High quality genome assembly of the amitochondriate eukaryote Monocercomonoides exilis
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34951395
PubMed Central
PMC8767320
DOI
10.1099/mgen.0.000745
Knihovny.cz E-zdroje
- Klíčová slova
- Monocercomonoides, amitochondriate, genome, nanopore,
- MeSH
- anotace sekvence MeSH
- délka genomu MeSH
- nanoporové sekvenování MeSH
- Oxymonadida klasifikace genetika MeSH
- protozoální proteiny genetika MeSH
- regulace genové exprese MeSH
- sekvenování celého genomu metody MeSH
- stanovení celkové genové exprese metody MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální proteiny MeSH
Monocercomonoides exilis is considered the first known eukaryote to completely lack mitochondria. This conclusion is based primarily on a genomic and transcriptomic study which failed to identify any mitochondrial hallmark proteins. However, the available genome assembly has limited contiguity and around 1.5 % of the genome sequence is represented by unknown bases. To improve the contiguity, we re-sequenced the genome and transcriptome of M. exilis using Oxford Nanopore Technology (ONT). The resulting draft genome is assembled in 101 contigs with an N50 value of 1.38 Mbp, almost 20 times higher than the previously published assembly. Using a newly generated ONT transcriptome, we further improve the gene prediction and add high quality untranslated region (UTR) annotations, in which we identify two putative polyadenylation signals present in the 3'UTR regions and characterise the Kozak sequence in the 5'UTR regions. All these improvements are reflected by higher BUSCO genome completeness values. Regardless of an overall more complete genome assembly without missing bases and a better gene prediction, we still failed to identify any mitochondrial hallmark genes, thus further supporting the hypothesis on the absence of mitochondrion.
Zobrazit více v PubMed
Zhang Q, Táborský P, Silberman JD, Pánek T, Čepička I, et al. Marine isolates of Trimastix marina form a plesiomorphic deep-branching lineage within Preaxostyla, separate from other known Trimastigids (Paratrimastix n. gen.) Protist. 2015;166:468–491. doi: 10.1016/j.protis.2015.07.003. PubMed DOI
Hampl V. In: Handbook of the Protists. Archibald JM, Simpson AGB, Slamovits CH, editors. Cham: Springer International Publishing; 2017. Preaxostyla; pp. 1139–1174.
Treitli SC, Kotyk M, Yubuki N, Jirounková E, Vlasáková J, et al. Molecular and morphological diversity of the oxymonad genera Monocercomonoides and Blattamonas gen. nov. Protist. 2018;169:744–783. doi: 10.1016/j.protis.2018.06.005. PubMed DOI
Hampl V, Horner DS, Dyal P, Kulda J, Flegr J, et al. Inference of the phylogenetic position of oxymonads based on nine genes: support for metamonada and excavata. Mol Biol Evol. 2005;22:2508–2518. doi: 10.1093/molbev/msi245. PubMed DOI
Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, et al. A eukaryote without a mitochondrial organelle. Curr Biol. 2016;26:1274–1284. doi: 10.1016/j.cub.2016.03.053. PubMed DOI
Treitli SC, Kolisko M, Husník F, Keeling PJ, Hampl V. Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single-cell metagenomics. Proc Natl Acad Sci U S A. 2019;116:19675–19684. doi: 10.1073/pnas.1910793116. PubMed DOI PMC
Karnkowska A, Treitli SC, Brzoň O, Novák L, Vacek V, et al. The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion. Mol Biol Evol. 2019;36:2292–2312. doi: 10.1093/molbev/msz147. PubMed DOI PMC
