Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single-cell metagenomics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31492817
PubMed Central
PMC6765251
DOI
10.1073/pnas.1910793116
PII: 1910793116
Knihovny.cz E-zdroje
- Klíčová slova
- Bacteroidetes, Streblomastix, ectosymbionts, oxymonads, termite,
- MeSH
- analýza jednotlivých buněk metody MeSH
- Bacteria metabolismus MeSH
- Bacteroidetes genetika MeSH
- celulosa metabolismus MeSH
- Eukaryota metabolismus MeSH
- fylogeneze MeSH
- genom MeSH
- Isoptera genetika mikrobiologie MeSH
- metagenomika metody MeSH
- Oxymonadida metabolismus MeSH
- symbióza MeSH
- trávicí systém metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- celulosa MeSH
Lower termites harbor in their hindgut complex microbial communities that are involved in the digestion of cellulose. Among these are protists, which are usually associated with specific bacterial symbionts found on their surface or inside their cells. While these form the foundations of a classic system in symbiosis research, we still know little about the functional basis for most of these relationships. Here, we describe the complex functional relationship between one protist, the oxymonad Streblomastix strix, and its ectosymbiotic bacterial community using single-cell genomics. We generated partial assemblies of the host S. strix genome and Candidatus Ordinivivax streblomastigis, as well as a complex metagenome assembly of at least 8 other Bacteroidetes bacteria confirmed by ribosomal (r)RNA fluorescence in situ hybridization (FISH) to be associated with S. strix. Our data suggest that S. strix is probably not involved in the cellulose digestion, but the bacterial community on its surface secretes a complex array of glycosyl hydrolases, providing them with the ability to degrade cellulose to monomers and fueling the metabolism of S. strix In addition, some of the bacteria can fix nitrogen and can theoretically provide S. strix with essential amino acids and cofactors, which the protist cannot synthesize. On the contrary, most of the bacterial symbionts lack the essential glycolytic enzyme enolase, which may be overcome by the exchange of intermediates with S. strix This study demonstrates the value of the combined single-cell (meta)genomic and FISH approach for studies of complicated symbiotic systems.
Department of Botany University of British Columbia Vancouver BC V6T 1Z4 Canada
Department of Parasitology Faculty of Science Charles University BIOCEV 252 42 Vestec Czech Republic
Zobrazit více v PubMed
Brune A., Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168–180 (2014). PubMed
Brune A., “Methanogens in the digestive tract of termites” in (Endo)Symbiotic Methanogenic Archaea, Hackstein J. H. P., Ed. (Springer Berlin Heidelberg, 2018), pp. 81–101.
Hongoh Y., Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell. Mol. Life Sci. 68, 1311–1325 (2011). PubMed PMC
Strassert J. F. H., Mikaelyan A., Woyke T., Brune A., Genome analysis of ‘ PubMed
Hongoh Y., et al. , Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc. Natl. Acad. Sci. U.S.A. 105, 5555–5560 (2008). PubMed PMC
Kuwahara H., Yuki M., Izawa K., Ohkuma M., Hongoh Y., Genome of ‘ PubMed PMC
Ikeda-Ohtsubo W., et al. , ‘ PubMed
Hongoh Y., et al. , Genome of an endosymbiont coupling N PubMed
Tai V., et al. , Genome evolution and nitrogen-fixation in bacterial ectosymbionts of a protist inhabiting wood-feeding cockroaches. Appl. Environ. Microbiol. 82, 4682–4695 (2016). PubMed PMC
Ohkuma M., et al. , Acetogenesis from H PubMed PMC
Yuki M., et al. , Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose. Environ. Microbiol. 17, 4942–4953 (2015). PubMed
Utami Y. D., et al. , Genome analyses of uncultured TG2/ZB3 bacteria in ‘Margulisbacteria’ specifically attached to ectosymbiotic spirochetes of protists in the termite gut. ISME J. 13, 455–467 (2019). PubMed PMC
Tai V., James E. R., Perlman S. J., Keeling P. J., Single-cell DNA barcoding using sequences from the small subunit rRNA and internal transcribed spacer region identifies new species of PubMed PMC
Cleveland L. R., The effects of oxygenation and starvation on the symbiosis between the termite,
Ikeda-Ohtsubo W., Desai M., Stingl U., Brune A., Phylogenetic diversity of ‘Endomicrobia’ and their specific affiliation with termite gut flagellates. Microbiology 153, 3458–3465 (2007). PubMed
Ikeda-Ohtsubo W., Brune A., Cospeciation of termite gut flagellates and their bacterial endosymbionts: PubMed
Yamin M. A., Cellulose metabolism by the flagellate PubMed
Yamin M. A., Trager W., Cellulolytic activity of an axenically-cultivated termite flagellate,
Leander B. S., Keeling P. J., Symbiotic innovation in the oxymonad PubMed
Kofoid C. A., Swezy O., Studies on the parasites of the termites: On
Noda S., et al. , Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ. Microbiol. 8, 11–20 (2006). PubMed
Dyer B. D., Khalsa O., Surface bacteria of PubMed
Dick G. J., et al. , Community-wide analysis of microbial genome sequence signatures. Genome Biol. 10, R85 (2009). PubMed PMC
