Genome reduction and horizontal gene transfer in the evolution of Endomicrobia-rise and fall of an intracellular symbiosis with termite gut flagellates
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Max-Planck-Institut für Terrestrische Mikrobiologie (MPI for Terrestrial Microbiology)
SFB 987
Deutsche Forschungsgemeinschaft (DFG)
PubMed
38742878
PubMed Central
PMC11257099
DOI
10.1128/mbio.00826-24
Knihovny.cz E-zdroje
- Klíčová slova
- Endomicrobiaceae, Parabasalia, convergent evolution, endosymbionts, lateral gene transfer, termites,
- MeSH
- Bacteria * genetika klasifikace MeSH
- fylogeneze * MeSH
- genom bakteriální * MeSH
- Isoptera * mikrobiologie parazitologie MeSH
- metagenom MeSH
- molekulární evoluce MeSH
- přenos genů horizontální * MeSH
- střevní mikroflóra * MeSH
- symbióza * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Bacterial endosymbionts of eukaryotic hosts typically experience massive genome reduction, but the underlying evolutionary processes are often obscured by the lack of free-living relatives. Endomicrobia, a family-level lineage of host-associated bacteria in the phylum Elusimicrobiota that comprises both free-living representatives and endosymbionts of termite gut flagellates, are an excellent model to study evolution of intracellular symbionts. We reconstructed 67 metagenome-assembled genomes (MAGs) of Endomicrobiaceae among more than 1,700 MAGs from the gut microbiota of a wide range of termites. Phylogenomic analysis confirmed a sister position of representatives from termites and ruminants, and allowed to propose eight new genera in the radiation of Endomicrobiaceae. Comparative genome analysis documented progressive genome erosion in the new genus Endomicrobiellum, which comprises all flagellate endosymbionts characterized to date. Massive gene losses were accompanied by the acquisition of new functions by horizontal gene transfer, which led to a shift from a glucose-based energy metabolism to one based on sugar phosphates. The breakdown of glycolysis and many anabolic pathways for amino acids and cofactors in several subgroups was compensated by the independent acquisition of new uptake systems, including an ATP/ADP antiporter, from other gut microbiota. The putative donors are mostly flagellate endosymbionts from other bacterial phyla, including several, hitherto unknown lineages of uncultured Alphaproteobacteria, documenting the importance of horizontal gene transfer in the convergent evolution of these intracellular symbioses. The loss of almost all biosynthetic capacities in some lineages of Endomicrobiellum suggests that their originally mutualistic relationship with flagellates is on its decline.IMPORTANCEUnicellular eukaryotes are frequently colonized by bacterial and archaeal symbionts. A prominent example are the cellulolytic gut flagellates of termites, which harbor diverse but host-specific bacterial symbionts that occur exclusively in termite guts. One of these lineages, the so-called Endomicrobia, comprises both free-living and endosymbiotic representatives, which offers the unique opportunity to study the evolutionary processes underpinning the transition from a free-living to an intracellular lifestyle. Our results revealed a progressive gene loss in energy metabolism and biosynthetic pathways, compensated by the acquisition of new functions via horizontal gene transfer from other gut bacteria, and suggest the eventual breakdown of an initially mutualistic symbiosis. Evidence for convergent evolution of unrelated endosymbionts reflects adaptations to the intracellular environment of termite gut flagellates.