Pasini EM, Böhme U, Rutledge GG, Voorberg-Van der Wel A, Sanders M, et al. An improved Plasmodium cynomolgi genome assembly reveals an unexpected methyltransferase gene expansion. Wellcome Open Res. 2017;2:42. doi: 10.12688/wellcomeopenres.11864.1. PubMed DOI PMC
Liechti N, Schürch N, Bruggmann R, Wittwer M. Nanopore sequencing improves the draft genome of the human pathogenic amoeba Naegleria fowleri . Sci Rep. 2019;9:16040. doi: 10.1038/s41598-019-52572-0. PubMed DOI PMC
Callejas-Hernández F, Rastrojo A, Poveda C, Gironès N, Fresno M. Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity. Sci Rep. 2018;8:14631. doi: 10.1038/s41598-018-32877-2. PubMed DOI PMC
Michael TP, Jupe F, Bemm F, Motley ST, Sandoval JP, et al. High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat Commun. 2018;9:541. doi: 10.1038/s41467-018-03016-2. PubMed DOI PMC
Schmidt MH-W, Vogel A, Denton AK, Istace B, Wormit A, et al. De novo assembly of a new Solanum pennellii accession using nanopore sequencing. Plant Cell. 2017;29:2336–2348. doi: 10.1105/tpc.17.00521. PubMed DOI PMC
Jain M, Koren S, Miga KH, Quick J, Rand AC, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018;36:338–345. doi: 10.1038/nbt.4060. PubMed DOI PMC
Tyson JR, O’Neil NJ, Jain M, Olsen HE, Hieter P, et al. MinION-based long-read sequencing and assembly extends the Caenorhabditis elegans reference genome. Genome Res. 2018;28:266–274. doi: 10.1101/gr.221184.117. PubMed DOI PMC
Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC, et al. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res. 2015;25:1750–1756. doi: 10.1101/gr.191395.115. PubMed DOI PMC
Salas-Leiva DE, Tromer EC, Curtis BA, Jerlstrom-Hultqvist J, Kolisko M, et al. A free-living protist that lacks canonical eukaryotic DNA replication and segregation systems. bioRxiv. 2021;2021.03.14.435266
Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12:733–735. doi: 10.1038/nmeth.3444. PubMed DOI
Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–746. doi: 10.1101/gr.214270.116. PubMed DOI PMC
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963. doi: 10.1371/journal.pone.0112963. PubMed DOI PMC
Diamond LS. A new liquid medium for xenic cultivation of Entamoeba histolytica and other lumen-dwelling protozoa. J Parasitol. 1982;68:958–959. PubMed
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–736. doi: 10.1101/gr.215087.116. PubMed DOI PMC
Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol. 2009;10:R85. doi: 10.1186/gb-2009-10-8-r85. PubMed DOI PMC
Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19:ii215–ii225. doi: 10.1093/bioinformatics/btg1080. PubMed DOI
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008;9:R7. doi: 10.1186/gb-2008-9-1-r7. PubMed DOI PMC
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–1659. doi: 10.1093/bioinformatics/btl158. PubMed DOI
Otto TD, Dillon GP, Degrave WS, Berriman M. RATT: Rapid Annotation Transfer Tool. Nucleic Acids Res. 2011;39:e57. doi: 10.1093/nar/gkq1268. PubMed DOI PMC
Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 2005;21:1859–1875. doi: 10.1093/bioinformatics/bti310. PubMed DOI
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23:1061–1067. doi: 10.1093/bioinformatics/btm071. PubMed DOI
Bailey TL. STREME: Accurate and versatile sequence motif discovery. Bioinformatics. 2021:btab203. doi: 10.1093/bioinformatics/btab203. PubMed DOI PMC
