C., Schroeder A. L., Parks D. H., Varner R. K., et al. (2021). Evidence for non-methanogenic metabolisms in globally distributed archaeal clades basal to the PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...