Eren A. M., et al. , Anvi’o: An advanced analysis and visualization platform for ’omics data. PeerJ 3, e1319 (2015). PubMed PMC
Hongoh Y., Ohkuma M., Kudo T., Molecular analysis of bacterial microbiota in the gut of the termite PubMed
Ohkuma M., Noda S., Hongoh Y., Kudo T., Diverse bacteria related to the bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites. Biosci. Biotechnol. Biochem. 66, 78–84 (2002). PubMed
Keeling P. J., Leander B. S., Characterisation of a non-canonical genetic code in the oxymonad PubMed
Parra G., Bradnam K., Korf I., CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007). PubMed
Karnkowska A., et al. , A Eukaryote without a mitochondrial organelle. Curr. Biol. 26, 1274–1284 (2016). PubMed
Karnkowska A., et al. , The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion. Mol. Biol. Evol., 10.1093/molbev/msz147 (2019). PubMed DOI PMC
de Koning H. P., Bridges D. J., Burchmore R. J. S., Purine and pyrimidine transport in pathogenic protozoa: From biology to therapy. FEMS Microbiol. Rev. 29, 987–1020 (2005). PubMed
Zhang H., et al. , dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018). PubMed PMC
Aspeborg H., Coutinho P. M., Wang Y., Brumer H. 3rd, Henrissat B., Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol. Biol. 12, 186 (2012). PubMed PMC
Martens E. C., Koropatkin N. M., Smith T. J., Gordon J. I., Complex glycan catabolism by the human gut microbiota: The Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284, 24673–24677 (2009). PubMed PMC
Bolam D. N., Koropatkin N. M., Glycan recognition by the Bacteroidetes Sus-like systems. Curr. Opin. Struct. Biol. 22, 563–569 (2012). PubMed
Porter N. T., Luis A. S., Martens E. C., PubMed
Hess V., et al. , Occurrence of ferredoxin:NAD(+) oxidoreductase activity and its ion specificity in several Gram-positive and Gram-negative bacteria. PeerJ 4, e1515 (2016). PubMed PMC
Kelly W. J., et al. , The glycobiome of the rumen bacterium PubMed PMC
Hackmann T. J., Ngugi D. K., Firkins J. L., Tao J., Genomes of rumen bacteria encode atypical pathways for fermenting hexoses to short-chain fatty acids. Environ. Microbiol. 19, 4670–4683 (2017). PubMed
Russell J. B., Strategies that ruminal bacteria use to handle excess carbohydrate. J. Anim. Sci. 76, 1955–1963 (1998). PubMed
Baldomà L., Aguilar J., Involvement of lactaldehyde dehydrogenase in several metabolic pathways of PubMed
Inoue Y., Kimura A., Methylglyoxal and regulation of its metabolism in microorganisms. Adv. Microb. Physiol. 37, 177–227 (1995). PubMed
Västermark Å., Almén M. S., Simmen M. W., Fredriksson R., Schiöth H. B., Functional specialization in nucleotide sugar transporters through differentiation of the gene cluster EamA (DUF6) before the radiation of Viridiplantae. BMC Evol. Biol. 11, 123 (2011). PubMed PMC
Desai M. S., Brune A., Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J. 6, 1302–1313 (2012). PubMed PMC
Yamada A., Inoue T., Noda S., Hongoh Y., Ohkuma M., Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol. Ecol. 16, 3768–3777 (2007). PubMed
Treitli S. C., et al. , Molecular and morphological diversity of the oxymonad genera PubMed
Ohkuma M., Termite symbiotic systems: Efficient bio-recycling of lignocellulose. Appl. Microbiol. Biotechnol. 61, 1–9 (2003). PubMed
Brune A., Ohkuma M., “Role of the termite gut microbiota in symbiotic digestion” in Biology of Termites: A Modern Synthesis, Bignell D. E., Roisin Y., Lo N., Eds. (Springer, Dordrecht, The Netherlands, 2011), pp. 439–475.
Brune A., Dietrich C., The gut microbiota of termites: Digesting the diversity in the light of ecology and evolution. Annu. Rev. Microbiol. 69, 145–166 (2015). PubMed
Ni J., Tokuda G., Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol. Adv. 31, 838–850 (2013). PubMed
Odelson D. A., Breznak J. A., Nutrition and growth characteristics of PubMed PMC
Ohtoko K., et al. , Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite PubMed
Pütz S., et al. , Fe-hydrogenase maturases in the hydrogenosomes of PubMed PMC
Nixon J. E. J., et al. , Iron-dependent hydrogenases of PubMed
Lloyd D., Ralphs J. R., Harris J. C., PubMed
Trager W., The cultivation of a cellulose-digesting flagellate,
Picelli S., et al. , Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014). PubMed
Bankevich A., et al. , SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012). PubMed PMC
Seemann T., Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
Stanke M., Waack S., Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19 (suppl. 2), ii215–ii225 (2003). PubMed
Radek R., et al. , Phylogeny and ultrastructure of PubMed
Ludwig W., et al. , ARB: A software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004). PubMed PMC
Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H., Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: Problems and solutions. Syst. Appl. Microbiol. 15, 593–600 (1992).
Phylogenomics reveals the evolutionary origins of lichenization in chlorophyte algae
Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria
The functional evolution of termite gut microbiota
High quality genome assembly of the amitochondriate eukaryote Monocercomonoides exilis
GENBANK
MK585202, MK585215