Dynamic secretome of Trichomonas vaginalis: Case study of β-amylases

. 2018 Feb ; 17 (2) : 304-320. [epub] 20171212

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29233912
Odkazy

PubMed 29233912
PubMed Central PMC5795393
DOI 10.1074/mcp.ra117.000434
PII: S1535-9476(20)32271-4
Knihovny.cz E-zdroje

The secretion of virulence factors by parasitic protists into the host environment plays a fundamental role in multifactorial host-parasite interactions. Several effector proteins are known to be secreted by Trichomonas vaginalis, a human parasite of the urogenital tract. However, a comprehensive profiling of the T. vaginalis secretome remains elusive, as do the mechanisms of protein secretion. In this study, we used high-resolution label-free quantitative MS to analyze the T. vaginalis secretome, considering that secretion is a time- and temperature-dependent process, to define the cutoff for secreted proteins. In total, we identified 2 072 extracellular proteins, 89 of which displayed significant quantitative increases over time at 37 °C. These 89 bona fide secreted proteins were sorted into 13 functional categories. Approximately half of the secreted proteins were predicted to possess transmembrane helixes. These proteins mainly include putative adhesins and leishmaniolysin-like metallopeptidases. The other half of the soluble proteins include several novel potential virulence factors, such as DNaseII, pore-forming proteins, and β-amylases. Interestingly, current bioinformatic tools predicted the secretory signal in only 18% of the identified T. vaginalis-secreted proteins. Therefore, we used β-amylases as a model to investigate the T. vaginalis secretory pathway. We demonstrated that two β-amylases (BA1 and BA2) are transported via the classical endoplasmic reticulum-to-Golgi pathways, and in the case of BA1, we showed that the protein is glycosylated with multiple N-linked glycans of Hex5HexNAc2 structure. The secretion was inhibited by brefeldin A but not by FLI-06. Another two β-amylases (BA3 and BA4), which are encoded in the T. vaginalis genome but absent from the secretome, were targeted to the lysosomal compartment. Collectively, under defined in vitro conditions, our analysis provides a comprehensive set of constitutively secreted proteins that can serve as a reference for future comparative studies, and it provides the first information about the classical secretory pathway in this parasite.

Zobrazit více v PubMed

Petrin D., Delgaty K., Bhatt R., and Garber G. (1998) Clinical and microbiological aspects of Trichomonas vaginalis. Clin. Microbiol. Rev. 11, 300–317 PubMed PMC

Kissinger P., and Adamski A. (2013) Trichomoniasis and HIV interactions: A review. Sex Transm. Infect. 89, 426–433 PubMed PMC

Tuttle J. P. Jr, Holbrook T. W., and Derrick F. C. (1977) Interference of human spermatozoal motility by Trichomonas vaginalis. J. Urol. 118, 1024–1025 PubMed

Benchimol M., d Andrade R. I, da Silva F. R., and Burla Dias A. J. (2008) Trichomonas adhere and phagocytose sperm cells: Adhesion seems to be a prominent stage during interaction. Parasitol. Res. 102, 597–604 PubMed

Twu O., Dessí D., Vu A., Mercer F., Stevens G. C., de M. N., Rappelli P., Cocco A. R., Clubb R. T., Fiori P. L., and Johnson P. J. (2014) Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. Proc. Natl. Acad. Sci. U.S.A. 111, 8179–8184 PubMed PMC

Stark J. R., Judson G., Alderete J. F., Mundodi V., Kucknoor A. S., Giovannucci E. L., Platz E. A., Sutcliffe S., Fall K., Kurth T., Ma J., Stampfer M. J., and Mucci L. A. (2009) Prospective study of Trichomonas vaginalis infection and prostate cancer incidence and mortality: Physicians' Health Study. J. Natl. Cancer Inst. 101, 1406–1411 PubMed PMC

Farage M. A., and Maibach H. I. (2011) Morphology and physiological changes of genital skin and mucosa. Curr. Probl. Dermatol. 40, 9–19 PubMed

Langley J. G., Goldsmid J. M., and Davies N. (1987) Venereal trichomoniasis: Role of men. Genitourin. Med. 63, 264–267 PubMed PMC

Gardner W. A. Jr, O'Hara C., Bailey J., and Bennett B. D. (1981) In vitro susceptibility of Trichomonas vaginalis to zinc. Prostate 2, 323–325 PubMed

Ryan C. M., de Miguel N., Johnson P. J. (2011) Trichomonas vaginalis: Current understanding of host-parasite interactions. Essays Biochem. 51, 161–175 PubMed PMC

Krieger J. N., Ravdin J. I., and Rein M. F. (1985) Contact-dependent cytopathogenic mechanisms of Trichomonas vaginalis. Infect. Immun. 50, 778–786 PubMed PMC

Lin W. C., Chang W. T., Chang T. Y., and Shin J. W. (2015) The pathogenesis of human cervical epithelium cells induced by interacting with Trichomonas vaginalis. PLoS One. 10, e0124087. PubMed PMC

Fiori P. L., Rappelli P., Addis M. F., Mannu F., and Cappuccinelli P. (1997) Contact-dependent disruption of the host cell membrane skeleton induced by Trichomonas vaginalis. Infect. Immun. 65, 5142–5148 PubMed PMC

Lustig G., Ryan C. M., Secor W. E., and Johnson P. J. (2013) Trichomonas vaginalis contact-dependent cytolysis of epithelial cells. Infect. Immun. 81, 1411–1419 PubMed PMC

Midlej V., and Benchimol M. (2010) Trichomonas vaginalis kills and eats—Evidence for phagocytic activity as a cytopathic effect. Parasitol. 137, 65–76 PubMed

Juliano C., Cappuccinelli P., and Mattana A. (1991) In vitro phagocytic interaction between Trichomonas vaginalis isolates and bacteria. Eur. J. Clin. Microbiol. Infect. Dis. 10, 497–502 PubMed

Sommer U., Costello C. E., Hayes G. R., Beach D. H., Gilbert R. O., Lucas J. J., and Singh B. N. (2005) Identification of Trichomonas vaginalis cysteine proteases that induce apoptosis in human vaginal epithelial cells. J. Biol. Chem. 280, 23853–23860 PubMed

Kusdian G., Woehle C., Martin W. F., and Gould S. B. (2013) The actin-based machinery of Trichomonas vaginalis mediates flagellate-amoeboid transition and migration across host tissue. Cell Microbiol. 15, 1707–1721 PubMed

Twu O., de Miguel N., Lustig G., Stevens G. C., Vashisht A. A., Wohlschlegel J. A., and Johnson P. J. (2013) Trichomonas vaginalis exosomes deliver cargo to host cells and mediate hostratioparasite interactions. PLoS Pathog. 9, e1003482. PubMed PMC

Müller M., Mentel M., van Hellemond J. J., Henze K., Woehle C., Gould S. B., Yu R. Y., van der Giezen M., Tielens A. G., and Martin W. F. (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–495 PubMed PMC

Hrdý I., Tachezy J., and Müller M. (2008) Metabolism of trichomonad hydrogenosomes, In: Tachezy J. (ed), Hydrogenosomes and Mitosomes:Mitochondria of Anaerobic Euakryotes, pp. 114–145, Springer-Verlag, Berlin, Heidelberg

Mirmonsef P., Hotton A. L., Gilbert D., Gioia C. J., Maric D., Hope T. J., Landay A. L., and Spear G. T. (2016) Glycogen levels in undiluted genital fluid and their relationship to vaginal pH, estrogen, and progesterone. PLoS One. 11, e0153553. PubMed PMC

Mirmonsef P., Hotton A. L., Gilbert D., Burgad D., Landay A., Weber K. M., Cohen M., Ravel J., and Spear G. T. (2014) Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH. PLoS One. 9, e102467. PubMed PMC

Rajan N., Cao Q., Anderson B. E., Pruden D. L., Sensibar J., Duncan J. L., and Schaeffer A. J. (1999) Roles of glycoproteins and oligosaccharides found in human vaginal fluid in bacterial adherence. Infect. Immun. 67, 5027–5032 PubMed PMC

Gregoire A. T. (1963) Carbohydrates of human vaginal tissue. Nature 198, 996 PubMed

