A hybrid TIM complex mediates protein import into hydrogenosomes of Trichomonas vaginalis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR 22-14413S
Grantová Agentura České Republiky
GAUK 250937
GAUK
LM2023050
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023050
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.10.03.01/00/22_003/0000003
Ministerstvo Životního Prostředí
PubMed
38825681
PubMed Central
PMC11145794
DOI
10.1186/s12915-024-01928-8
PII: 10.1186/s12915-024-01928-8
Knihovny.cz E-zdroje
- Klíčová slova
- Trichomonas vaginalis, Hydrogenosomes, Mitochondria, Parasite, Presequence translocase-associated motor, Protein import machinery, TIM22 complex, TIM23 complex,
- MeSH
- mitochondriální importní komplex MeSH
- mitochondrie metabolismus MeSH
- organely metabolismus MeSH
- protozoální proteiny metabolismus MeSH
- transport proteinů * MeSH
- Trichomonas vaginalis * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mitochondriální importní komplex MeSH
- protozoální proteiny MeSH
BACKGROUND: Hydrogenosomes are a specific type of mitochondria that have adapted for life under anaerobiosis. Limited availability of oxygen has resulted in the loss of the membrane-associated respiratory chain, and consequently in the generation of minimal inner membrane potential (Δψ), and inefficient ATP synthesis via substrate-level phosphorylation. The changes in energy metabolism are directly linked with the organelle biogenesis. In mitochondria, proteins are imported across the outer membrane via the Translocase of the Outer Membrane (TOM complex), while two Translocases of the Inner Membrane, TIM22, and TIM23, facilitate import to the inner membrane and matrix. TIM23-mediated steps are entirely dependent on Δψ and ATP hydrolysis, while TIM22 requires only Δψ. The character of the hydrogenosomal inner membrane translocase and the mechanism of translocation is currently unknown. RESULTS: We report unprecedented modification of TIM in hydrogenosomes of the human parasite Trichomonas vaginalis (TvTIM). We show that the import of the presequence-containing protein into the hydrogenosomal matrix is mediated by the hybrid TIM22-TIM23 complex that includes three highly divergent core components, TvTim22, TvTim23, and TvTim17-like proteins. The hybrid character of the TvTIM is underlined by the presence of both TvTim22 and TvTim17/23, association with small Tim chaperones (Tim9-10), which in mitochondria are known to facilitate the transfer of substrates to the TIM22 complex, and the coupling with TIM23-specific ATP-dependent presequence translocase-associated motor (PAM). Interactome reconstruction based on co-immunoprecipitation (coIP) and mass spectrometry revealed that hybrid TvTIM is formed with the compositional variations of paralogs. Single-particle electron microscopy for the 132-kDa purified TvTIM revealed the presence of a single ring of small Tims complex, while mitochondrial TIM22 complex bears twin small Tims hexamer. TvTIM is currently the only TIM visualized outside of Opisthokonta, which raised the question of which form is prevailing across eukaryotes. The tight association of the hybrid TvTIM with ADP/ATP carriers (AAC) suggests that AAC may directly supply ATP for the protein import since ATP synthesis is limited in hydrogenosomes. CONCLUSIONS: The hybrid TvTIM in hydrogenosomes represents an original structural solution that evolved for protein import when Δψ is negligible and remarkable example of evolutionary adaptation to an anaerobic lifestyle.
