Dynamic secretome of Trichomonas vaginalis: Case study of β-amylases
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
PubMed
29233912
PubMed Central
PMC5795393
DOI
10.1074/mcp.ra117.000434
PII: S1535-9476(20)32271-4
Knihovny.cz E-zdroje
- MeSH
- beta-amylasa metabolismus MeSH
- fylogeneze MeSH
- protozoální proteiny genetika metabolismus MeSH
- Trichomonas vaginalis genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-amylasa MeSH
- protozoální proteiny MeSH
The secretion of virulence factors by parasitic protists into the host environment plays a fundamental role in multifactorial host-parasite interactions. Several effector proteins are known to be secreted by Trichomonas vaginalis, a human parasite of the urogenital tract. However, a comprehensive profiling of the T. vaginalis secretome remains elusive, as do the mechanisms of protein secretion. In this study, we used high-resolution label-free quantitative MS to analyze the T. vaginalis secretome, considering that secretion is a time- and temperature-dependent process, to define the cutoff for secreted proteins. In total, we identified 2 072 extracellular proteins, 89 of which displayed significant quantitative increases over time at 37 °C. These 89 bona fide secreted proteins were sorted into 13 functional categories. Approximately half of the secreted proteins were predicted to possess transmembrane helixes. These proteins mainly include putative adhesins and leishmaniolysin-like metallopeptidases. The other half of the soluble proteins include several novel potential virulence factors, such as DNaseII, pore-forming proteins, and β-amylases. Interestingly, current bioinformatic tools predicted the secretory signal in only 18% of the identified T. vaginalis-secreted proteins. Therefore, we used β-amylases as a model to investigate the T. vaginalis secretory pathway. We demonstrated that two β-amylases (BA1 and BA2) are transported via the classical endoplasmic reticulum-to-Golgi pathways, and in the case of BA1, we showed that the protein is glycosylated with multiple N-linked glycans of Hex5HexNAc2 structure. The secretion was inhibited by brefeldin A but not by FLI-06. Another two β-amylases (BA3 and BA4), which are encoded in the T. vaginalis genome but absent from the secretome, were targeted to the lysosomal compartment. Collectively, under defined in vitro conditions, our analysis provides a comprehensive set of constitutively secreted proteins that can serve as a reference for future comparative studies, and it provides the first information about the classical secretory pathway in this parasite.
§Institute of Biotechnology CAS v v i BIOCEV Vestec Czech Republic
¶Department of Biochemistry Charles University Faculty of Science BIOCEV Vestec Czech Republic
Zobrazit více v PubMed
Petrin D., Delgaty K., Bhatt R., and Garber G. (1998) Clinical and microbiological aspects of Trichomonas vaginalis. Clin. Microbiol. Rev. 11, 300–317 PubMed PMC
Kissinger P., and Adamski A. (2013) Trichomoniasis and HIV interactions: A review. Sex Transm. Infect. 89, 426–433 PubMed PMC
Tuttle J. P. Jr, Holbrook T. W., and Derrick F. C. (1977) Interference of human spermatozoal motility by Trichomonas vaginalis. J. Urol. 118, 1024–1025 PubMed
Benchimol M., d Andrade R. I, da Silva F. R., and Burla Dias A. J. (2008) Trichomonas adhere and phagocytose sperm cells: Adhesion seems to be a prominent stage during interaction. Parasitol. Res. 102, 597–604 PubMed