Sumawong V., Gregoire A. T., Johnson W. D., and Rakoff A. E. (1962) Identification of carbohydrates in the vaginal fluid of normal females. Fertil. Steril. 13, 270–280 PubMed

ter Kuile B. H., and Müller M. (1995) Maltose utilization by extracellular hydrolysis followed by glucose transport in Trichomonas vaginalis. Parasitol. 110, 37–44 PubMed

Huffman R. D., Nawrocki L. D., Wilson W. A., and Brittingham A. (2015) Digestion of glycogen by a glucosidase released by Trichomonas vaginalis. Exp. Parasitol. 159, 151–159 PubMed

Smith R. W., Brittingham A., and Wilson W. A. (2016) Purification and identification of amylases released by the human pathogen Trichomonas vaginalis that are active towards glycogen. Mol. Biochem. Parasitol. 210, 22–31 PubMed

de Miguel N., Lustig G., Twu O., Chattopadhyay A., Wohlschlegel J. A., and Johnson P. J. (2010) Proteome analysis of the surface of Trichomonas vaginalis reveals novel proteins and strain-dependent differential expression. Mol. Cell. Proteomics 9, 1554–1566 PubMed PMC

Riestra A. M., Gandhi S., Sweredoski M. J., Moradian A., Hess S., Urban S., and Johnson P. J. (2015) A Trichomonas vaginalis rhomboid protease and its substrate modulate parasite attachment and cytolysis of host cells. PLoS Pathog. 11, e1005294. PubMed PMC

Hernández H. M., Sariego I., Alvarez A. B., Marcet R., Vancol E., Alvarez A., Figueredo M., and Sarracent J. (2011) Trichomonas vaginalis 62 kDa proteinase as a possible virulence factor. Parasitol. Res. 108, 241–245 PubMed

Arroyo R., Cárdenas-Guerra R. E., Figueroa-Angulo E. E., Puente-Rivera J., Zamudio-Prieto O., and Ortega-López J. (2015) Trichomonas vaginalis cysteine proteinases: Iron response in gene expression and proteolytic activity. Biomed. Res. Int. 2015, 946787. PubMed PMC

Kucknoor A. S., Mundodi V., and Alderete J. F. (2007) The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65. Cell Microbiol. 9, 2586–2597 PubMed PMC

Kulda J., Vojtěchovská M., Tachezy J., Demes P., and Kunzová E. (1982) Metronidazole resistance of Trichomonas vaginalis as a cause of treatment failure in trichomoniasis—A case report. Br. J. Vener. Dis. 58, 394–399 PubMed PMC

Diamond L. S. (1957) The establishment of various trichomonads of animals and man in axenic cultures. J. Parasitol. 43, 488–490 PubMed

Doran D. J. (1959) Studies on trichomonads: III. Inhibitors, acid production, and substrate utilization by 4 strains of Tritrichomonas foetus. J. Protozool. 6, 177–182

Strober W. (2001) Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. Appendix 3 PubMed

Linstead D. J., and Bradley S. (1988) The purification and properties of two soluble reduced nicotinamide: Acceptor oxidoreductases from Trichomonas vaginalis. Mol. Biochem. Parasitol. 27, 125–133 PubMed

Masuda T., Tomita M., and Ishihama Y. (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome. Res. 7, 731–740 PubMed

Cox J., Hein M. Y., Luber C. A., Paron I., Nagaraj N., and Mann M. (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 PubMed PMC

Vizcaíno J. A., Csordas A., Del-Toro N., Dianes J. A., Griss J., Lavidas I., Mayer G., Perez-Riverol Y., Reisinger F., Ternent T., Xu Q. W., Wang R., and Hermjakob H. (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, 11033. PubMed PMC

Hrdy I., Hirt R. P., Dolezal P., Bardonová L., Foster P. G., Tachezy J., and Embley T. M. (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432, 618–622 PubMed

Price M. N., Dehal P. S., and Arkin A. P. (2010) FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS One. 5, e9490. PubMed PMC

Katoh K., and Standley D. M. (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol Evol. 30, 772–780 PubMed PMC

Criscuolo A., and Gribaldo S. (2010) BMGE (block mapping and gathering with entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol 10, 210. PubMed PMC

Lartillot N., Lepage T., and Blanquart S. (2009) PhyloBayes 3: A Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 25, 2286–2288 PubMed

Guindon S., Delsuc F., Dufayard J. F., and Gascuel O. (2009) Estimating maximum likelihood phylogenies with PhyML. Methods Mol. Biol 537, 113–137 PubMed

Dos S. O., de Vargas R. G., Frasson A. P., Macedo A. J., and Tasca T. (2015) Optimal reference genes for gene expression normalization in Trichomonas vaginalis. PLoS One. 10, e0138331. PubMed PMC

Howarth M., and Ting A. Y. (2008) Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat. Protoc. 3, 534–545 PubMed PMC

Dawson S. C., Sagolla M. S., Mancuso J. J., Woessner D. J., House S. A., Fritz-Laylin L., and Cande W. Z. (2007) Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot. Cell 6, 2354–2364 PubMed PMC

Goder V., and Spiess M. (2001) Topogenesis of membrane proteins: Determinants and dynamics. FEBS Lett. 504, 87–93 PubMed

Noël C. J., Diaz N., Sicheritz-Ponten T., Safarikova L., Tachezy J., Tang P., Fiori P. L., and Hirt R. P. (2010) Trichomonas vaginalis vast BspA-like gene family: Evidence for functional diversity from structural organisation and transcriptomics. BMC Genomics 11, 99. PubMed PMC

Okada M., Huston C. D., Oue M., Mann B. J., Petri W. A. Jr, Kita K., and Nozaki T. (2006) Kinetics and strain variation of phagosome proteins of Entamoeba histolytica by proteomic analysis. Mol. Biochem. Parasitol. 145, 171–183 PubMed

Rada P., Makki A. R., Zimorski V., Garg S., Hampl V., Hrdý I., Gould S. B., and Tachezy J. (2015) N-Terminal presequence-independent import of phosphofructokinase into hydrogenosomes of Trichomonas vaginalis. Eukaryot. Cell 14, 1264–1275 PubMed PMC

Nickel W. (2003) The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur. J. Biochem. 270, 2109–2119 PubMed

Fujiwara T., Oda K., Yokota S., Takatsuki A., and Ikehara Y. (1988) Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J. Biol. Chem. 263, 18545–18552 PubMed

Yonemura Y., Li X., Müller K., Krämer A., Atigbire P., Mentrup T., Feuerhake T., Kroll T., Shomron O., Nohl R., Arndt H. D., Hoischen C., Hemmerich P., Hirschberg K., and Kaether C. (2016) Inhibition of cargo export at ER exit sites and the trans-Golgi network by the secretion inhibitor FLI-06. J. Cell Sci. 129, 3868–3877 PubMed

Peterson K. M., and Alderete J. F. (1984) Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors. J. Exp. Med. 160, 398–410 PubMed PMC

Tachezy J., Kulda J., Bahníkova I., Suchan P., Rázga J., and Schrével J. (1996) Tritrichomonas foetus: Iron acquisition from lactoferrin and transferrin. Exp. Parasitol. 83, 216–228 PubMed

Pollo-Oliveira L., Post H., Acencio M. L., Lemke N., van den Toorn H., Tragante V., Heck A. J., Altelaar A. F., and Yatsuda A. P. (2013) Unravelling the Neospora caninum secretome through the secreted fraction (ESA) and quantification of the discharged tachyzoite using high-resolution mass spectrometry-based proteomics. Parasit. Vectors 6, 335. PubMed PMC

Geiger A., Hirtz C., Bécue T., Bellard E., Centeno D., Gargani D., Rossignol M., Cuny G., and Peltier J. B. (2010) Exocytosis and protein secretion in Trypanosoma. BMC Microbiol. 10, 20. PubMed PMC

Queiroz R. M., Ricart C. A., Machado M. O., Bastos I. M., de Santana J. M., de Sousa M. V., Roepstorff P., and Charneau S. (2016) Insight into the exoproteome of the tissue-derived trypomastigote form of Trypanosoma cruzi. Front. Chem. 4, 42. PubMed PMC

Ujang J. A., Kwan S. H., Ismail M. N., Lim B. H., Noordin R., and Othman N. (2016) Proteome analysis of excretory-secretory proteins of Entamoeba histolytica HM1:IMSS via LC-ESI-MS/MS and LC-MALDI-TOF/TOF. Clin. Proteomics 13, 33. PubMed PMC

Silverman J. M., Chan S. K., Robinson D. P., Dwyer D. M., Nandan D., Foster L. J., and Reiner N. E. (2008) Proteomic analysis of the secretome of Leishmania donovani. Genome Biol. 9, R35. PubMed PMC

Sharma A., Sojar H. T., Glurich I., Honma K., Kuramitsu H. K., and Genco R. J. (1998) Cloning, expression, and sequencing of a cell surface antigen containing a leucine-rich repeat motif from Bacteroides forsythus ATCC 43037. Infect. Immun. 66, 5703–5710 PubMed PMC

Engbring J., O'Brien J. L., and Alderete J. F. (1996) Trichomonas vaginalis adhesin proteins display molecular mimicry to metabolic enzymes, In: Kahane, and Ofek (eds), Toward Anti-Adhesion Therapy for Microbial Diseases, pp. 207–223, Plenum Press, New York PubMed

Meza-Cervantez P., González-Robles A., Cárdenas-Guerra R. E., Ortega-López J., Saavedra E., Pineda E., and Arroyo R. (2011) Pyruvate:ferredoxin oxidoreductase (PFO) is a surface-associated cell-binding protein in Trichomonas vaginalis and is involved in trichomonal adherence to host cells. Microbiology 157, 3469–3482 PubMed

Thibeaux R., Weber C., Hon C. C., Dillies M. A., Avé P., Coppée J. Y., Labruyère E., and Guillén N. (2013) Identification of the virulence landscape essential for Entamoeba histolytica invasion of the human colon. PLoS Pathog. 9, e1003824. PubMed PMC

Martincová E., Voleman L., Pyrih J.,Žárský V., Vondráčková P., Kolísko M., Tachezy J., and Doležal P. (2015) Probing the biology of Giardia intestinalis mitosomes using in vivo enzymatic tagging. Mol. Cell. Biol. 35, 2864–2874 PubMed PMC

Samuelson J., Banerjee S., Magnelli P., Cui J., Kelleher D. J., Gilmore R., and Robbins P. W. (2005) The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc. Natl. Acad. Sci. U.S.A. 102, 1548–1553 PubMed PMC

Lehker M. W., and Sweeney D. (1999) Trichomonad invasion of the mucous layer requires adhesins, mucinases, and motility. Sex Transm. Infect. 75, 231–238 PubMed PMC

Connaris S., and Greenwell P. (1997) Glycosidases in mucin-dwelling protozoans. Glycoconj. J. 14, 879–882 PubMed

Cuervo P., Cupolillo E., Britto C., González L. J., FC E. S.-F., Lopes L. C., Domont G. B., and De Jesus J. B. (2008) Differential soluble protein expression between Trichomonas vaginalis isolates exhibiting low and high virulence phenotypes. J. Proteomics 71, 109–122 PubMed

Figueroa-Angulo E. E., Rendón-Gandarilla F. J., Puente-Rivera J., Calla-Choque J. S., Cárdenas-Guerra R. E., Ortega-López J., Quintas-Granados L. I., Alvarez-Sánchez M. E., and Arroyo R. (2012) The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes. Infect. 14, 1411–1427 PubMed

Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D. S., Weinrauch Y., and Zychlinsky A. (2004) Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 PubMed

Urban C. F., Reichard U., Brinkmann V., and Zychlinsky A. (2006) Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 8, 668–676 PubMed

Buchanan J. T., Simpson A. J., Aziz R. K., Liu G. Y., Kristian S. A., Kotb M., Feramisco J., and Nizet V. (2006) DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr. Biol. 16, 396–400 PubMed

Zhang X., Zhao S., Sun L., Li W., Wei Q., Ashman R. B., and Hu Y. (2017) Different virulence of Candida albicans is attributed to the ability of escape from neutrophil extracellular traps by secretion of DNase. Am. J. Transl. Res. 9, 50–62 PubMed PMC

Liu M. F., Wu X. P., Wang X. L., Yu Y. L., Wang W. F., Chen Q. J., Boireau P., and Liu M. Y. (2008) The functions of deoxyribonuclease II in immunity and development. DNA Cell Biol. 27, 223–228 PubMed

Leippe M., Andrä J., Nickel R., Tannich E., and Müller-Eberhard H. J. (1994) Amoebapores, a family of membranolytic peptides from cytoplasmic granules of Entamoeba histolytica: Isolation, primary structure, and pore formation in bacterial cytoplasmic membranes. Mol. Microbiol. 14, 895–904 PubMed

Herbst R., Marciano-Cabral F., and Leippe M. (2004) Antimicrobial and pore-forming peptides of free-living and potentially highly pathogenic Naegleria fowleri are released from the same precursor molecule. J. Biol. Chem. 279, 25955–25958 PubMed

Hirt R. P., de Miguel N., Nakjang S., Dessi D., Liu Y. C., Diaz N., Rapelli P., Acosta-Serano A., Fiori P. L., and Mottram J. C. (2011) Trichomonas vaginalis Pathobiology: New insights from the Genome Sequence, 1st Ed., pp. 87–130, Elsevier, Amsterdam PubMed

Horváthová L., Šafariková L., Basler M., Hrdy I., Campo N. B., Shin J. W., Huang K. Y., Huang P. J., Lin R., Tang P., and Tachezy J. (2012) Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome. Genome Biol. Evol. 4, 1017–1029 PubMed PMC

Huang K. Y., Chen Y. Y., Fang Y. K., Cheng W. H., Cheng C. C., Chen Y. C., Wu T. E., Ku F. M., Chen S. C., Lin R., and Tang P. (2014) Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochim. Biophys. Acta 1840, 53–64 PubMed

Huang K. Y., Huang P. J., Ku F. M., Lin R., Alderete J. F., and Tang P. (2012) Comparative transcriptomic and proteomic analyses of Trichomonas vaginalis following adherence to fibronectin. Infect. Immun. 80, 3900–3911 PubMed PMC

Gould S. B., Woehle C., Kusdian G., Landan G., Tachezy J., Zimorski V., and Martin W. F. (2013) Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. Int. J. Parasitol. 43, 707–719 PubMed

Vizcaíno J. A., Csordas A., Del-Toro N., Dianes J. A., Griss J., Lavidas I., Mayer G., Perez-Riverol Y., Reisinger F., Ternent T., Xu Q. W., Wang R., and Hermjakob H. (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, 11033. PubMed PMC

Baker P. R., and Chalkley R. J. (2014) MS-viewer: A web-based spectral viewer for proteomics results. Mol. Cell. Proteomics 13, 1392–1396 PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The retromer and retriever systems are conserved and differentially expanded in parabasalids

. 2024 Jul 01 ; 137 (13) : . [epub] 20240712

A hybrid TIM complex mediates protein import into hydrogenosomes of Trichomonas vaginalis

. 2024 Jun 03 ; 22 (1) : 130. [epub] 20240603

The divergent ER-mitochondria encounter structures (ERMES) are conserved in parabasalids but lost in several anaerobic lineages with hydrogenosomes

. 2023 Nov 15 ; 21 (1) : 259. [epub] 20231115

A mitochondrion-free eukaryote contains proteins capable of import into an exogenous mitochondrion-related organelle

. 2023 Jan ; 13 (1) : 220238. [epub] 20230111

Double-Stranded RNA Viruses Are Released From Trichomonas vaginalis Inside Small Extracellular Vesicles and Modulate the Exosomal Cargo

. 2022 ; 13 () : 893692. [epub] 20220504

Proteomic Analysis of Trichomonas vaginalis Phagolysosome, Lysosomal Targeting, and Unconventional Secretion of Cysteine Peptidases

. 2022 Jan ; 21 (1) : 100174. [epub] 20211108

Anaerobic peroxisomes in Entamoeba histolytica metabolize myo-inositol

. 2021 Nov ; 17 (11) : e1010041. [epub] 20211115

Anaerobic peroxisomes in Mastigamoeba balamuthi

. 2020 Jan 28 ; 117 (4) : 2065-2075. [epub] 20200113

Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis

. 2019 Jan ; 17 (1) : e3000098. [epub] 20190104

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...