Zobrazit více v PubMed
Morgenstern M, Stiller SB, Lübbert P, Peikert CD, Dannenmaier S, Drepper F, et al. Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep. 2017;19(13):2836–52. doi: 10.1016/j.celrep.2017.06.014. PubMed DOI PMC
Araiso Y, Tsutsumi A, Qiu J, Imai K, Shiota T, Song J, et al. Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature. 2019;575(7782):395–401. doi: 10.1038/s41586-019-1680-7. PubMed DOI
Busch JD, Fielden LF, Pfanner N, Wiedemann N. Mitochondrial protein transport: Versatility of translocases and mechanisms. Mol Cell. 2023;83(6):890–910. doi: 10.1016/j.molcel.2023.02.020. PubMed DOI
Makki A, Rehling P. Protein transport along the presequence pathway. Biol Chem. 2023;404(8–9):807–12. doi: 10.1515/hsz-2023-0133. PubMed DOI
Gomkale R, Linden A, Neumann P, Schendzielorz AB, Stoldt S, Dybkov O, et al. Mapping protein interactions in the active TOM-TIM23 supercomplex. Nat Commun. 2021;12(1):5715. doi: 10.1038/s41467-021-26016-1. PubMed DOI PMC
Dekker PJT, Martin F, Maarse AC, Bömer U, Müller H, Guiard B, et al. The Tim core complex defines the number of mitochondrial translocation contact sites and can hold arrested preproteins in the absence of matrix Hsp70–Tim44. EMBO J. 1997;16(17):5408–19. doi: 10.1093/emboj/16.17.5408. PubMed DOI PMC
Chacinska A, Lind M, Frazier AE, Dudek J, Meisinger C, Geissler A, et al. Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell. 2005;120(6):817–29. doi: 10.1016/j.cell.2005.01.011. PubMed DOI
Mapa K, Sikor M, Kudryavtsev V, Waegemann K, Kalinin S, Seidel CAM, et al. The conformational dynamics of the mitochondrial Hsp70 chaperone. Mol Cell. 2010;38(1):89–100. doi: 10.1016/j.molcel.2010.03.010. PubMed DOI
Ieva R, Schrempp SG, Opaliński Ł, Wollweber F, Höß P, Heißwolf AK, et al. Mgr2 functions as lateral gatekeeper for preprotein sorting in the mitochondrial inner membrane. Mol Cell. 2014;56(5):641–52. doi: 10.1016/j.molcel.2014.10.010. PubMed DOI
Žárský V, Doležal P. Evolution of the Tim17 protein family. Biol Direct. 2016;11(1):54. doi: 10.1186/s13062-016-0157-y. PubMed DOI PMC
Zhang Y, Ou X, Wang X, Sun D, Zhou X, Wu X, et al. Structure of the mitochondrial TIM22 complex from yeast. Cell Res. 2021;31(3):366–8. doi: 10.1038/s41422-020-00399-0. PubMed DOI PMC
Valpadashi A, Callegari S, Linden A, Neumann P, Ficner R, Urlaub H, et al. Defining the architecture of the human TIM22 complex by chemical crosslinking. FEBS Lett. 2021;595(2):157–68. doi: 10.1002/1873-3468.13978. PubMed DOI
Qi L, Wang Q, Guan Z, Wu Y, Shen C, Hong S, et al. Cryo-EM structure of the human mitochondrial translocase TIM22 complex. Cell Res. 2021;31(3):369–72. doi: 10.1038/s41422-020-00400-w. PubMed DOI PMC
Beverly KN, Sawaya MR, Schmid E, Koehler CM. The Tim8-Tim13 complex has multiple substrate binding sites and binds cooperatively to Tim23. J Mol Biol. 2008;382(5):1144–56. doi: 10.1016/j.jmb.2008.07.069. PubMed DOI PMC
Gentle IE, Perry AJ, Alcock FH, Likić VA, Dolezal P, Ng ET, et al. Conserved motifs reveal details of ancestry and structure in the small TIM chaperones of the mitochondrial intermembrane space. Mol Biol Evol. 2007;24(5):1149–60. doi: 10.1093/molbev/msm031. PubMed DOI
Pyrihová E, Motyčková A, Voleman L, Wandyszewska N, Fišer R, Seydlová G, et al. A Single Tim Translocase in the Mitosomes of Giardia intestinalis Illustrates Convergence of Protein Import Machines in Anaerobic Eukaryotes. Genome Biol Evol. 2018;10(10):2813–22. doi: 10.1093/gbe/evy215. PubMed DOI PMC
Harsman A, Schneider A. Mitochondrial protein import in trypanosomes: Expect the unexpected. Traffic. 2017;18(2):96–109. doi: 10.1111/tra.12463. PubMed DOI
Report on global sexually transmitted infection surveillance 2018. https://iris.who.int/handle/10665/277258. Accessed 14 Nov 2023.
Tachezy J, Makki A, Hrdý I. The hydrogenosome of Trichomonas vaginalis. J Eukaryot Microbiol. 2022;69(6):e12922. doi: 10.1111/jeu.12922. PubMed DOI
Bradley PJ, Lahti CJ, Plumper E, Johnson PJ. Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J. 1997;16(12):3484–93. doi: 10.1093/emboj/16.12.3484. PubMed DOI PMC
Hrdy I, Tachezy J, Müller M. Metabolism of trichomonad hydrogenosomes. In: Tachezy J, editor. Hydrogenosome and Mitosomes: mitochondria of anaerobic eukaryotes. Cham: Springer; 2008. pp. 114–45.
Rada P, Doležal P, Jedelský PL, Bursac D, Perry AJ, Šedinová M, et al. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS One. 2011;6(9):e24428. doi: 10.1371/journal.pone.0024428. PubMed DOI PMC
Garg S, Stölting J, Zimorski V, Rada P, Tachezy J, Martin WF, et al. Conservation of transit peptide-Independent protein import into the mitochondrial and hydrogenosomal matrix. Genome Biol Evol. 2015;7(9):2716–26. doi: 10.1093/gbe/evv175. PubMed DOI PMC
Makki A, Rada P, Žárský V, Kereïche S, Kováčik L, Novotný M, et al. Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biol. 2019;17(1):e3000098. doi: 10.1371/journal.pbio.3000098. PubMed DOI PMC
Beltrán NC, Horváthová L, Jedelský PL, Šedinová M, Rada P, Marcinčiková M, et al. Iron-Induced Changes in the Proteome of Trichomonas vaginalis Hydrogenosomes. PLoS One. 2013;8(5):e65148. doi: 10.1371/journal.pone.0065148. PubMed DOI PMC
Zhou S, Ruan M, Li Y, Yang J, Bai S, Richter C, et al. Solution structure of the voltage-gated Tim23 channel in complex with a mitochondrial presequence peptide. Cell Res. 2021;31(7):821–4. doi: 10.1038/s41422-020-00452-y. PubMed DOI PMC
Demishtein-Zohary K, Günsel U, Marom M, Banerjee R, Neupert W, Azem A, et al. Role of Tim17 in coupling the import motor to the translocation channel of the mitochondrial presequence translocase. eLife. 2017;6:e22696. doi: 10.7554/eLife.22696. PubMed DOI PMC
Demishtein-Zohary K, Marom M, Neupert W, Mokranjac D, Azem A. GxxxG motifs hold the TIM23 complex together. FEBS J. 2015;282(11):2178–86. doi: 10.1111/febs.13266. PubMed DOI
Stairs CW, Táborský P, Salomaki ED, Kolisko M, Pánek T, Eme L, et al. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr Biol. 2021;31(24):5605–5612.e5. doi: 10.1016/j.cub.2021.10.010. PubMed DOI
Rehling P, Model K, Brandner K, Kovermann P, Sickmann A, Meyer HE, et al. Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science. 2003;299(5613):1747–51. doi: 10.1126/science.1080945. PubMed DOI
Zárský V, Klimeš V, Pačes J, Vlček Č, Hradilová M, Beneš V, et al. The Mastigamoeba balamuthi genome and the nature of the free-living ancestor of Entamoeba. Mol Biol Evol. 2021;38(6):2240–59. doi: 10.1093/molbev/msab020. PubMed DOI PMC
Fukasawa Y, Oda T, Tomii K, Imai K. Origin and Evolutionary Alteration of the Mitochondrial Import System in Eukaryotic Lineages. Mol Biol Evol. 2017;34(7):1574–86. doi: 10.1093/molbev/msx096. PubMed DOI PMC
Malhotra K, Sathappa M, Landin JS, Johnson AE, Alder NN. Structural changes in the mitochondrial Tim23 channel are coupled to the proton-motive force. Nat Struct Mol Biol. 2013;20(8):965–72. doi: 10.1038/nsmb.2613. PubMed DOI
Truscott KN, Kovermann P, Geissler A, Merlin A, Meijer M, Driessen AJM, et al. A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat Struct Biol. 2001;8(12):1074–82. doi: 10.1038/nsb726. PubMed DOI
Schendzielorz AB, Schulz C, Lytovchenko O, Clancy A, Guiard B, Ieva R, et al. Two distinct membrane potential-dependent steps drive mitochondrial matrix protein translocation. J Cell Biol. 2017;216(1):83–92. doi: 10.1083/jcb.201607066. PubMed DOI PMC
Šmíd O, Matušková A, Harris SR, Kučera T, Novotný M, Horváthová L, et al. Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog. 2008;4(12):e1000243. doi: 10.1371/journal.ppat.1000243. PubMed DOI PMC
Garg SG, Gould SB. The role of charge in protein targeting evolution. Trends Cell Biol. 2016;26(12):894–905. doi: 10.1016/j.tcb.2016.07.001. PubMed DOI
Zimorski V, Major P, Hoffmann K, Brás XP, Martin WF, Gould SB. The N-terminal sequences of four major hydrogenosomal proteins are not essential for import into hydrogenosomes of Trichomonas vaginalis. J Eukaryot Microbiol. 2013;60(1):89–97. doi: 10.1111/jeu.12012. PubMed DOI
Terada H. The interaction of highly active uncouplers with mitochondria. Biochim Biophys Acta. 1981;639(3–4):225–42. doi: 10.1016/0304-4173(81)90011-2. PubMed DOI
Turakhiya U, Von Der Malsburg K, Gold VAM, Guiard B, Chacinska A, Van Der Laan M, et al. Protein import by the mitochondrial presequence translocase in the absence of a membrane potential. J Mol Biol. 2016;428(6):1041–52. doi: 10.1016/j.jmb.2016.01.020. PubMed DOI
Rada P, Makki AR, Zimorski V, Garg S, Hampl V, Hrdý I, et al. N-terminal presequence-independent import of phosphofructokinase into hydrogenosomes of Trichomonas vaginalis. Eukaryot Cell. 2015;14(12):1264–75. doi: 10.1128/EC.00104-15. PubMed DOI PMC
Blom J, Dekker PJT, Meijer M. Functional and physical interactions of components of the yeast mitochondrial inner-membrane import machinery (MIM) Eur J Biochem. 1995;232(1):309–14. doi: 10.1111/j.1432-1033.1995.tb20813.x. PubMed DOI
Bömer U, Meijer M, Maarse AC, Hönlinger A, Dekker PJT, Pfanner N, et al. Multiple interactions of components mediating preprotein translocation across the inner mitochondrial membrane. EMBO J. 1997;16:2205–16. doi: 10.1093/emboj/16.9.2205. PubMed DOI PMC
Ting SY, Yan NL, Schilke BA, Craig EA. Dual interaction of scaffold protein Tim44 of mitochondrial import motor with channel-forming translocase subunit Tim23. Elife. 2017;6:e23609. doi: 10.7554/eLife.23609. PubMed DOI PMC
Sim SI, Chen Y, Lynch DL, Gumbart JC, Park E. Structural basis of mitochondrial protein import by the TIM23 complex. Nature. 2023;621(7979):620–6. doi: 10.1038/s41586-023-06239-6. PubMed DOI
Palmer CS, Lou J, Kouskousis B, Pandzic E, Anderson AJ, Kang Y, et al. Super-resolution microscopy reveals the arrangement of inner membrane protein complexes in mammalian mitochondria. J Cell Sci. 2021;134(13):jcs252197. doi: 10.1242/jcs.252197. PubMed DOI
Weinhäupl K, Wang Y, Hessel A, Brennich M, Lindorff-Larsen K, Schanda P. Architecture and assembly dynamics of the essential mitochondrial chaperone complex TIM9·10·12. Structure. 2021;29(9):1065–1073.e4. doi: 10.1016/j.str.2021.04.009. PubMed DOI
Zhou X, Yang Y, Wang G, Wang S, Sun D, Ou X, et al. Molecular pathway of mitochondrial preprotein import through the TOM–TIM23 supercomplex. Nat Struct Mol Biol. 2023;30(12):1996–2008. doi: 10.1038/s41594-023-01103-7. PubMed DOI
Benchimol M. Hydrogenosomes under microscopy. Tissue Cell. 2009;41(3):151–68. doi: 10.1016/j.tice.2009.01.001. PubMed DOI
Donzeau M, Káldi K, Adam A, Paschen S, Wanner G, Guiard B, et al. Tim23 links the inner and outer mitochondrial membranes. Cell. 2000;101(4):401–12. doi: 10.1016/S0092-8674(00)80850-8. PubMed DOI
Hrdy I, Hirt RP, Dolezal P, Bardonová L, Foster PG, Tachezy J, et al. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature. 2004;432(7017):618–22. doi: 10.1038/nature03149. PubMed DOI
Štáfková J, Rada P, Meloni D, Žárský V, Smutná T, Zimmann N, et al. Dynamic secretome of Trichomonas vaginalis: Case study of β-amylases. Mol Cell Proteomics. 2017;17(2):304–20. doi: 10.1074/mcp.RA117.000434. PubMed DOI PMC
Dolezal P, Smid O, Rada P, Zubácová Z, Bursać D, Suták R, et al. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A. 2005;102(31):10924–9. doi: 10.1073/pnas.0500349102. PubMed DOI PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Gorilak P, Pružincová M, Vachova H, Olšinová M, Schmidt Cernohorska M, Varga V. Expansion microscopy facilitates quantitative super-resolution studies of cytoskeletal structures in kinetoplastid parasites. Open Biol. 2021;11(9):210131. doi: 10.1098/rsob.210131. PubMed DOI PMC
Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44(D1):D447–56. doi: 10.1093/nar/gkv1145. PubMed DOI PMC
Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, et al. EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol. 2007;157(1):38–46. doi: 10.1016/j.jsb.2006.05.009. PubMed DOI
Kimanius D, Forsberg BO, Scheres SHW, