A mitochondrion-free eukaryote contains proteins capable of import into an exogenous mitochondrion-related organelle

. 2023 Jan ; 13 (1) : 220238. [epub] 20230111

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36629021

The endobiotic flagellate Monocercomonoides exilis is the only known eukaryote to have lost mitochondria and all its associated proteins in its evolutionary past. This final stage of the mitochondrial evolutionary pathway may serve as a model to explain events at their very beginning such as the initiation of protein import. We have assessed the capability of proteins from this eukaryote to enter emerging mitochondria using a specifically designed in vitro assay. Hydrogenosomes (reduced mitochondria) of Trichomonas vaginalis were incubated with a soluble protein pool derived from a cytosolic fraction of M. exilis, and proteins entering hydrogenosomes were subsequently detected by mass spectrometry. The assay detected 19 specifically and reproducibly imported proteins, and in 14 cases the import was confirmed by the overexpression of their tagged version in T. vaginalis. In most cases, only a small portion of the signal reached the hydrogenosomes, suggesting specific but inefficient transport. Most of these proteins represent enzymes of carbon metabolism, and none exhibited clear signatures of proteins targeted to hydrogenosomes or mitochondria, which is consistent with their inefficient import. The observed phenomenon may resemble a primaeval type of protein import which might play a role in the establishment of the organelle and shaping of its proteome in the initial stages of endosymbiosis.

Zobrazit více v PubMed

Archibald JM. 2015. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911-R921. (10.1016/j.cub.2015.07.055) PubMed DOI

Martijn J, Vosseberg J, Guy L, Offre P, Ettema TJG. 2018. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101-105. (10.1038/s41586-018-0059-5) PubMed DOI

van der Bliek AM, Sedensky MM, Morgan PG. 2017. Cell biology of the mitochondrion. Genetics 207, 843-871. (10.1534/genetics.117.300262) PubMed DOI PMC

Freibert SA, et al. 2017. Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis. Nat. Commun. 8, 13932. (10.1038/ncomms13932) PubMed DOI PMC

Oxenoid K, et al. 2016. Architecture of the mitochondrial calcium uniporter. Nature 533, 269-273. (10.1038/nature17656) PubMed DOI PMC

Hekimi S, Wang Y, Noë A. 2016. Mitochondrial ROS and the effectors of the intrinsic apoptotic pathway in aging cells: the discerning killers!. Front. Genet. 7, 161. (10.3389/fgene.2016.00161) PubMed DOI PMC

Huynen MA, Duarte I, Szklarczyk R. 2013. Loss, replacement and gain of proteins at the origin of the mitochondria. Biochim. et Biophys. Acta 1827, 224-231. (10.1016/j.bbabio.2012.08.001) PubMed DOI

Müller M, et al. 2012. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444-495. (10.1128/mmbr.05024-11) PubMed DOI PMC

Roger AJ, Muñoz-Gómez SA, Kamikawa R. 2017. The origin and diversification of mitochondria. Curr. Biol. 27, R1177-R1192. (10.1016/j.cub.2017.09.015) PubMed DOI

Martin W. 2010. Evolutionary origins of metabolic compartmentalization in eukaryotes. Phil. Trans. R. Soc. Lond. Ser. B 365, 847-855. (10.1098/rstb.2009.0252) PubMed DOI PMC

Kunze M, Berger J. 2015. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance. Front. Physiol. 6, 259. (10.3389/fphys.2015.00259) PubMed DOI PMC

Wiedemann N, Pfanner N. 2017. Mitochondrial machinery for protein import and assembly. Ann. Rev. Biochem. 86, 685-714. (10.1146/annurev-biochem-060815-014352) PubMed DOI

Callegari S, Cruz-Zaragoza LD, Rehling P. 2020. From TOM to the TIM23 complex - handing over of a precursor. Biol. Chem. 401, 709-721. (10.1515/hsz-2020-0101) PubMed DOI

Schneider A. 2022. Evolution and diversification of mitochondrial protein import systems. Curr. Opin. Cell Biol. 75, 102077. (10.1016/j.ceb.2022.102077) PubMed DOI

Hampl V, Horner DS, Dyal P, Kulda J, Flegr J, Foster PG, Embley TM. 2005. Inference of the phylogenetic position of oxymonads based on nine genes: support for metamonada and excavata. Mol. Biol. Evol. 22, 2508-2518. (10.1093/molbev/msi245) PubMed DOI

Hampl V. 2017. Preaxostyla. In Handbook of the protists (eds Archibald AM, Simpson AGB, Slamovits CH), pp. 1139-1174, 2nd edn. Berlin, Germany: Springer.

Karnkowska A, et al. 2016. A eukaryote without a mitochondrial organelle. Curr. Biol. 26, 1274-1284. (10.1016/j.cub.2016.03.053) PubMed DOI

Treitli SC, Peña-Diaz P, Hałakuc P, Karnkowska A, Hampl V. 2021. High quality genome assembly of the amitochondriate eukaryote Monocercomonoides exilis. Microbial Genomics 7, 000745. (10.1099/mgen.0.000745) PubMed DOI PMC

Vacek V, Novák LVF, Treitli SC, Táborský P, Cepicka I, Kolísko M, Keeling PJ, Hampl V. 2018. Fe–S cluster assembly in oxymonads and related protists. Mol. Biol. Evol. 35, 2712-2718. (10.1093/molbev/msy168) PubMed DOI PMC

Lemire BD, Fankhauser C, Baker A, Schatz G. 1989. The mitochondrial targeting function of randomly generated peptide sequences correlates with predicted helical amphiphilicity. J. Biol. Chem. 264, 20 206-20 215. (10.1016/S0021-9258(19)47048-8) PubMed DOI

Lucattini R, Likic VA, Lithgow T. 2004. Bacterial proteins predisposed for targeting to mitochondria. Mol. Biol. Evol. 21, 652-658. (10.1093/molbev/msh058) PubMed DOI

Lutfullahoğlu-Bal G, Keskin A, Seferoğlu AB, Dunn CD. 2017. Bacterial tail anchors can target to the mitochondrial outer membrane. Biol. Direct 12, 1-9. (10.1186/s13062-017-0187-0) PubMed DOI PMC

Garrido C, Caspari OD, Choquet Y, Wollman FA, Lafontaine I. 2020. Evidence supporting an antimicrobial origin of targeting peptides to endosymbiotic organelles. Cells 9, 1795. (10.3390/cells9081795) PubMed DOI PMC

Fukasawa Y, Oda T, Tomii K, Imai K. 2017. Origin and evolutionary alteration of the mitochondrial import system in eukaryotic lineages. Mol. Biol. Evol. 34, 1574-1586. (10.1093/molbev/msx096) PubMed DOI PMC

Dolezal P, Smíd O, Rada P, Zubácová Z, Bursać D, Suták R, Nebesárová J, Lithgow T, Tachezy J. 2005. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc. Natl Acad. Sci. USA 102, 10 924-10 929. (10.1073/pnas.0500349102) PubMed DOI PMC

Makki A, Rada P, Žárský V, Kereïche S, Kováčik L, Novotný M, Jores T, Rapaport D, Tachezy J. 2019. Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biol. 17, e3000098. (10.1371/journal.pbio.3000098) PubMed DOI PMC

Levitt D, King M. 1987. Methanol fixation permits flow cytometric analysis of immunofluorescent stained intracellular antigens. J. Immunol. Methods 96, 233-237. (10.1016/0022-1759(87)90319-x) PubMed DOI

Hoetelmans RW, Prins FA, Cornelese-ten Velde I, van der Meer J, van de Velde CJ, van Dierendonck JH. 2001. Effects of acetone, methanol, or paraformaldehyde on cellular structure, visualized by reflection contrast microscopy and transmission and scanning electron microscopy. Appl. Immunohistochem. Mol. Morphol. 9, 346-351. (10.1097/00129039-200112000-00010) PubMed DOI

Mentel M, Zimorski V, Haferkamp P, Martin W, Henze K. 2008. Protein import into hydrogenosomes of Trichomonas vaginalis involves both N-terminal and internal targeting signals: a case study of thioredoxin reductases. Eukaryotic Cell 7, 1750-1757. (10.1128/ec.00206-08) PubMed DOI PMC

Zimorski V, Major P, Hoffmann K, Brás XP, Martin WF, Gould SB. 2013. The N-terminal sequences of four major hydrogenosomal proteins are not essential for import into hydrogenosomes of Trichomonas vaginalis. J. Eukaryotic Microbiol. 60, 89-97. (10.1111/jeu.12012) PubMed DOI

Garg S, Stölting J, Zimorski V, Rada P, Tachezy J, Martin WF, Gould SB. 2015. Conservation of transit peptide-independent protein import into the mitochondrial and hydrogenosomal matrix. Genome Biol. Evol. 7, 2716-2726. (10.1093/gbe/evv175) PubMed DOI PMC

Rada P, Makki AR, Zimorski V, Garg S, Hampl V, Hrdý I, Gould SB, Tachezy J. 2015. N-terminal presequence-independent import of phosphofructokinase into hydrogenosomes of Trichomonas vaginalis. Eukaryotic Cell 14, 1264-1275. (10.1128/ec.00104-15) PubMed DOI PMC

Burstein D, Gould SB, Zimorski V, Kloesges T, Kiosse F, Major P, Martin WF, Pupko T, Dagan T. 2012. A machine learning approach to identify hydrogenosomal proteins in Trichomonas vaginalis. Eukaryotic Cell 11, 217-228. (10.1128/ec.05225-11) PubMed DOI PMC

Novák LVF, et al. 2022. Genomics of Preaxostyla Flagellates Illuminates Evolutionary Transitions and the Path Towards Mitochondrial Loss. bioRxiv preprint. (10.1101/2022.11.24.517819). DOI

Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, Loo JA, Johnson PJ. 2011. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int. J. Parasitol. 41, 1421-1434. (10.1016/j.ijpara.2011.10.001) PubMed DOI PMC

Rada P, et al. 2011. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS ONE 6, e24428. (10.1371/journal.pone.0024428) PubMed DOI PMC

Štáfková J, et al. 2018. Dynamic secretome of Trichomonas vaginalis: case study of β-amylases. Mol. Cell. Proteomics 17, 304-320. (10.1074/mcp.ra117.000434) PubMed DOI PMC

Rappsilber J, Mann M, Ishihama Y. 2007. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protocols 2, 1896-1906. (10.1038/nprot.2007.261) PubMed DOI

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513-2526. (10.1074/mcp.m113.031591) PubMed DOI PMC

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731-740. (10.1038/nmeth.3901) PubMed DOI

Perez-Riverol Y, et al. 2022. The PRIDE database resources in 2022: a Hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543-D552. (10.1093/nar/gkab1038) PubMed DOI PMC

Sutak R, Dolezal P, Fiumera HL, Hrdy I, Dancis A, Delgadillo-Correa M, Johnson PJ, Müller M, Tachezy J. 2004. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc. Natl Acad. Sci. USA 101, 10 368-10 373. (10.1073/pnas.0401319101) PubMed DOI PMC

Burges CJC. 1998. A tutorial on support vector machines for pattern recognition. Data Mining Knowledge Disc. 2, 121-167. (10.1023/A:1009715923555) DOI

Fang YK, Vaitová Z, Hampl V. 2023. Data from: A mitochondrion-free eukaryote contains proteins capable of import into an exogenous mitochondrion-related organelle. Figshare. (10.6084/m9.figshare.c.6350203) PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...