Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single-cell metagenomics

. 2019 Sep 24 ; 116 (39) : 19675-19684. [epub] 20190906

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31492817

Lower termites harbor in their hindgut complex microbial communities that are involved in the digestion of cellulose. Among these are protists, which are usually associated with specific bacterial symbionts found on their surface or inside their cells. While these form the foundations of a classic system in symbiosis research, we still know little about the functional basis for most of these relationships. Here, we describe the complex functional relationship between one protist, the oxymonad Streblomastix strix, and its ectosymbiotic bacterial community using single-cell genomics. We generated partial assemblies of the host S. strix genome and Candidatus Ordinivivax streblomastigis, as well as a complex metagenome assembly of at least 8 other Bacteroidetes bacteria confirmed by ribosomal (r)RNA fluorescence in situ hybridization (FISH) to be associated with S. strix. Our data suggest that S. strix is probably not involved in the cellulose digestion, but the bacterial community on its surface secretes a complex array of glycosyl hydrolases, providing them with the ability to degrade cellulose to monomers and fueling the metabolism of S. strix In addition, some of the bacteria can fix nitrogen and can theoretically provide S. strix with essential amino acids and cofactors, which the protist cannot synthesize. On the contrary, most of the bacterial symbionts lack the essential glycolytic enzyme enolase, which may be overcome by the exchange of intermediates with S. strix This study demonstrates the value of the combined single-cell (meta)genomic and FISH approach for studies of complicated symbiotic systems.

Zobrazit více v PubMed

Brune A., Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168–180 (2014). PubMed

Brune A., “Methanogens in the digestive tract of termites” in (Endo)Symbiotic Methanogenic Archaea, Hackstein J. H. P., Ed. (Springer Berlin Heidelberg, 2018), pp. 81–101.

Hongoh Y., Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell. Mol. Life Sci. 68, 1311–1325 (2011). PubMed PMC

Strassert J. F. H., Mikaelyan A., Woyke T., Brune A., Genome analysis of ‘ PubMed

Hongoh Y., et al. , Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc. Natl. Acad. Sci. U.S.A. 105, 5555–5560 (2008). PubMed PMC

Kuwahara H., Yuki M., Izawa K., Ohkuma M., Hongoh Y., Genome of ‘ PubMed PMC

Ikeda-Ohtsubo W., et al. , ‘ PubMed

Hongoh Y., et al. , Genome of an endosymbiont coupling N PubMed

Tai V., et al. , Genome evolution and nitrogen-fixation in bacterial ectosymbionts of a protist inhabiting wood-feeding cockroaches. Appl. Environ. Microbiol. 82, 4682–4695 (2016). PubMed PMC

Ohkuma M., et al. , Acetogenesis from H PubMed PMC

Yuki M., et al. , Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose. Environ. Microbiol. 17, 4942–4953 (2015). PubMed

Utami Y. D., et al. , Genome analyses of uncultured TG2/ZB3 bacteria in ‘Margulisbacteria’ specifically attached to ectosymbiotic spirochetes of protists in the termite gut. ISME J. 13, 455–467 (2019). PubMed PMC

Tai V., James E. R., Perlman S. J., Keeling P. J., Single-cell DNA barcoding using sequences from the small subunit rRNA and internal transcribed spacer region identifies new species of PubMed PMC

Cleveland L. R., The effects of oxygenation and starvation on the symbiosis between the termite,

Ikeda-Ohtsubo W., Desai M., Stingl U., Brune A., Phylogenetic diversity of ‘Endomicrobia’ and their specific affiliation with termite gut flagellates. Microbiology 153, 3458–3465 (2007). PubMed

Ikeda-Ohtsubo W., Brune A., Cospeciation of termite gut flagellates and their bacterial endosymbionts: PubMed

Yamin M. A., Cellulose metabolism by the flagellate PubMed

Yamin M. A., Trager W., Cellulolytic activity of an axenically-cultivated termite flagellate,

Leander B. S., Keeling P. J., Symbiotic innovation in the oxymonad PubMed

Kofoid C. A., Swezy O., Studies on the parasites of the termites: On

Noda S., et al. , Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ. Microbiol. 8, 11–20 (2006). PubMed

Dyer B. D., Khalsa O., Surface bacteria of PubMed

Dick G. J., et al. , Community-wide analysis of microbial genome sequence signatures. Genome Biol. 10, R85 (2009). PubMed PMC

Eren A. M., et al. , Anvi’o: An advanced analysis and visualization platform for ’omics data. PeerJ 3, e1319 (2015). PubMed PMC

Hongoh Y., Ohkuma M., Kudo T., Molecular analysis of bacterial microbiota in the gut of the termite PubMed

Ohkuma M., Noda S., Hongoh Y., Kudo T., Diverse bacteria related to the bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites. Biosci. Biotechnol. Biochem. 66, 78–84 (2002). PubMed

Keeling P. J., Leander B. S., Characterisation of a non-canonical genetic code in the oxymonad PubMed

Parra G., Bradnam K., Korf I., CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007). PubMed

Karnkowska A., et al. , A Eukaryote without a mitochondrial organelle. Curr. Biol. 26, 1274–1284 (2016). PubMed

Karnkowska A., et al. , The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion. Mol. Biol. Evol., 10.1093/molbev/msz147 (2019). PubMed DOI PMC

de Koning H. P., Bridges D. J., Burchmore R. J. S., Purine and pyrimidine transport in pathogenic protozoa: From biology to therapy. FEMS Microbiol. Rev. 29, 987–1020 (2005). PubMed

Zhang H., et al. , dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018). PubMed PMC

Aspeborg H., Coutinho P. M., Wang Y., Brumer H. 3rd, Henrissat B., Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol. Biol. 12, 186 (2012). PubMed PMC

Martens E. C., Koropatkin N. M., Smith T. J., Gordon J. I., Complex glycan catabolism by the human gut microbiota: The Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284, 24673–24677 (2009). PubMed PMC

Bolam D. N., Koropatkin N. M., Glycan recognition by the Bacteroidetes Sus-like systems. Curr. Opin. Struct. Biol. 22, 563–569 (2012). PubMed

Porter N. T., Luis A. S., Martens E. C., PubMed

Hess V., et al. , Occurrence of ferredoxin:NAD(+) oxidoreductase activity and its ion specificity in several Gram-positive and Gram-negative bacteria. PeerJ 4, e1515 (2016). PubMed PMC

Kelly W. J., et al. , The glycobiome of the rumen bacterium PubMed PMC

Hackmann T. J., Ngugi D. K., Firkins J. L., Tao J., Genomes of rumen bacteria encode atypical pathways for fermenting hexoses to short-chain fatty acids. Environ. Microbiol. 19, 4670–4683 (2017). PubMed

Russell J. B., Strategies that ruminal bacteria use to handle excess carbohydrate. J. Anim. Sci. 76, 1955–1963 (1998). PubMed

Baldomà L., Aguilar J., Involvement of lactaldehyde dehydrogenase in several metabolic pathways of PubMed

Inoue Y., Kimura A., Methylglyoxal and regulation of its metabolism in microorganisms. Adv. Microb. Physiol. 37, 177–227 (1995). PubMed

Västermark Å., Almén M. S., Simmen M. W., Fredriksson R., Schiöth H. B., Functional specialization in nucleotide sugar transporters through differentiation of the gene cluster EamA (DUF6) before the radiation of Viridiplantae. BMC Evol. Biol. 11, 123 (2011). PubMed PMC

Desai M. S., Brune A., Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J. 6, 1302–1313 (2012). PubMed PMC

Yamada A., Inoue T., Noda S., Hongoh Y., Ohkuma M., Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol. Ecol. 16, 3768–3777 (2007). PubMed

Treitli S. C., et al. , Molecular and morphological diversity of the oxymonad genera PubMed

Ohkuma M., Termite symbiotic systems: Efficient bio-recycling of lignocellulose. Appl. Microbiol. Biotechnol. 61, 1–9 (2003). PubMed

Brune A., Ohkuma M., “Role of the termite gut microbiota in symbiotic digestion” in Biology of Termites: A Modern Synthesis, Bignell D. E., Roisin Y., Lo N., Eds. (Springer, Dordrecht, The Netherlands, 2011), pp. 439–475.

Brune A., Dietrich C., The gut microbiota of termites: Digesting the diversity in the light of ecology and evolution. Annu. Rev. Microbiol. 69, 145–166 (2015). PubMed

Ni J., Tokuda G., Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol. Adv. 31, 838–850 (2013). PubMed

Odelson D. A., Breznak J. A., Nutrition and growth characteristics of PubMed PMC

Ohtoko K., et al. , Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite PubMed

Pütz S., et al. , Fe-hydrogenase maturases in the hydrogenosomes of PubMed PMC

Nixon J. E. J., et al. , Iron-dependent hydrogenases of PubMed

Lloyd D., Ralphs J. R., Harris J. C., PubMed

Trager W., The cultivation of a cellulose-digesting flagellate,

Picelli S., et al. , Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014). PubMed

Bankevich A., et al. , SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012). PubMed PMC

Seemann T., Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

Stanke M., Waack S., Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19 (suppl. 2), ii215–ii225 (2003). PubMed

Radek R., et al. , Phylogeny and ultrastructure of PubMed

Ludwig W., et al. , ARB: A software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004). PubMed PMC

Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H., Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: Problems and solutions. Syst. Appl. Microbiol. 15, 593–600 (1992).

Zobrazit více v PubMed

GENBANK
MK585202, MK585215

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...