Bailey TL, Machanick P. Inferring direct DNA binding from ChIP-seq. Nucleic Acids Res. 2012;40:e128. doi: 10.1093/nar/gks433. PubMed DOI PMC
Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC
Smith AC, Robinson AJ. MitoMiner v4.0: an updated database of mitochondrial localization evidence, phenotypes and diseases. Nucleic Acids Res. 2019;47:D1225–D1228. doi: 10.1093/nar/gky1072. PubMed DOI PMC
Stechmann A, Hamblin K, Pérez-Brocal V, Gaston D, Richmond GS, et al. Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol. 2008;18:580–585. doi: 10.1016/j.cub.2008.03.037. PubMed DOI PMC
Noguchi F, Shimamura S, Nakayama T, Yazaki E, Yabuki A, et al. Metabolic capacity of mitochondrion-related organelles in the free-living anaerobic stramenopile Cantina marsupialis . Protist. 2015;166:534–550. doi: 10.1016/j.protis.2015.08.002. PubMed DOI
Pyrihová E, Motycková A, Voleman L, Wandyszewska N, Fišer R, et al. A single tim translocase in the mitosomes of Giardia intestinalis illustrates convergence of protein import machines in anaerobic eukaryotes. Genome Biol Evol. 2018;10:2813–2822. doi: 10.1093/gbe/evy215. PubMed DOI PMC
Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes . Nat Ecol Evol. 2017;1:0092. doi: 10.1038/s41559-017-0092. PubMed DOI PMC
Nývltová E, Stairs CW, Hrdý I, Rídl J, Mach J, et al. Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. Mol Biol Evol. 2015;32:1039–1055. doi: 10.1093/molbev/msu408. PubMed DOI PMC
Stairs CW, Eme L, Brown MW, Mutsaers C, Susko E, et al. A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr Biol. 2014;24:1176–1186. doi: 10.1016/j.cub.2014.04.033. PubMed DOI
Barberà MJ, Ruiz-Trillo I, Tufts JYA, Bery A, Silberman JD, et al. Sawyeria marylandensis (Heterolobosea) has a hydrogenosome with novel metabolic properties. Eukaryot Cell. 2010;9:1913–1924. doi: 10.1128/EC.00122-10. PubMed DOI PMC
Leger MM, Eme L, Hug LA, Roger AJ. Novel hydrogenosomes in the microaerophilic jakobid Stygiella incarcerata . Mol Biol Evol. 2016;33:2318–2336. doi: 10.1093/molbev/msw103. PubMed DOI PMC
Alcock F, Webb CT, Dolezal P, Hewitt V, Shingu-Vasquez M, et al. A small Tim homohexamer in the relict mitochondrion of Cryptosporidium. Mol Biol Evol. 2012;29:113–122. doi: 10.1093/molbev/msr165. PubMed DOI
Mi-ichi F, Abu Yousuf M, Nakada-Tsukui K, Nozaki T. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A. 2009;106:21731–21736. doi: 10.1073/pnas.0907106106. PubMed DOI PMC
Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol. 2011;7:e1002195. doi: 10.1371/journal.pcbi.1002195. PubMed DOI PMC
Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2:953–971. doi: 10.1038/nprot.2007.131. PubMed DOI
Fukasawa Y, Tsuji J, Fu S-C, Tomii K, Horton P, et al. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics. 2015;14:1113–1126. doi: 10.1074/mcp.M114.043083. PubMed DOI PMC
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–580. doi: 10.1006/jmbi.2000.4315. PubMed DOI
Imai K, Fujita N, Gromiha MM, Horton P. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins. BMC Genomics. 2011;12:79. doi: 10.1186/1471-2164-12-79. PubMed DOI PMC
McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics. 2000;16:404–405. doi: 10.1093/bioinformatics/16.4.404. PubMed DOI
Jones P, Binns D, Chang H-Y, Fraser M, Li W, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A. 2020;117:9451–9457. doi: 10.1073/pnas.1921046117. PubMed DOI PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Dolezal P, Likic V, Tachezy J, Lithgow T. Evolution of the molecular machines for protein import into mitochondria. Science. 2006;313:314–318. doi: 10.1126/science.1127895. PubMed DOI
Denic V. A portrait of the GET pathway as a surprisingly complicated young man. Trends Biochem Sci. 2012;37:411–417. doi: 10.1016/j.tibs.2012.07.004. PubMed DOI PMC
Rada P, Makki A, Žárský V, Tachezy J. Targeting of tail-anchored proteins to Trichomonas vaginalis hydrogenosomes. Mol Microbiol. 2019;111:588–603. doi: 10.1111/mmi.14175. PubMed DOI
Borgese N, Brambillasca S, Colombo S. How tails guide tail-anchored proteins to their destinations. Curr Opin Cell Biol. 2007;19:368–375. doi: 10.1016/j.ceb.2007.04.019. PubMed DOI
Callejas-Hernández F, Gironès N, Fresno M. Genome sequence of Trypanosoma cruzi strain bug2148. Genome Announc. 2018;6:e01497-17. doi: 10.1128/genomeA.01497-17. PubMed DOI PMC
Xu F, Jiménez-González A, Einarsson E, Ástvaldsson Á, Peirasmaki D, et al. The compact genome of Giardia muris reveals important steps in the evolution of intestinal protozoan parasites. Microbial Genomics. 2020;6:e000402. doi: 10.1099/mgen.0.000402. PubMed DOI PMC
Xu F, Jex A, Svärd SG. A chromosome-scale reference genome for Giardia intestinalis WB. Sci Data. 2020;7:38. doi: 10.1038/s41597-020-0377-y. PubMed DOI PMC
Uzlíková M, Fulnečková J, Weisz F, Sýkorová E, Nohýnková E, et al. Characterization of telomeres and telomerase from the single-celled eukaryote Giardia intestinalis . Mol Biochem Parasitol. 2017;211:31–38. doi: 10.1016/j.molbiopara.2016.09.003. PubMed DOI
Zubácová Z, Cimbůrek Z, Tachezy J. Comparative analysis of trichomonad genome sizes and karyotypes. Mol Biochem Parasitol. 2008;161:49–54. doi: 10.1016/j.molbiopara.2008.06.004. PubMed DOI
Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis . Science. 2007;315:207–212. doi: 10.1126/science.1132894. PubMed DOI PMC
Franzén O, Jerlström-Hultqvist J, Castro E, Sherwood E, Ankarklev J, et al. Draft genome sequencing of giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog. 2009;5:e1000560. doi: 10.1371/journal.ppat.1000560. PubMed DOI PMC
El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, et al. Comparative genomics of trypanosomatid parasitic protozoa. Science. 2005;309:404–409. doi: 10.1126/science.1112181. PubMed DOI
Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One. 2012;7:e30087. doi: 10.1371/journal.pone.0030087. PubMed DOI PMC
Ip CLC, Loose M, Tyson JR, de Cesare M, Brown BL, et al. MinION Analysis and Reference Consortium: Phase 1 data release and analysis. F1000Res. 2015;4:1075. doi: 10.12688/f1000research.7201.1. PubMed DOI PMC
Li Y, Fang C, Fu Y, Hu A, Li C, et al. A survey of transcriptome complexity in Sus scrofa using single-molecule long-read sequencing. DNA Res. 2018;25:421–437. doi: 10.1093/dnares/dsy014. PubMed DOI PMC
Beiki H, Liu H, Huang J, Manchanda N, Nonneman D, et al. Improved annotation of the domestic pig genome through integration of Iso-Seq and RNA-seq data. BMC Genomics. 2019;20:344. doi: 10.1186/s12864-019-5709-y. PubMed DOI PMC
Ye Y, Zhang H, Li D, Zhuo J, Shen Y, et al. Chromosome‐level assembly of the brown planthopper genome with a characterized Y chromosome. Mol Ecol Resour. 2021;21:1287–1298. doi: 10.1111/1755-0998.13328. PubMed DOI