Twu O., Dessí D., Vu A., Mercer F., Stevens G. C., de M. N., Rappelli P., Cocco A. R., Clubb R. T., Fiori P. L., and Johnson P. J. (2014) Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. Proc. Natl. Acad. Sci. U.S.A. 111, 8179–8184 PubMed PMC
Stark J. R., Judson G., Alderete J. F., Mundodi V., Kucknoor A. S., Giovannucci E. L., Platz E. A., Sutcliffe S., Fall K., Kurth T., Ma J., Stampfer M. J., and Mucci L. A. (2009) Prospective study of Trichomonas vaginalis infection and prostate cancer incidence and mortality: Physicians' Health Study. J. Natl. Cancer Inst. 101, 1406–1411 PubMed PMC
Farage M. A., and Maibach H. I. (2011) Morphology and physiological changes of genital skin and mucosa. Curr. Probl. Dermatol. 40, 9–19 PubMed
Langley J. G., Goldsmid J. M., and Davies N. (1987) Venereal trichomoniasis: Role of men. Genitourin. Med. 63, 264–267 PubMed PMC
Gardner W. A. Jr, O'Hara C., Bailey J., and Bennett B. D. (1981) In vitro susceptibility of Trichomonas vaginalis to zinc. Prostate 2, 323–325 PubMed
Ryan C. M., de Miguel N., Johnson P. J. (2011) Trichomonas vaginalis: Current understanding of host-parasite interactions. Essays Biochem. 51, 161–175 PubMed PMC
Krieger J. N., Ravdin J. I., and Rein M. F. (1985) Contact-dependent cytopathogenic mechanisms of Trichomonas vaginalis. Infect. Immun. 50, 778–786 PubMed PMC
Lin W. C., Chang W. T., Chang T. Y., and Shin J. W. (2015) The pathogenesis of human cervical epithelium cells induced by interacting with Trichomonas vaginalis. PLoS One. 10, e0124087. PubMed PMC
Fiori P. L., Rappelli P., Addis M. F., Mannu F., and Cappuccinelli P. (1997) Contact-dependent disruption of the host cell membrane skeleton induced by Trichomonas vaginalis. Infect. Immun. 65, 5142–5148 PubMed PMC
Lustig G., Ryan C. M., Secor W. E., and Johnson P. J. (2013) Trichomonas vaginalis contact-dependent cytolysis of epithelial cells. Infect. Immun. 81, 1411–1419 PubMed PMC
Midlej V., and Benchimol M. (2010) Trichomonas vaginalis kills and eats—Evidence for phagocytic activity as a cytopathic effect. Parasitol. 137, 65–76 PubMed
Juliano C., Cappuccinelli P., and Mattana A. (1991) In vitro phagocytic interaction between Trichomonas vaginalis isolates and bacteria. Eur. J. Clin. Microbiol. Infect. Dis. 10, 497–502 PubMed
Sommer U., Costello C. E., Hayes G. R., Beach D. H., Gilbert R. O., Lucas J. J., and Singh B. N. (2005) Identification of Trichomonas vaginalis cysteine proteases that induce apoptosis in human vaginal epithelial cells. J. Biol. Chem. 280, 23853–23860 PubMed
Kusdian G., Woehle C., Martin W. F., and Gould S. B. (2013) The actin-based machinery of Trichomonas vaginalis mediates flagellate-amoeboid transition and migration across host tissue. Cell Microbiol. 15, 1707–1721 PubMed
Twu O., de Miguel N., Lustig G., Stevens G. C., Vashisht A. A., Wohlschlegel J. A., and Johnson P. J. (2013) Trichomonas vaginalis exosomes deliver cargo to host cells and mediate hostratioparasite interactions. PLoS Pathog. 9, e1003482. PubMed PMC
Müller M., Mentel M., van Hellemond J. J., Henze K., Woehle C., Gould S. B., Yu R. Y., van der Giezen M., Tielens A. G., and Martin W. F. (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–495 PubMed PMC
Hrdý I., Tachezy J., and Müller M. (2008) Metabolism of trichomonad hydrogenosomes, In: Tachezy J. (ed), Hydrogenosomes and Mitosomes:Mitochondria of Anaerobic Euakryotes, pp. 114–145, Springer-Verlag, Berlin, Heidelberg
Mirmonsef P., Hotton A. L., Gilbert D., Gioia C. J., Maric D., Hope T. J., Landay A. L., and Spear G. T. (2016) Glycogen levels in undiluted genital fluid and their relationship to vaginal pH, estrogen, and progesterone. PLoS One. 11, e0153553. PubMed PMC
Mirmonsef P., Hotton A. L., Gilbert D., Burgad D., Landay A., Weber K. M., Cohen M., Ravel J., and Spear G. T. (2014) Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH. PLoS One. 9, e102467. PubMed PMC
Rajan N., Cao Q., Anderson B. E., Pruden D. L., Sensibar J., Duncan J. L., and Schaeffer A. J. (1999) Roles of glycoproteins and oligosaccharides found in human vaginal fluid in bacterial adherence. Infect. Immun. 67, 5027–5032 PubMed PMC
Gregoire A. T. (1963) Carbohydrates of human vaginal tissue. Nature 198, 996 PubMed
Sumawong V., Gregoire A. T., Johnson W. D., and Rakoff A. E. (1962) Identification of carbohydrates in the vaginal fluid of normal females. Fertil. Steril. 13, 270–280 PubMed
ter Kuile B. H., and Müller M. (1995) Maltose utilization by extracellular hydrolysis followed by glucose transport in Trichomonas vaginalis. Parasitol. 110, 37–44 PubMed
Huffman R. D., Nawrocki L. D., Wilson W. A., and Brittingham A. (2015) Digestion of glycogen by a glucosidase released by Trichomonas vaginalis. Exp. Parasitol. 159, 151–159 PubMed
Smith R. W., Brittingham A., and Wilson W. A. (2016) Purification and identification of amylases released by the human pathogen Trichomonas vaginalis that are active towards glycogen. Mol. Biochem. Parasitol. 210, 22–31 PubMed
de Miguel N., Lustig G., Twu O., Chattopadhyay A., Wohlschlegel J. A., and Johnson P. J. (2010) Proteome analysis of the surface of Trichomonas vaginalis reveals novel proteins and strain-dependent differential expression. Mol. Cell. Proteomics 9, 1554–1566 PubMed PMC
Riestra A. M., Gandhi S., Sweredoski M. J., Moradian A., Hess S., Urban S., and Johnson P. J. (2015) A Trichomonas vaginalis rhomboid protease and its substrate modulate parasite attachment and cytolysis of host cells. PLoS Pathog. 11, e1005294. PubMed PMC
Hernández H. M., Sariego I., Alvarez A. B., Marcet R., Vancol E., Alvarez A., Figueredo M., and Sarracent J. (2011) Trichomonas vaginalis 62 kDa proteinase as a possible virulence factor. Parasitol. Res. 108, 241–245 PubMed
Arroyo R., Cárdenas-Guerra R. E., Figueroa-Angulo E. E., Puente-Rivera J., Zamudio-Prieto O., and Ortega-López J. (2015) Trichomonas vaginalis cysteine proteinases: Iron response in gene expression and proteolytic activity. Biomed. Res. Int. 2015, 946787. PubMed PMC
Kucknoor A. S., Mundodi V., and Alderete J. F. (2007) The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65. Cell Microbiol. 9, 2586–2597 PubMed PMC
Kulda J., Vojtěchovská M., Tachezy J., Demes P., and Kunzová E. (1982) Metronidazole resistance of Trichomonas vaginalis as a cause of treatment failure in trichomoniasis—A case report. Br. J. Vener. Dis. 58, 394–399 PubMed PMC
Diamond L. S. (1957) The establishment of various trichomonads of animals and man in axenic cultures. J. Parasitol. 43, 488–490 PubMed
Doran D. J. (1959) Studies on trichomonads: III. Inhibitors, acid production, and substrate utilization by 4 strains of Tritrichomonas foetus. J. Protozool. 6, 177–182
Strober W. (2001) Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. Appendix 3 PubMed
Linstead D. J., and Bradley S. (1988) The purification and properties of two soluble reduced nicotinamide: Acceptor oxidoreductases from Trichomonas vaginalis. Mol. Biochem. Parasitol. 27, 125–133 PubMed
Masuda T., Tomita M., and Ishihama Y. (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome. Res. 7, 731–740 PubMed