Biology Centre Czech Academy of Sciences Institute of Entomology České Budějovice Czechia
Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Czechia
Zobrazit více v PubMed
McCutcheon JP, Moran NA. 2012. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26. doi:10.1038/nrmicro2670 PubMed DOI
Wernegreen JJ. 2015. Endosymbiont evolution: predictions from theory and surprises from genomes. Ann N Y Acad Sci 1360:16–35. doi:10.1111/nyas.12740 PubMed DOI PMC
George EE, Husnik F, Tashyreva D, Prokopchuk G, Horák A, Kwong WK, Lukeš J, Keeling PJ. 2020. Highly reduced genomes of protist endosymbionts show evolutionary convergence. Curr Biol 30:925–933. doi:10.1016/j.cub.2019.12.070 PubMed DOI
Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. 2021. Bacterial and archaeal symbioses with protists. Curr Biol 31:R862–R877. doi:10.1016/j.cub.2021.05.049 PubMed DOI
Stingl U, Radek R, Yang H, Brune A. 2005. “Endomicrobia”: cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl Environ Microbiol 71:1473–1479. doi:10.1128/AEM.71.3.1473-1479.2005 PubMed DOI PMC
Ikeda-Ohtsubo W, Desai M, Stingl U, Brune A. 2007. Phylogenetic diversity of “Endomicrobia” and their specific affiliation with termite gut flagellates. Microbiology (Reading) 153:3458–3465. doi:10.1099/mic.0.2007/009217-0 PubMed DOI
Ohkuma M, Sato T, Noda S, Ui S, Kudo T, Hongoh Y. 2007. The candidate phylum 'Termite group 1' of bacteria: phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiol Ecol 60:467–476. doi:10.1111/j.1574-6941.2007.00311.x PubMed DOI
Wong MT, Wang W, Lacourt M, Couturier M, Edwards EA, Master ER. 2016. Substrate-driven convergence of the microbial community in lignocellulose-amended enrichments of gut microflora from the Canadian beaver (Castor canadensis) and North American moose (Alces americanus). Front Microbiol 7:961. doi:10.3389/fmicb.2016.00961 PubMed DOI PMC
Levy B, Jami E. 2018. Exploring the prokaryotic community associated with the rumen ciliate protozoa population. Front Microbiol 9:2526. doi:10.3389/fmicb.2018.02526 PubMed DOI PMC
Ikeda-Ohtsubo W, Faivre N, Brune A. 2010. Putatively free‐living ‘Endomicrobia’– ancestors of the intracellular symbionts of termite gut flagellates? Environ Microbiol Rep 2:554–559. doi:10.1111/j.1758-2229.2009.00124.x PubMed DOI
Mikaelyan A, Thompson CL, Meuser K, Zheng H, Rani P, Plarre R, Brune A. 2017. High-resolution phylogenetic analysis of Endomicrobia reveals multiple acquisitions of endosymbiotic lineages by termite gut flagellates. Environ Microbiol Rep 9:477–483. doi:10.1111/1758-2229.12565 PubMed DOI
Ohkuma M, Brune A. 2011. Diversity, structure, and evolution of the termite gut microbial community, p 413–438. In Biology of termites: a modern synthesis. Springer, Netherlands.
Brune A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180. doi:10.1038/nrmicro3182 PubMed DOI
Brune A, Dietrich C. 2015. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166. doi:10.1146/annurev-micro-092412-155715 PubMed DOI
Hongoh Y. 2011. Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 68:1311–1325. doi:10.1007/s00018-011-0648-z PubMed DOI PMC
Hongoh Y, Sato T, Dolan MF, Noda S, Ui S, Kudo T, Ohkuma M. 2007. The motility symbiont of the termite gut flagellate Caduceia versatilis is a member of the “Synergistes” group. Appl Environ Microbiol 73:6270–6276. doi:10.1128/AEM.00750-07 PubMed DOI PMC
Sato T, Kuwahara H, Fujita K, Noda S, Kihara K, Yamada A, Ohkuma M, Hongoh Y. 2014. Intranuclear verrucomicrobial symbionts and evidence of lateral gene transfer to the host protist in the termite gut. ISME J 8:1008–1019. doi:10.1038/ismej.2013.222 PubMed DOI PMC
Hongoh Y, Ohkuma M. 2010. Termite gut flagellates and their methanogenic and eubacterial symbionts, p 55–79. In Hackstein JHP (ed), (Endo)symbiotic methanogenic archaea. Springer International Publishing, Berlin, Heidelberg.
Ikeda-Ohtsubo W, Strassert JFH, Köhler T, Mikaelyan A, Gregor I, McHardy AC, Tringe SG, Hugenholtz P, Radek R, Brune A. 2016. “Candidatus Adiutrix intracellularis”, an endosymbiont of termite gut flagellates, is the first representative of a deep-branching clade of Deltaproteobacteria and a putative homoacetogen. Environ Microbiol 18:2548–2564. doi:10.1111/1462-2920.13234 PubMed DOI
Kuwahara H, Yuki M, Izawa K, Ohkuma M, Hongoh Y. 2017. Genome of “Ca. Desulfovibrio trichonymphae”, an H2-oxidizing bacterium in a tripartite symbiotic system within a protist cell in the termite gut. ISME J 11:766–776. doi:10.1038/ismej.2016.143 PubMed DOI PMC
Strassert JFH, Mikaelyan A, Woyke T, Brune A. 2016. Genome analysis of ‘Candidatus Ancillula trichonymphae’, first representative of a deep-branching clade of Bifidobacteriales, strengthens evidence for convergent evolution in flagellate endosymbionts. Environ Microbiol Rep 8:865–873. doi:10.1111/1758-2229.12451 PubMed DOI
Ohkuma M, Noda S, Hattori S, Iida T, Yuki M, Starns D, Inoue J, Darby AC, Hongoh Y. 2015. Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. Proc Natl Acad Sci U S A 112:10224–10230. doi:10.1073/pnas.1423979112 PubMed DOI PMC
Desai MS, Strassert JFH, Meuser K, Hertel H, Ikeda-Ohtsubo W, Radek R, Brune A. 2010. Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ Microbiol 12:2120–2132. doi:10.1111/j.1462-2920.2009.02080.x PubMed DOI
Izawa K, Kuwahara H, Sugaya K, Lo N, Ohkuma M, Hongoh Y. 2017. Discovery of ectosymbiotic Endomicrobium lineages associated with protists in the gut of stolotermitid termites. Environ Microbiol Rep 9:411–418. doi:10.1111/1758-2229.12549 PubMed DOI
Zheng H, Dietrich C, Radek R, Brune A. 2016. Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia) – an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a group IV nitrogenase. Environ Microbiol 18:191–204. doi:10.1111/1462-2920.12960 PubMed DOI
Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M. 2008. Complete genome of the uncultured termite group 1 bacteria in a single host protist cell. Proc Natl Acad Sci U S A 105:5555–5560. doi:10.1073/pnas.0801389105 PubMed DOI PMC
Izawa K, Kuwahara H, Kihara K, Yuki M, Lo N, Itoh T, Ohkuma M, Hongoh Y. 2016. Comparison of intracellular “Ca. Endomicrobium trichonymphae” genomovars illuminates the requirement and decay of defense systems against foreign DNA. Genome Biol Evol 8:3099–3107. doi:10.1093/gbe/evw227 PubMed DOI PMC
Stephens ME, Benjamino J, Graf J, Gage DJ. 2022. Simultaneous single-cell genome and transcriptome sequencing of termite hindgut protists reveals metabolic and evolutionary traits of their endosymbionts. mSphere 7:e0002122. doi:10.1128/msphere.00021-22 PubMed DOI PMC
Zheng H, Dietrich C, Brune A. 2017. Genome analysis of Endomicrobium proavitum suggests loss and gain of relevant functions during the evolution of intracellular symbionts. Appl Environ Microbiol 83:e00656-17. doi:10.1128/AEM.00656-17 PubMed DOI PMC
Hervé V, Liu P, Dietrich C, Sillam-Dussès D, Stiblik P, Šobotník J, Brune A. 2020. Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites. PeerJ 8:e8614. doi:10.7717/peerj.8614 PubMed DOI PMC
Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, Hugenholtz P, Tyson GW. 2017. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2:1533–1542. doi:10.1038/s41564-017-0012-7 PubMed DOI
Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, Liachko I, Snelling TJ, Dewhurst RJ, Walker AW, Roehe R, Watson M. 2018. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat Commun 9:870. doi:10.1038/s41467-018-03317-6 PubMed DOI PMC
Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. 2019. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat Biotechnol 37:953–961. doi:10.1038/s41587-019-0202-3 PubMed DOI PMC
Gharechahi J, Vahidi MF, Bahram M, Han JL, Ding XZ, Salekdeh GH. 2021. Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. ISME J 15:1108–1120. doi:10.1038/s41396-020-00837-2 PubMed DOI PMC
Ewens SD, Gomberg AFS, Barnum TP, Borton MA, Carlson HK, Wrighton KC, Coates JD. 2021. The diversity and evolution of microbial dissimilatory phosphite oxidation. Proc Natl Acad Sci U S A 118:e2020024118. doi:10.1073/pnas.2020024118 PubMed DOI PMC
Protasov E, Nonoh JO, Kästle Silva JM, Mies US, Hervé V, Dietrich C, Lang K, Mikulski L, Platt K, Poehlein A, Köhler-Ramm T, Miambi E, Boga HI, Feldewert C, Ngugi DK, Plarre R, Sillam-Dussès D, Šobotník J, Daniel R, Brune A. 2023. Diversity and taxonomic revision of methanogens and other archaea in the intestinal tract of terrestrial arthropods. Front Microbiol 14:1281628. doi:10.3389/fmicb.2023.1281628 PubMed DOI PMC
Schwöppe C, Winkler HH, Neuhaus HE. 2002. Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). J Bacteriol 184:2108–2115. doi:10.1128/JB.184.8.2108-2115.2002 PubMed DOI PMC
Audia JP, Winkler HH. 2006. Study of the five Rickettsia prowazekii proteins annotated as ATP/ADP translocases (Tlc): only Tlc1 transports ATP/ADP, while Tlc4 and Tlc5 transport other ribonucleotides. J Bacteriol 188:6261–6268. doi:10.1128/JB.00371-06 PubMed DOI PMC
Trentmann O, Decker C, Winkler HH, Neuhaus HE. 2000. Charged amino-acid residues in transmembrane domains of the plastidic ATP/ADP transporter from Arabidopsis are important for transport efficiency, substrate specificity, and counter exchange properties. Eur J Biochem 267:4098–4105. doi:10.1046/j.1432-1033.2000.01468.x PubMed DOI
Mertens E. 1991. Pyrophosphate-dependent phosphofructokinase, an anaerobic glycolytic enzyme? FEBS Lett 285:1–5. doi:10.1016/0014-5793(91)80711-b PubMed DOI
Cooper RA. 1984. Metabolism of methylglyoxal in microorganisms. Annu Rev Microbiol 38:49–68. doi:10.1146/annurev.mi.38.100184.000405 PubMed DOI
Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, Cook GM, Morales SE. 2016. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J 10:761–777. doi:10.1038/ismej.2015.153 PubMed DOI PMC
Jongsareejit B, Rahman RN, Fujiwara S, Imanaka T. 1997. Gene cloning, sequencing and enzymatic properties of glutamate synthase from the hyperthermophilic archaeon Pyrococcus sp. KOD1. Mol Gen Genet 254:635–642. doi:10.1007/s004380050461 PubMed DOI
Min B, Pelaschier JT, Graham DE, Tumbula-Hansen D, Söll D. 2002. Transfer RNA-dependent amino acid biosynthesis: an essential route to asparagine formation. Proc Natl Acad Sci U S A 99:2678–2683. doi:10.1073/pnas.012027399 PubMed DOI PMC
Desai MS, Brune A. 2012. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J 6:1302–1313. doi:10.1038/ismej.2011.194 PubMed DOI PMC
Yamada A, Inoue T, Noda S, Hongoh Y, Ohkuma M. 2007. Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol Ecol 16:3768–3777. doi:10.1111/j.1365-294X.2007.03326.x PubMed DOI
Lin S, Cronan JE. 2011. Closing in on complete pathways of biotin biosynthesis. Mol Biosyst 7:1811–1821. doi:10.1039/c1mb05022b PubMed DOI
Geissinger O, Herlemann DPR, Mörschel E, Maier UG, Brune A. 2009. The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum. Appl Environ Microbiol 75:2831–2840. doi:10.1128/AEM.02697-08 PubMed DOI PMC
Brune A, Mies US. 2023. Elusimicrobiota, p 1–5. In Whitman W (ed), Bergey’s manual of systematics of archaea and bacteria, 1st ed. Wiley.
Moran NA, Bennett GM. 2014. The tiniest tiny genomes. Annu Rev Microbiol 68:195–215. doi:10.1146/annurev-micro-091213-112901 PubMed DOI
Zheng H, Dietrich C, Hongoh Y, Brune A. 2016. Restriction-modification systems as mobile genetic elements in the evolution of an intracellular symbiont. Mol Biol Evol 33:721–725. doi:10.1093/molbev/msv264 PubMed DOI PMC
Arora J, Kinjo Y, Šobotník J, Buček A, Clitheroe C, Stiblik P, Roisin Y, Žifčáková L, Park YC, Kim KY, Sillam-Dussès D, Hervé V, Lo N, Tokuda G, Brune A, Bourguignon T. 2022. The functional evolution of termite gut microbiota. Microbiome 10:78. doi:10.1186/s40168-022-01258-3 PubMed DOI PMC
Takahashi K, Kuwahara H, Horikawa Y, Izawa K, Kato D, Inagaki T, Yuki M, Ohkuma M, Hongoh Y. 2023. Emergence of putative energy parasites within Clostridia revealed by genome analysis of a novel endosymbiotic clade. ISME J 17:1895–1906. doi:10.1038/s41396-023-01502-0 PubMed DOI PMC
Ohkuma M, Kudo T. 1996. Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468. doi:10.1128/aem.62.2.461-468.1996 PubMed DOI PMC
Hongoh Y, Ohkuma M, Kudo T. 2003. Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44:231–242. doi:10.1016/S0168-6496(03)00026-6 PubMed DOI
Shelomi M, Lin S-S, Liu L-Y. 2019. Transcriptome and microbiome of coconut rhinoceros beetle (Oryctes rhinoceros) larvae. BMC Genomics 20:957. doi:10.1186/s12864-019-6352-3 PubMed DOI PMC
Dietrich C, Köhler T, Brune A. 2014. The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl Environ Microbiol 80:2261–2269. doi:10.1128/AEM.04206-13 PubMed DOI PMC
Bourguignon T, Lo N, Dietrich C, Šobotník J, Sidek S, Roisin Y, Brune A, Evans TA. 2018. Rampant host switching shaped the termite gut microbiome. Curr Biol 28:649–654. doi:10.1016/j.cub.2018.01.035 PubMed DOI
Domínguez-Santos R, Pérez-Cobas AE, Cuti P, Pérez-Brocal V, García-Ferris C, Moya A, Latorre A, Gil R. 2021. Interkingdom gut microbiome and resistome of the cockroach Blattella germanica. mSystems 6:e01213-20. doi:10.1128/mSystems.01213-20 PubMed DOI PMC
Dukes HE, Tinker KA, Ottesen EA. 2023. Disentangling hindgut metabolism in the American cockroach through single-cell genomics and metatranscriptomics. Front Microbiol 14:1156809. doi:10.3389/fmicb.2023.1156809 PubMed DOI PMC
Strassert JFH, Desai MS, Radek R, Brune A. 2010. Identification and localization of the multiple bacterial symbionts of the termite gut flagellate Joenia annectens. Microbiology (Reading) 156:2068–2079. doi:10.1099/mic.0.037267-0 PubMed DOI
Xie F, Jin W, Si H, Yuan Y, Tao Y, Liu J, Wang X, Yang C, Li Q, Yan X, Lin L, Jiang Q, Zhang L, Guo C, Greening C, Heller R, Guan LL, Pope PB, Tan Z, Zhu W, Wang M, Qiu Q, Li Z, Mao S. 2021. An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome 9:137. doi:10.1186/s40168-021-01078-x PubMed DOI PMC
Méheust R, Castelle CJ, Matheus Carnevali PB, Farag IF, He C, Chen L-X, Amano Y, Hug LA, Banfield JF. 2020. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. ISME J 14:2907–2922. doi:10.1038/s41396-020-0716-1 PubMed DOI PMC
Passalacqua KD, Charbonneau M-E, O’Riordan MXD. 2016. Bacterial metabolism shapes the host-pathogen interface. Microbiol Spectr 4:4. doi:10.1128/microbiolspec.VMBF-0027-2015 PubMed DOI PMC
Dharamshi JE, Köstlbacher S, Schön ME, Collingro A, Ettema TJG, Horn M. 2023. Gene gain facilitated endosymbiotic evolution of Chlamydiae. Nat Microbiol 8:40–54. doi:10.1038/s41564-022-01284-9 PubMed DOI PMC
Treitli SC, Kolisko M, Husník F, Keeling PJ, Hampl V. 2019. Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single-cell metagenomics. Proc Natl Acad Sci U S A 116:19675–19684. doi:10.1073/pnas.1910793116 PubMed DOI PMC
Kantor RS, Wrighton KC, Handley KM, Sharon I, Hug LA, Castelle CJ, Thomas BC, Banfield JF. 2013. Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla. mBio 4:e00708-13. doi:10.1128/mBio.00708-13 PubMed DOI PMC
McLean JS, Bor B, Kerns KA, Liu Q, To TT, Solden L, Hendrickson EL, Wrighton K, Shi W, He X. 2020. Acquisition and adaptation of ultra-small parasitic reduced genome bacteria to mammalian hosts. Cell Rep 32:107939. doi:10.1016/j.celrep.2020.107939 PubMed DOI PMC
Hackmann TJ, Ngugi DK, Firkins JL, Tao J. 2017. Genomes of rumen bacteria encode atypical pathways for fermenting hexoses to short-chain fatty acids. Environ Microbiol 19:4670–4683. doi:10.1111/1462-2920.13929 PubMed DOI
Kelly WJ, Leahy SC, Altermann E, Yeoman CJ, Dunne JC, Kong Z, Pacheco DM, Li D, Noel SJ, Moon CD, Cookson AL, Attwood GT. 2010. The glycobiome of the rumen bacterium Butyrivibrio proteoclasticus B316T highlights adaptation to a polysaccharide-rich environment. PLoS One 5:e11942. doi:10.1371/journal.pone.0011942 PubMed DOI PMC
Herlemann DPR, Geissinger O, Ikeda-Ohtsubo W, Kunin V, Sun H, Lapidus A, Hugenholtz P, Brune A. 2009. Genomic analysis of “Elusimicrobium minutum,” the first cultivated representative of the phylum “Elusimicrobia” (formerly termite group 1). Appl Environ Microbiol 75:2841–2849. doi:10.1128/AEM.02698-08 PubMed DOI PMC
Kengen SWM, Stams AJM. 1994. Formation of l-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch Microbiol 161:168–175. doi:10.1007/BF00276479 DOI
Heider J, Mai X, Adams MWW. 1996. Characterization of 2-ketoisovalerate ferredoxin oxidoreductase, a new and reversible coenzyme A-dependent enzyme involved in peptide fermentation by hyperthermophilic archaea. J Bacteriol 178:780–787. doi:10.1128/jb.178.3.780-787.1996 PubMed DOI PMC
Schmitz-Esser S, Linka N, Collingro A, Beier CL, Neuhaus HE, Wagner M, Horn M. 2004. ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to Chlamydiae and Rickettsiae. J Bacteriol 186:683–691. doi:10.1128/JB.186.3.683-691.2004 PubMed DOI PMC
Major P, Embley TM, Williams TA. 2017. Phylogenetic diversity of NTT nucleotide transport proteins in free-living and parasitic bacteria and eukaryotes. Genome Biol Evol 9:480–487. doi:10.1093/gbe/evx015 PubMed DOI PMC
Claessen D, Errington J. 2019. Cell wall deficiency as a coping strategy for stress. Trends Microbiol 27:1025–1033. doi:10.1016/j.tim.2019.07.008 PubMed DOI
Sugawara K, Toyoda H, Kimura M, Hayasaka S, Saito H, Kobayashi H, Ihara K, Ida T, Akaike T, Ando E, Hyodo M, Hayakawa Y, Hamamoto S, Uozumi N. 2021. Loss of cell wall integrity genes cpxA and mrcB causes flocculation in Escherichia coli. Biochem J 478:41–59. doi:10.1042/BCJ20200723 PubMed DOI
Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M. 2008. Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322:1108–1109. doi:10.1126/science.1165578 PubMed DOI
Noda S, Ohkuma M, Kudo T. 2002. Nitrogen fixation genes expressed in the symbiotic microbial community in the gut of the termite Coptotermes formosanus. Microb Environ 17:139–143. doi:10.1264/jsme2.17.139 DOI
Serra V, Gammuto L, Nitla V, Castelli M, Lanzoni O, Sassera D, Bandi C, Sandeep BV, Verni F, Modeo L, Petroni G. 2020. Morphology, ultrastructure, genomics, and phylogeny of Euplotes vanleeuwenhoeki sp. nov. and its ultra-reduced endosymbiont “Candidatus Pinguicoccus supinus” sp. nov. Sci Rep 10:20311. doi:10.1038/s41598-020-76348-z PubMed DOI PMC
de Vries RP, Visser J. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522. doi:10.1128/MMBR.65.4.497-522.2001 PubMed DOI PMC
Perreau J, Moran NA. 2022. Genetic innovations in animal–microbe symbioses. Nat Rev Genet 23:23–39. doi:10.1038/s41576-021-00395-z PubMed DOI PMC
Hedlund BP, Chuvochina M, Hugenholtz P, Konstantinidis KT, Murray AE, Palmer M, Parks DH, Probst AJ, Reysenbach A-L, Rodriguez-R LM, Rossello-Mora R, Sutcliffe IC, Venter SN, Whitman WB. 2022. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat Microbiol 7:1702–1708. doi:10.1038/s41564-022-01214-9 PubMed DOI PMC
Pester M, Brune A. 2006. Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. Environ Microbiol 8:1261–1270. doi:10.1111/j.1462-2920.2006.01020.x PubMed DOI
Rossmassler K, Dietrich C, Thompson C, Mikaelyan A, Nonoh JO, Scheffrahn RH, Sillam-Dussès D, Brune A. 2015. Metagenomic analysis of the microbiota in the highly compartmented hindguts of six wood- or soil-feeding higher termites. Microbiome 3:56. doi:10.1186/s40168-015-0118-1 PubMed DOI PMC
Eren AM, Vineis JH, Morrison HG, Sogin ML. 2013. A filtering method to generate high quality short reads using Illumina paired-end technology. PLoS One 8:e66643. doi:10.1371/journal.pone.0066643 PubMed DOI PMC
Minoche AE, Dohm JC, Himmelbauer H. 2011. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol 12:1–15. doi:10.1186/gb-2011-12-11-r112 PubMed DOI PMC
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923 PubMed DOI PMC
Terrapon N, Li C, Robertson HM, Ji L, Meng X, Booth W, Chen Z, Childers CP, Glastad KM, Gokhale K, et al. . 2014. Molecular traces of alternative social organization in a termite genome. Nat Commun 5:1–12. doi:10.1038/ncomms4636 PubMed DOI
Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T, Chao H, Childers CP, Dinh H, Doddapaneni H, Dugan S, et al. . 2018. Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat Ecol Evol 2:557–566. doi:10.1038/s41559-017-0459-1 PubMed DOI PMC
Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, Nygaard S, Nobre T, Klaubauf S, Schindler PM, Hauser F, Pan H, Yang Z, Sonnenberg ASM, de Beer ZW, Zhang Y, Wingfield MJ, Grimmelikhuijzen CJP, de Vries RP, Korb J, Aanen DK, Wang J, Boomsma JJ, Zhang G. 2014. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci U S A 111:14500–14505. doi:10.1073/pnas.1319718111 PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup . 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352 PubMed DOI PMC
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676. doi:10.1093/bioinformatics/btv033 PubMed DOI
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324 PubMed DOI PMC
Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. 2019. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7:e7359. doi:10.7717/peerj.7359 PubMed DOI PMC
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. doi:10.1101/gr.186072.114 PubMed DOI PMC
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, Hugenholtz P. 2018. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36:996–1004. doi:10.1038/nbt.4229 PubMed DOI
Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P. 2022. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 50:D785–D794. doi:10.1093/nar/gkab776 PubMed DOI PMC
Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. 2019. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36:1925–1927. doi:10.1093/bioinformatics/btz848 PubMed DOI PMC
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. 2022. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38:5315–5316. doi:10.1093/bioinformatics/btac672 PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. doi:10.1093/molbev/msu300 PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. doi:10.1038/nmeth.4285 PubMed DOI PMC
Minh BQ, Nguyen MAT, von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195. doi:10.1093/molbev/mst024 PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522. doi:10.1093/molbev/msx281 PubMed DOI PMC
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010 PubMed DOI
Anisimova M, Gascuel O. 2006. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552. doi:10.1080/10635150600755453 PubMed DOI
Seemann T. 2013. barrnap 0.9: rapid ribosomal RNA prediction. GitHub repository. https://github.com/tseemann/barrnap.
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi:10.1093/bioinformatics/btu153 PubMed DOI
Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195. doi:10.1371/journal.pcbi.1002195 PubMed DOI PMC
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD. 2019. The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432. doi:10.1093/nar/gky995 PubMed DOI PMC
Haft DH, Selengut JD, White O. 2003. The TIGRFAMs database of protein families. Nucleic Acids Res 31:371–373. doi:10.1093/nar/gkg128 PubMed DOI PMC
Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. 2016. The transporter classification database (TCDB): recent advances. Nucleic Acids Res 44:D372–D379. doi:10.1093/nar/gkv1103 PubMed DOI PMC
Søndergaard D, Pedersen CNS, Greening C. 2016. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep 6:34212. doi:10.1038/srep34212 PubMed DOI PMC
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389 PubMed DOI PMC
Boeckmann B, Bairoch A, Apweiler R, Blatter M-C, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M. 2003. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370. doi:10.1093/nar/gkg095 PubMed DOI PMC
Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M. 2011. ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol 12:R30. doi:10.1186/gb-2011-12-3-r30 PubMed DOI PMC
Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, Hugenholtz P. 2007. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8:209. doi:10.1186/1471-2105-8-209 PubMed DOI PMC
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Buchner A, Lai T, Steppi S, Jobb G, et al. . 2004. ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371. doi:10.1093/nar/gkh293 PubMed DOI PMC