Cook DE, Valle-Inclan JE, Pajoro A, Rovenich H, Thomma BPHJ, et al. Long-read annotation: automated eukaryotic genome annotation based on long-read cDNA sequencing. Plant Physiol. 2019;179:38–54. doi: 10.1104/pp.18.00848. PubMed DOI PMC
Cenik C, Derti A, Mellor JC, Berriz GF, Roth FP. Genome-wide functional analysis of human 5’ untranslated region introns. Genome Biol. 2010;11:R29. doi: 10.1186/gb-2010-11-3-r29. PubMed DOI PMC
Bianchi M, Crinelli R, Giacomini E, Carloni E, Magnani M. A potent enhancer element in the 5’-UTR intron is crucial for transcriptional regulation of the human ubiquitin C gene. Gene. 2009;448:88–101. doi: 10.1016/j.gene.2009.08.013. PubMed DOI
Fablet M, Bueno M, Potrzebowski L, Kaessmann H. Evolutionary origin and functions of retrogene introns. Mol Biol Evol. 2009;26:2147–2156. doi: 10.1093/molbev/msp125. PubMed DOI
Barrett LW, Fletcher S, Wilton SD. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci. 2012;69:3613–3634. doi: 10.1007/s00018-012-0990-9. PubMed DOI PMC
Mayr C. What Are 3’ UTRs Doing? Cold Spring Harb Perspect Biol. 2019;11:a034728. doi: 10.1101/cshperspect.a034728. PubMed DOI PMC
Kozak M. An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987;15:8125–8148. doi: 10.1093/nar/15.20.8125. PubMed DOI PMC
Kozak M. The scanning model for translation: an update. J Cell Biol. 1989;108:229–241. doi: 10.1083/jcb.108.2.229. PubMed DOI PMC
Hamilton R, Watanabe CK, de Boer HA. Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res. 1987;15:3581–3593. doi: 10.1093/nar/15.8.3581. PubMed DOI PMC
Yamauchi K. The sequence flanking translational initiation site in protozoa. Nucleic Acids Res. 1991;19:2715–2720. doi: 10.1093/nar/19.10.2715. PubMed DOI PMC
Seeber F. Consensus sequence of translational initiation sites from Toxoplasma gondii genes. Parasitol Res. 1997;83:309–311. doi: 10.1007/s004360050254. PubMed DOI
Wahle E, Rüegsegger U. 3’-End processing of pre-mRNA in eukaryotes. FEMS Microbiol Rev. 1999;23:277–295. doi: 10.1111/j.1574-6976.1999.tb00400.x. PubMed DOI
Chan SL, Huppertz I, Yao C, Weng L, Moresco JJ, et al. CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3’ processing. Genes Dev. 2014;28:2370–2380. doi: 10.1101/gad.250993.114. PubMed DOI PMC
Proudfoot NJ, Brownlee GG. 3’ non-coding region sequences in eukaryotic messenger RNA. Nature. 1976;263:211–214. doi: 10.1038/263211a0. PubMed DOI
Clayton C, Michaeli S. 3’ processing in protists. Wiley Interdiscip Rev RNA. 2011;2:247–255. doi: 10.1002/wrna.49. PubMed DOI
Que X, Svärd SG, Meng TC, Hetsko ML, Aley SB, et al. Developmentally regulated transcripts and evidence of differential mRNA processing in Giardia lamblia. Mol Biochem Parasitol. 1996;81:101–110. doi: 10.1016/0166-6851(96)02698-9. PubMed DOI
Svärd SG, Meng TC, Hetsko ML, McCaffery JM, Gillin FD. Differentiation-associated surface antigen variation in the ancient eukaryote Giardia lamblia. Mol Microbiol. 1998;30:979–989. doi: 10.1046/j.1365-2958.1998.01125.x. PubMed DOI
Espinosa N, Hernández R, López-Griego L, López-Villaseñor I. Separable putative polyadenylation and cleavage motifs in Trichomonas vaginalis mRNAs. Gene. 2002;289:81–86. doi: 10.1016/s0378-1119(02)00476-6. PubMed DOI
Fuentes V, Barrera G, Sánchez J, Hernández R, López-Villaseñor I. Functional analysis of sequence motifs involved in the polyadenylation of Trichomonas vaginalis mRNAs. Eukaryot Cell. 2012;11:725–734. doi: 10.1128/EC.05322-11. PubMed DOI PMC
Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria