Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32095380
PubMed Central
PMC7024585
DOI
10.7717/peerj.8614
PII: 8614
Knihovny.cz E-zdroje
- Klíčová slova
- Archaea, Bacteria, Bathyarchaeota, Fibrobacteres, Gut microbiology, Higher termites, Metagenome-assembled genomes, Metagenomics, Phylogenomics, Spirochaetes,
- Publikační typ
- časopisecké články MeSH
"Higher" termites have been able to colonize all tropical and subtropical regions because of their ability to digest lignocellulose with the aid of their prokaryotic gut microbiota. Over the last decade, numerous studies based on 16S rRNA gene amplicon libraries have largely described both the taxonomy and structure of the prokaryotic communities associated with termite guts. Host diet and microenvironmental conditions have emerged as the main factors structuring the microbial assemblages in the different gut compartments. Additionally, these molecular inventories have revealed the existence of termite-specific clusters that indicate coevolutionary processes in numerous prokaryotic lineages. However, for lack of representative isolates, the functional role of most lineages remains unclear. We reconstructed 589 metagenome-assembled genomes (MAGs) from the different gut compartments of eight higher termite species that encompass 17 prokaryotic phyla. By iteratively building genome trees for each clade, we significantly improved the initial automated assignment, frequently up to the genus level. We recovered MAGs from most of the termite-specific clusters in the radiation of, for example, Planctomycetes, Fibrobacteres, Bacteroidetes, Euryarchaeota, Bathyarchaeota, Spirochaetes, Saccharibacteria, and Firmicutes, which to date contained only few or no representative genomes. Moreover, the MAGs included abundant members of the termite gut microbiota. This dataset represents the largest genomic resource for arthropod-associated microorganisms available to date and contributes substantially to populating the tree of life. More importantly, it provides a backbone for studying the metabolic potential of the termite gut microbiota, including the key members involved in carbon and nitrogen biogeochemical cycles, and important clues that may help cultivating representatives of these understudied clades.
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
Laboratory of Experimental and Comparative Ethology EA 4443 Université Paris 13 Villetaneuse France
Zobrazit více v PubMed
Abdul Rahman N, Parks DH, Vanwonterghem I, Morrison M, Tyson GW, Hugenholtz P. A phylogenomic analysis of the bacterial phylum Fibrobacteres. Frontiers in Microbiology. 2016;6(149):5. doi: 10.3389/fmicb.2015.01469. PubMed DOI PMC
Abdul Rahman N, Parks DH, Willner DL, Engelbrektson AL, Goffredi SK, Warnecke F, Scheffrahn RH, Hugenholtz P. A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome. 2015;3:5. doi: 10.1186/s40168-015-0067-8. PubMed DOI PMC
Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nature Biotechnology. 2013;31(6):533–538. doi: 10.1038/nbt.2579. PubMed DOI
Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Systematic Biology. 2006;55(4):539–552. doi: 10.1080/10635150600755453. PubMed DOI
Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ. 2015;3:e1029. doi: 10.7717/peerj.1029. PubMed DOI PMC
Bourguignon T, Lo N, Dietrich C, Šobotník J, Sidek S, Roisin Y, Brune A, Evans TA. Rampant host switching shaped the termite gut microbiome. Current Biology. 2018;28(4):649–654.e2. doi: 10.1016/j.cub.2018.01.035. PubMed DOI
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A, Clum A, Becraft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu W-T, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke C, Lapidus A, Meyer F, Yilmaz P, Parks DH, Murat Eren A, Schriml L, Banfield JF, Hugenholtz P, Woyke T. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature Biotechnology. 2017;35:725–731. doi: 10.1038/nbt.3893. PubMed DOI PMC
Brune A. Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology. 2014;12(3):168–180. doi: 10.1038/nrmicro3182. PubMed DOI
Brune A. Methanogenesis in the digestive tracts of insects and other arthropods. In: Stams AJM, Sousa DZ, editors. Biogenesis of Hydrocarbons. Cham: Springer; 2019. pp. 229–260. (Handbook of Hydrocarbon and Lipid Microbiology). DOI
Brune A, Dietrich C. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annual Review of Microbiology. 2015;69(1):145–166. doi: 10.1146/annurev-micro-092412-155715. PubMed DOI
Bushnell B. United States: 2014. BBMap: a fast, accurate, splice-aware aligner.
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T, Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Ceja-Navarro JA, Nguyen NH, Karaoz U, Gross SR, Herman DJ, Andersen GL, Bruns TD, Pett-Ridge J, Blackwell M, Brodie EL. Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus. ISME Journal. 2014;8:6–18. doi: 10.1038/ismej.2013.134. PubMed DOI PMC
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019 doi: 10.1093/bioinformatics/btz848. Epub ahead of print 15 November 2019. PubMed DOI PMC
Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JE, Zimmer M. Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology. 2015;29:108–119. doi: 10.1016/j.cbpa.2015.10.018. PubMed DOI PMC
Dahlsjö CAL, Parr CL, Malhi Y, Meir P, Chevarria OVC, Eggleton P. Termites promote soil carbon and nitrogen depletion: results from an in situ macrofauna exclusion experiment, Peru. Soil Biology and Biochemistry. 2014;77:109–111. doi: 10.1016/j.soilbio.2014.05.033. DOI
DeAngelis KM, Allgaier M, Chavarria Y, Fortney JL, Hugenholtz P, Simmons B, Sublette K, Silver WL, Hazen TC. Characterization of trapped lignin-degrading microbes in tropical forest soil. PLOS ONE. 2011;6(4):e19306. doi: 10.1371/journal.pone.0019306. PubMed DOI PMC
Dietrich C, Brune A. The complete mitogenomes of six higher termite species reconstructed from metagenomic datasets (Cornitermes sp., Cubitermes ugandensis, Microcerotermes parvus, Nasutitermes corniger, Neocapritermes taracua, and Termes hospes) Mitochondrial DNA. 2016;27(6):3903–3904. doi: 10.3109/19401736.2014.987257. PubMed DOI
Dietrich C, Köhler T, Brune A. The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Applied and Environmental Microbiology. 2014;80(7):2261–2269. doi: 10.1128/AEM.04206-13. PubMed DOI PMC
Diouf M, Hervé V, Mora P, Robert A, Frechault S, Rouland-Lefèvre C, Miambi E. Evidence from the gut microbiota of swarming alates of a vertical transmission of the bacterial symbionts in Nasutitermes arborum (Termitidae, Nasutitermitinae) Antonie van Leeuwenhoek. 2018a;111:573–587. doi: 10.1007/s10482-017-0978-4. PubMed DOI
Diouf M, Miambi E, Mora P, Frechault S, Robert A, Rouland-Lefèvre C, Hervé V. Variations in the relative abundance of Wolbachia in the gut of Nasutitermes arborum across life stages and castes. FEMS Microbiology Letters. 2018b;365(7):5. doi: 10.1093/femsle/fny046. PubMed DOI
Donovan SE, Eggleton P, Bignell DE. Gut content analysis and a new feeding group classification of termites. Ecological Entomology. 2001;26(4):356–366. doi: 10.1046/j.1365-2311.2001.00342.x. DOI
Friedrich MW, Schmitt-Wagner D, Lueders T, Brune A. Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Applied and Environmental Microbiology. 2001;67(10):4880–4890. doi: 10.1128/AEM.67.10.4880-4890.2001. PubMed DOI PMC
Fujita A, Miura T, Matsumoto T. Differences in cellulose digestive systems among castes in two termite lineages. Physiological Entomology. 2008;33(1):73–82. doi: 10.1111/j.1365-3032.2007.00606.x. DOI
Graber JR, Leadbetter JR, Breznak JA. Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Applied and Environmental Microbiology. 2004;70(3):1315–1320. doi: 10.1128/AEM.70.3.1315-1320.2004. PubMed DOI PMC
Grech-Mora I, Fardeau M-L, Patel BKC, Ollivier B, Rimbault A, Prensier G, Garcia J-L, Garnier-Sillam E. Isolation and characterization of Sporobacter termitidis gen. nov., sp. nov., from the digestive tract of the wood-feeding termite Nasutitermes lujae. International Journal of Systematic Bacteriology. 1996;46:512–518. doi: 10.1099/00207713-46-2-512. DOI
Griffiths HM, Ashton LA, Evans TA, Parr CL, Eggleton P. Termites can decompose more than half of deadwood in tropical rainforest. Current Biology. 2019;29(4):R118–R119. doi: 10.1016/j.cub.2019.01.012. PubMed DOI
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology. 2010;59(3):307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Gupta RS, Mahmood S, Adeolu M. A phylogenomic and molecular signature based approach for characterization of the phylum Spirochaetes and its major clades: proposal for a taxonomic revision of the phylum. Frontiers in Microbiology. 2013;4:217. doi: 10.3389/fmicb.2013.00217. PubMed DOI PMC
He S, Ivanova N, Kirton E, Allgaier M, Bergin C, Scheffrahn RH, Kyrpides NC, Warnecke F, Tringe SG, Hugenholtz P. Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLOS ONE. 2013;8:e61126. doi: 10.1371/journal.pone.0061126. PubMed DOI PMC
Herlemann DPR, Geissinger O, Ikeda-Ohtsubo W, Kunin V, Sun H, Lapidus A, Hugenholtz P, Brune A. Genomic analysis of “Elusimicrobium minutum,” the first cultivated representative of the phylum “Elusimicrobia” (formerly termite group 1) Applied and Environmental Microbiology. 2009;75:2841–2849. doi: 10.1128/AEM.02698-08. PubMed DOI PMC
Hervé V, Brune A. The complete mitochondrial genomes of the higher termites Labiotermes labralis and Embiratermes neotenicus (Termitidae: Syntermitinae) Mitochondrial DNA Part B. 2017;2(1):109–110. doi: 10.1080/23802359.2017.1289349. PubMed DOI PMC
Hervé V, Le Roux X, Uroz S, Gelhaye E, Frey-Klett P. Diversity and structure of bacterial communities associated with Phanerochaete chrysosporium during wood decay. Environmental Microbiology. 2014;16(7):2238–2252. doi: 10.1111/1462-2920.12347. PubMed DOI
Hongoh Y, Deevong P, Hattori S, Inoue T, Noda S, Noparatnaraporn N, Kudo T, Ohkuma M. Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Applied and Environmental Microbiology. 2006;72:6780–6788. doi: 10.1128/AEM.00891-06. PubMed DOI PMC
Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Applied and Environmental Microbiology. 2005;71:6590–6599. doi: 10.1128/AEM.71.11.6590-6599.2005. PubMed DOI PMC
Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M. Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proceedings of the National Academy of Sciences of the United States of America. 2008a;105:5555–5560. doi: 10.1073/pnas.0801389105. PubMed DOI PMC
Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M. Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science. 2008b;322:1108–1109. doi: 10.1126/science.1165578. PubMed DOI
Hua Z-S, Wang Y-L, Evans PN, Qu Y-N, Goh KM, Rao Y-Z, Qi Y-L, Li Y-X, Huang M-J, Jiao J-Y, Chen Y-T, Mao Y-P, Shu W-S, Hozzein W, Hedlund BP, Tyson GW, Zhang T, Li W-J. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea. Nature Communications. 2019;10:4574. doi: 10.1038/s41467-019-12574-y. PubMed DOI PMC
Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7(11):e7359. doi: 10.7717/peerj.7359. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution. 2013;30(4):772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Köhler T, Dietrich C, Scheffrahn RH, Brune A. High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.) Applied and Environmental Microbiology. 2012;78(13):4691–4701. doi: 10.1128/AEM.00683-12. PubMed DOI PMC
Köhler T, Stingl U, Meuser K, Brune A. Novel lineages of Planctomycetes densely colonize the alkaline gut of soil-feeding termites (Cubitermes spp.) Environmental Microbiology. 2008;10(5):1260–1270. doi: 10.1111/j.1462-2920.2007.01540.x. PubMed DOI
Krishna K, Grimaldi DA, Krishna V, Engel MS. Treatise on the isoptera of the world. Bulletin of the American Museum of Natural History. 2013;377(7):2433–2705. doi: 10.1206/377.7. DOI
Kuhnigk T, Branke J, Krekeler D, Cypionka H, König H. A feasible role of sulfate-reducing bacteria in the termite gut. Systematic and Applied Microbiology. 1996;19(2):139–149. doi: 10.1016/S0723-2020(96)80039-7. DOI
Lampert N, Mikaelyan A, Brune A. Diet is not the primary driver of bacterial community structure in the gut of litter-feeding cockroaches. BMC Microbiology. 2019;19(1):238. doi: 10.1186/s12866-019-1601-9. PubMed DOI PMC
Lazar CS, Baker BJ, Seitz K, Hyde AS, Dick GJ, Hinrichs K-U, Teske AP. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environmental Microbiology. 2016;18(4):1200–1211. doi: 10.1111/1462-2920.13142. PubMed DOI
Le Roes-Hill M, Rohland J, Burton S. Actinobacteria isolated from termite guts as a source of novel oxidative enzymes. Antonie van Leeuwenhoek. 2011;100(4):589–605. doi: 10.1007/s10482-011-9614-x. PubMed DOI
Leadbetter JR, Schmidt TM, Graber JR, Breznak JA. Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science. 1999;283:686–689. PubMed
Lefort V, Longueville J-E, Gascuel O. SMS: smart model selection in PhyML. Molecular Biology and Evolution. 2017;6(9):461–464. doi: 10.1093/molbev/msx149. PubMed DOI PMC
Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Research. 2019;47(W1):W256–W259. doi: 10.1093/nar/gkz239. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Lilburn TG, Schmidt TM, Breznak JA. Phylogenetic diversity of termite gut spirochaetes. Environmental Microbiology. 1999;1(4):331–345. doi: 10.1046/j.1462-2920.1999.00043.x. PubMed DOI
Liu G, Cornwell WK, Cao K, Hu Y, Van Logtestijn RSP, Yang S, Xie X, Zhang Y, Ye D, Pan X, Ye X, Huang Z, Dong M, Cornelissen JHC. Termites amplify the effects of wood traits on decomposition rates among multiple bamboo and dicot woody species. Journal of Ecology. 2015;103:1214–1223. doi: 10.1111/1365-2745.12427. DOI
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research. 2014;42(D1):D490–D495. doi: 10.1093/nar/gkt1178. PubMed DOI PMC
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H. ARB: a software environment for sequence data. Nucleic Acids Research. 2004;32:1363–1371. doi: 10.1093/nar/gkh293. PubMed DOI PMC
Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Pillay M, Ratner A, Huang J, Woyke T, Huntemann M, Anderson I, Billis K, Varghese N, Mavromatis K, Pati A, Ivanova NN, Kyrpides NC. IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Research. 2014;42:D560–D567. doi: 10.1093/nar/gkt963. PubMed DOI PMC
Marynowska M, Goux X, Sillam-Dussès D, Rouland-Lefèvre C, Roisin Y, Delfosse P, Calusinska M. Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome. BMC Genomics. 2017;18(1):681. doi: 10.1186/s12864-017-4076-9. PubMed DOI PMC
Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, Brune A. Diet is the primary determinant of bacterial community structure in the guts of higher termites. Molecular Ecology. 2015a;24(20):5284–5295. doi: 10.1111/mec.13376. PubMed DOI
Mikaelyan A, Köhler T, Lampert N, Rohland J, Boga H, Meuser K, Brune A. Classifying the bacterial gut microbiota of termites and cockroaches: a curated phylogenetic reference database (DictDb) Systematic and Applied Microbiology. 2015b;38(7):472–482. doi: 10.1016/j.syapm.2015.07.004. PubMed DOI
Mikaelyan A, Meuser K, Brune A. Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. FEMS Microbiology Ecology. 2017;93(1):fiw210. doi: 10.1093/femsec/fiw210. PubMed DOI
Mikaelyan A, Strassert JFH, Tokuda G, Brune A. The fibre-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.) Environmental Microbiology. 2014;16(9):2711–2722. doi: 10.1111/1462-2920.12425. DOI
Moreira EA, Alvarez TM, Persinoti GF, Paixão DAA, Menezes LR, Cairo JPF, Squina FM, Costa-Leonardo AM, Carrijo T, Arab A. Microbial communities of the gut and nest of the humus- and litter-feeding termite Procornitermes araujoi (Syntermitinae) Current Microbiology. 2018;75(12):1609–1618. doi: 10.1007/s00284-018-1567-0. PubMed DOI
Neumann AP, McCormick CA, Suen G. Fibrobacter communities in the gastrointestinal tracts of diverse hindgut-fermenting herbivores are distinct from those of the rumen. Environmental Microbiology. 2017;19(9):3768–3783. doi: 10.1111/1462-2920.13878. PubMed DOI PMC
Neumann AP, Suen G. The phylogenomic diversity of herbivore-associated Fibrobacter spp. is correlated to lignocellulose-degrading potential. mSphere. 2018;3(6):e00593-18. doi: 10.1128/mSphere.00593-18. PubMed DOI PMC
Odelson DA, Breznak JA. Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Applied and Environmental Microbiology. 1983;45:1602–1613. PubMed PMC
Ohkuma M, Iida T, Kudo T. Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiology Letters. 1999;181:123–129. PubMed
Ohkuma M, Noda S, Hattori S, Iida T, Yuki M, Starns D, Inoue J, Darby AC, Hongoh Y. Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. Proceedings of the National Academy of Sciences of the United States of America. 2015;112:10224–10230. doi: 10.1073/pnas.1423979112. PubMed DOI PMC
Ohkuma M, Noda S, Kudo T. Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Applied and Environmental Microbiology. 1999;65:4926–4934. PubMed PMC
Ottesen EA, Leadbetter JR. Formyltetrahydrofolate synthetase gene diversity in the guts of higher termites with different diets and lifestyles. Applied and Environmental Microbiology. 2011;77(10):3461–3467. doi: 10.1128/AEM.02657-10. PubMed DOI PMC
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, Hugenholtz P. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nature Biotechnology. 2018;36(10):996–1004. doi: 10.1038/nbt.4229. PubMed DOI
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research. 2015;25(7):1043–1055. doi: 10.1101/gr.186072.114. PubMed DOI PMC
Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, Hugenholtz P, Tyson GW. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology. 2017;2(11):1533–1542. doi: 10.1038/s41564-017-0012-7. PubMed DOI
Paster BJ, Dewhirst FE, Cooke SM, Fussing V, Poulsen LK, Breznak JA. Phylogeny of not-yet-cultured spirochetes from termite guts. Applied and Environmental Microbiology. 1996;62:347–352. PubMed PMC
Prosser JI. Dispersing misconceptions and identifying opportunities for the use of omics in soil microbial ecology. Nature Reviews Microbiology. 2015;13(7):439–446. doi: 10.1038/nrmicro3468. PubMed DOI
Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28(14):1823–1829. doi: 10.1093/bioinformatics/bts252. PubMed DOI PMC
Qiu YL, Kuang XZ, Shi XS, Yuan XZ, Guo RB. Paludibacter jiangxiensis sp. nov., a strictly anaerobic, propionate-producing bacterium isolated from rice paddy field. Archives of Microbiology. 2014;196(3):149–155. doi: 10.1007/s00203-013-0951-1. PubMed DOI
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research. 2013;41(D1):D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
R Development Core Team . R: A language and environment for statistical computing. Vienna: The R Foundation for Statistical Computing; 2019.
Rossmassler K, Dietrich C, Thompson C, Mikaelyan A, Nonoh JO, Scheffrahn RH, Sillam-Dussès D, Brune A. Metagenomic analysis of the microbiota in the highly compartmented hindguts of six wood- or soil-feeding higher termites. Microbiome. 2015;3(1):56. doi: 10.1186/s40168-015-0118-1. PubMed DOI PMC
Sabree ZL, Moran NA. Host-specific assemblages typify gut microbial communities of related insect species. SpringerPlus. 2014;3(1):138. doi: 10.1186/2193-1801-3-138. PubMed DOI PMC
Schloss PD, Girard RA, Martin T, Edwards J, Thrash JC. Status of the archaeal and bacterial census: an update. mBio. 2016;7(3):e00201-16. doi: 10.1128/mBio.00201-16. PubMed DOI PMC
Schmidt O, Horn MA, Kolb S, Drake HL. Temperature impacts differentially on the methanogenic food web of cellulose-supplemented peatland soil. Environmental Microbiology. 2015;17(3):720–734. doi: 10.1111/1462-2920.12507. PubMed DOI
Schulz F, Eloe-Fadrosh EA, Bowers RM, Jarett J, Nielsen T, Ivanova NN, Kyrpides NC, Woyke T. Towards a balanced view of the bacterial tree of life. Microbiome. 2017;5(1):140. doi: 10.1186/s40168-017-0360-9. PubMed DOI PMC
Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I, Majda S, Fiedler J, Dahms E, Bremges A, Fritz A, Garrido-Oter R, Jørgensen TS, Shapiro N, Blood PD, Gurevich A, Bai Y, Turaev D, DeMaere MZ, Chikhi R, Nagarajan N, Quince C, Meyer F, Balvočiūtė M, Hansen LH, Sørensen SJ, Chia BKH, Denis B, Froula JL, Wang Z, Egan R, Don Kang D, Cook JJ, Deltel C, Beckstette M, Lemaitre C, Peterlongo P, Rizk G, Lavenier D, Wu Y-W, Singer SW, Jain C, Strous M, Klingenberg H, Meinicke P, Barton MD, Lingner T, Lin H-H, Liao Y-C, Silva GGZ, Cuevas DA, Edwards RA, Saha S, Piro VC, Renard BY, Pop M, Klenk H-P, Göker M, Kyrpides NC, Woyke T, Vorholt JA, Schulze-Lefert P, Rubin EM, Darling AE, Rattei T, McHardy AC. Critical assessment of metagenome interpretation—a benchmark of metagenomics software. Nature Methods. 2017;14:1063–1071. doi: 10.1038/nmeth.4458. PubMed DOI PMC
Shi Y, Huang Z, Han S, Fan S, Yang H. Phylogenetic diversity of Archaea in the intestinal tract of termites from different lineages. Journal of Basic Microbiology. 2015;55(8):1021–1028. doi: 10.1002/jobm.201400678. PubMed DOI
Söllinger A, Tveit AT, Poulsen M, Noel SJ, Bengtsson M, Bernhardt J, Frydendahl Hellwing AL, Lund P, Riedel K, Schleper C, Højberg O, Urich T. Holistic assessment of rumen microbiome dynamics through quantitative metatranscriptomics reveals multifunctional redundancy during key steps of anaerobic feed degradation. mSystems. 2018;3:e00038-18. doi: 10.1128/mSystems.00038-18. PubMed DOI PMC
Sorokin DY, Rakitin AL, Gumerov VM, Beletsky AV, Sinninghe Damsté JS, Mardanov AV, Ravin NV. Phenotypic and genomic properties of Chitinispirillum alkaliphilum gen. nov., sp. nov., a haloalkaliphilic anaerobic chitinolytic bacterium representing a novel class in the phylum Fibrobacteres. Frontiers in Microbiology. 2016;7:407. doi: 10.3389/fmicb.2016.00407. PubMed DOI PMC
Spring S, Bunk B, Spröer C, Schumann P, Rohde M, Tindall BJ, Klenk H-P. Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum. ISME Journal. 2016;10(12):2801–2816. doi: 10.1038/ismej.2016.84. PubMed DOI PMC
Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, Liachko I, Snelling TJ, Dewhurst RJ, Walker AW, Roehe R, Watson M. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nature Communications. 2018;9:870. doi: 10.1038/s41467-018-03317-6. PubMed DOI PMC
Sujada N, Sungthong R, Lumyong S. Termite nests as an abundant source of cultivable Actinobacteria for biotechnological purposes. Microbes and Environments. 2014;29(2):211–219. doi: 10.1264/jsme2.ME13183. PubMed DOI PMC
Svartström O, Alneberg J, Terrapon N, Lombard V, De Bruijn I, Malmsten J, Dalin A-M, El Muller E, Shah P, Wilmes P, Henrissat B, Aspeborg H, Andersson AF. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation. ISME Journal. 2017;11:2538–2551. doi: 10.1038/ismej.2017.108. PubMed DOI PMC
Tokuda G, Lo N, Watanabe H, Arakawa G, Matsumoto T, Noda H. Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Molecular Ecology. 2004;13(10):3219–3228. doi: 10.1111/j.1365-294X.2004.02276.x. PubMed DOI
Tokuda G, Mikaelyan A, Fukui C, Matsuura Y, Watanabe H, Fujishima M, Brune A. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proceedings of the National Academy of Sciences of the United States of America. 2018;115:E11996–E12004. doi: 10.1073/pnas.1810550115. PubMed DOI PMC
Tokuda G, Tsuboi Y, Kihara K, Saitou S, Moriya S, Lo N, Kikuchi J. Metabolomic profiling of 13C-labelled cellulose digestion in a lower termite: insights into gut symbiont function. Proceedings of the Royal Society B: Biological Sciences. 2014;281:20140990. doi: 10.1098/rspb.2014.0990. PubMed DOI PMC
Ueki A, Akasaka H, Suzuki D, Ueki K. Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. International Journal of Systematic and Evolutionary Microbiology. 2006;56:39–44. doi: 10.1099/ijs.0.63896-0. PubMed DOI
Utami YD, Kuwahara H, Igai K, Murakami T, Sugaya K, Morikawa T, Nagura Y, Yuki M, Deevong P, Inoue T, Kihara K, Lo N, Yamada A, Ohkuma M, Hongoh Y. Genome analyses of uncultured TG2/ZB3 bacteria in ‘Margulisbacteria’ specifically attached to ectosymbiotic spirochetes of protists in the termite gut. ISME Journal. 2019;13:455–467. doi: 10.1038/s41396-018-0297-4. PubMed DOI PMC
Utami YD, Kuwahara H, Murakami T, Morikawa T, Sugaya K, Kihara K, Yuki M, Lo N, Deevong P, Hasin S, Boonriam W, Inoue T, Yamada A, Ohkuma M, Hongoh Y. Phylogenetic diversity and single-cell genome analysis of Melainabacteria, a non-photosynthetic cyanobacterial group, in the termite gut. Microbes and Environments. 2018;33:50–57. doi: 10.1264/jsme2.ME17137. PubMed DOI PMC
Wang Y, Su L, Huang S, Bo C, Yang S, Li Y, Wang F, Xie H, Xu J, Song A. Diversity and resilience of the wood-feeding higher termite Mironasutitermes shangchengensis gut microbiota in response to temporal and diet variations. Ecology and Evolution. 2016;6:8235–8242. doi: 10.1002/ece3.2497. PubMed DOI PMC
Wertz JT, Kim E, Breznak JA, Schmidt TM, Rodrigues JLM. Genomic and physiological characterization of the Verrucomicrobia isolate Diplosphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixation genes. Applied and Environmental Microbiology. 2012;78(5):1544–1555. doi: 10.1128/AEM.06466-11. PubMed DOI PMC
Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag; 2016. DOI
Woyke T, Doud DFR, Schulz F. The trajectory of microbial single-cell sequencing. Nature Methods. 2017;14(11):1045–1054. doi: 10.1038/nmeth.4469. PubMed DOI
Yamada A, Inoue T, Wiwatwitaya D, Ohkuma M, Kudo T, Abe T, Sugimoto A. Carbon mineralization by termites in tropical forests, with emphasis on fungus combs. Ecological Research. 2005;20:453–460.
Yuki M, Kuwahara H, Shintani M, Izawa K, Sato T, Starns D, Hongoh Y, Ohkuma M. Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose. Environmental Microbiology. 2015;17:4942–4953. doi: 10.1111/1462-2920.12945. PubMed DOI
Yuki M, Sakamoto M, Nishimura Y, Ohkuma M. Lactococcus reticulitermitis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus. International Journal of Systematic and Evolutionary Microbiology. 2018;68(2):596–601. doi: 10.1099/ijsem.0.002549. PubMed DOI
Zheng H, Brune A. Complete genome sequence of Endomicrobium proavitum, a free-living relative of the intracellular symbionts of termite gut flagellates (phylum Elusimicrobia) Genome Announcements. 2015;3(4):e00679-15. doi: 10.1128/genomeA.00679-15. PubMed DOI PMC
Zhou Z, Pan J, Wang F, Gu J-D, Li M. Bathyarchaeota: globally distributed metabolic generalists in anoxic environments. FEMS Microbiology Reviews. 2018;42(5):639–655. doi: 10.1093/femsre/fuy023. PubMed DOI
The functional evolution of termite gut microbiota
Metagenomes, metatranscriptomes and microbiomes of naturally decomposing deadwood