Cox J., Hein M. Y., Luber C. A., Paron I., Nagaraj N., and Mann M. (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 PubMed PMC
Vizcaíno J. A., Csordas A., Del-Toro N., Dianes J. A., Griss J., Lavidas I., Mayer G., Perez-Riverol Y., Reisinger F., Ternent T., Xu Q. W., Wang R., and Hermjakob H. (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, 11033. PubMed PMC
Hrdy I., Hirt R. P., Dolezal P., Bardonová L., Foster P. G., Tachezy J., and Embley T. M. (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432, 618–622 PubMed
Price M. N., Dehal P. S., and Arkin A. P. (2010) FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS One. 5, e9490. PubMed PMC
Katoh K., and Standley D. M. (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol Evol. 30, 772–780 PubMed PMC
Criscuolo A., and Gribaldo S. (2010) BMGE (block mapping and gathering with entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol 10, 210. PubMed PMC
Lartillot N., Lepage T., and Blanquart S. (2009) PhyloBayes 3: A Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 25, 2286–2288 PubMed
Guindon S., Delsuc F., Dufayard J. F., and Gascuel O. (2009) Estimating maximum likelihood phylogenies with PhyML. Methods Mol. Biol 537, 113–137 PubMed
Dos S. O., de Vargas R. G., Frasson A. P., Macedo A. J., and Tasca T. (2015) Optimal reference genes for gene expression normalization in Trichomonas vaginalis. PLoS One. 10, e0138331. PubMed PMC
Howarth M., and Ting A. Y. (2008) Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat. Protoc. 3, 534–545 PubMed PMC
Dawson S. C., Sagolla M. S., Mancuso J. J., Woessner D. J., House S. A., Fritz-Laylin L., and Cande W. Z. (2007) Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot. Cell 6, 2354–2364 PubMed PMC
Goder V., and Spiess M. (2001) Topogenesis of membrane proteins: Determinants and dynamics. FEBS Lett. 504, 87–93 PubMed
Noël C. J., Diaz N., Sicheritz-Ponten T., Safarikova L., Tachezy J., Tang P., Fiori P. L., and Hirt R. P. (2010) Trichomonas vaginalis vast BspA-like gene family: Evidence for functional diversity from structural organisation and transcriptomics. BMC Genomics 11, 99. PubMed PMC
Okada M., Huston C. D., Oue M., Mann B. J., Petri W. A. Jr, Kita K., and Nozaki T. (2006) Kinetics and strain variation of phagosome proteins of Entamoeba histolytica by proteomic analysis. Mol. Biochem. Parasitol. 145, 171–183 PubMed
Rada P., Makki A. R., Zimorski V., Garg S., Hampl V., Hrdý I., Gould S. B., and Tachezy J. (2015) N-Terminal presequence-independent import of phosphofructokinase into hydrogenosomes of Trichomonas vaginalis. Eukaryot. Cell 14, 1264–1275 PubMed PMC
Nickel W. (2003) The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur. J. Biochem. 270, 2109–2119 PubMed
Fujiwara T., Oda K., Yokota S., Takatsuki A., and Ikehara Y. (1988) Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J. Biol. Chem. 263, 18545–18552 PubMed
Yonemura Y., Li X., Müller K., Krämer A., Atigbire P., Mentrup T., Feuerhake T., Kroll T., Shomron O., Nohl R., Arndt H. D., Hoischen C., Hemmerich P., Hirschberg K., and Kaether C. (2016) Inhibition of cargo export at ER exit sites and the trans-Golgi network by the secretion inhibitor FLI-06. J. Cell Sci. 129, 3868–3877 PubMed
Peterson K. M., and Alderete J. F. (1984) Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors. J. Exp. Med. 160, 398–410 PubMed PMC
Tachezy J., Kulda J., Bahníkova I., Suchan P., Rázga J., and Schrével J. (1996) Tritrichomonas foetus: Iron acquisition from lactoferrin and transferrin. Exp. Parasitol. 83, 216–228 PubMed
Pollo-Oliveira L., Post H., Acencio M. L., Lemke N., van den Toorn H., Tragante V., Heck A. J., Altelaar A. F., and Yatsuda A. P. (2013) Unravelling the Neospora caninum secretome through the secreted fraction (ESA) and quantification of the discharged tachyzoite using high-resolution mass spectrometry-based proteomics. Parasit. Vectors 6, 335. PubMed PMC
Geiger A., Hirtz C., Bécue T., Bellard E., Centeno D., Gargani D., Rossignol M., Cuny G., and Peltier J. B. (2010) Exocytosis and protein secretion in Trypanosoma. BMC Microbiol. 10, 20. PubMed PMC
Queiroz R. M., Ricart C. A., Machado M. O., Bastos I. M., de Santana J. M., de Sousa M. V., Roepstorff P., and Charneau S. (2016) Insight into the exoproteome of the tissue-derived trypomastigote form of Trypanosoma cruzi. Front. Chem. 4, 42. PubMed PMC
Ujang J. A., Kwan S. H., Ismail M. N., Lim B. H., Noordin R., and Othman N. (2016) Proteome analysis of excretory-secretory proteins of Entamoeba histolytica HM1:IMSS via LC-ESI-MS/MS and LC-MALDI-TOF/TOF. Clin. Proteomics 13, 33. PubMed PMC
Silverman J. M., Chan S. K., Robinson D. P., Dwyer D. M., Nandan D., Foster L. J., and Reiner N. E. (2008) Proteomic analysis of the secretome of Leishmania donovani. Genome Biol. 9, R35. PubMed PMC
Sharma A., Sojar H. T., Glurich I., Honma K., Kuramitsu H. K., and Genco R. J. (1998) Cloning, expression, and sequencing of a cell surface antigen containing a leucine-rich repeat motif from Bacteroides forsythus ATCC 43037. Infect. Immun. 66, 5703–5710 PubMed PMC
Engbring J., O'Brien J. L., and Alderete J. F. (1996) Trichomonas vaginalis adhesin proteins display molecular mimicry to metabolic enzymes, In: Kahane, and Ofek (eds), Toward Anti-Adhesion Therapy for Microbial Diseases, pp. 207–223, Plenum Press, New York PubMed
Meza-Cervantez P., González-Robles A., Cárdenas-Guerra R. E., Ortega-López J., Saavedra E., Pineda E., and Arroyo R. (2011) Pyruvate:ferredoxin oxidoreductase (PFO) is a surface-associated cell-binding protein in Trichomonas vaginalis and is involved in trichomonal adherence to host cells. Microbiology 157, 3469–3482 PubMed
Thibeaux R., Weber C., Hon C. C., Dillies M. A., Avé P., Coppée J. Y., Labruyère E., and Guillén N. (2013) Identification of the virulence landscape essential for Entamoeba histolytica invasion of the human colon. PLoS Pathog. 9, e1003824. PubMed PMC
Martincová E., Voleman L., Pyrih J.,Žárský V., Vondráčková P., Kolísko M., Tachezy J., and Doležal P. (2015) Probing the biology of Giardia intestinalis mitosomes using in vivo enzymatic tagging. Mol. Cell. Biol. 35, 2864–2874 PubMed PMC
Samuelson J., Banerjee S., Magnelli P., Cui J., Kelleher D. J., Gilmore R., and Robbins P. W. (2005) The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc. Natl. Acad. Sci. U.S.A. 102, 1548–1553 PubMed PMC
Lehker M. W., and Sweeney D. (1999) Trichomonad invasion of the mucous layer requires adhesins, mucinases, and motility. Sex Transm. Infect. 75, 231–238 PubMed PMC
Connaris S., and Greenwell P. (1997) Glycosidases in mucin-dwelling protozoans. Glycoconj. J. 14, 879–882 PubMed
Cuervo P., Cupolillo E., Britto C., González L. J., FC E. S.-F., Lopes L. C., Domont G. B., and De Jesus J. B. (2008) Differential soluble protein expression between Trichomonas vaginalis isolates exhibiting low and high virulence phenotypes. J. Proteomics 71, 109–122 PubMed
Figueroa-Angulo E. E., Rendón-Gandarilla F. J., Puente-Rivera J., Calla-Choque J. S., Cárdenas-Guerra R. E., Ortega-López J., Quintas-Granados L. I., Alvarez-Sánchez M. E., and Arroyo R. (2012) The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes. Infect. 14, 1411–1427 PubMed
Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D. S., Weinrauch Y., and Zychlinsky A. (2004) Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 PubMed
Urban C. F., Reichard U., Brinkmann V., and Zychlinsky A. (2006) Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 8, 668–676 PubMed
Buchanan J. T., Simpson A. J., Aziz R. K., Liu G. Y., Kristian S. A., Kotb M., Feramisco J., and Nizet V. (2006) DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr. Biol. 16, 396–400 PubMed
Zhang X., Zhao S., Sun L., Li W., Wei Q., Ashman R. B., and Hu Y. (2017) Different virulence of Candida albicans is attributed to the ability of escape from neutrophil extracellular traps by secretion of DNase. Am. J. Transl. Res. 9, 50–62 PubMed PMC
Liu M. F., Wu X. P., Wang X. L., Yu Y. L., Wang W. F., Chen Q. J., Boireau P., and Liu M. Y. (2008) The functions of deoxyribonuclease II in immunity and development. DNA Cell Biol. 27, 223–228 PubMed
Leippe M., Andrä J., Nickel R., Tannich E., and Müller-Eberhard H. J. (1994) Amoebapores, a family of membranolytic peptides from cytoplasmic granules of Entamoeba histolytica: Isolation, primary structure, and pore formation in bacterial cytoplasmic membranes. Mol. Microbiol. 14, 895–904 PubMed
Herbst R., Marciano-Cabral F., and Leippe M. (2004) Antimicrobial and pore-forming peptides of free-living and potentially highly pathogenic Naegleria fowleri are released from the same precursor molecule. J. Biol. Chem. 279, 25955–25958 PubMed
Hirt R. P., de Miguel N., Nakjang S., Dessi D., Liu Y. C., Diaz N., Rapelli P., Acosta-Serano A., Fiori P. L., and Mottram J. C. (2011) Trichomonas vaginalis Pathobiology: New insights from the Genome Sequence, 1st Ed., pp. 87–130, Elsevier, Amsterdam PubMed
Horváthová L., Šafariková L., Basler M., Hrdy I., Campo N. B., Shin J. W., Huang K. Y., Huang P. J., Lin R., Tang P., and Tachezy J. (2012) Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome. Genome Biol. Evol. 4, 1017–1029 PubMed PMC
Huang K. Y., Chen Y. Y., Fang Y. K., Cheng W. H., Cheng C. C., Chen Y. C., Wu T. E., Ku F. M., Chen S. C., Lin R., and Tang P. (2014) Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochim. Biophys. Acta 1840, 53–64 PubMed
Huang K. Y., Huang P. J., Ku F. M., Lin R., Alderete J. F., and Tang P. (2012) Comparative transcriptomic and proteomic analyses of Trichomonas vaginalis following adherence to fibronectin. Infect. Immun. 80, 3900–3911 PubMed PMC
Gould S. B., Woehle C., Kusdian G., Landan G., Tachezy J., Zimorski V., and Martin W. F. (2013) Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. Int. J. Parasitol. 43, 707–719 PubMed
Vizcaíno J. A., Csordas A., Del-Toro N., Dianes J. A., Griss J., Lavidas I., Mayer G., Perez-Riverol Y., Reisinger F., Ternent T., Xu Q. W., Wang R., and Hermjakob H. (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, 11033. PubMed PMC
Baker P. R., and Chalkley R. J. (2014) MS-viewer: A web-based spectral viewer for proteomics results. Mol. Cell. Proteomics 13, 1392–1396 PubMed PMC
The retromer and retriever systems are conserved and differentially expanded in parabasalids
A hybrid TIM complex mediates protein import into hydrogenosomes of Trichomonas vaginalis
Anaerobic peroxisomes in Entamoeba histolytica metabolize myo-inositol
Anaerobic peroxisomes in Mastigamoeba balamuthi
Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis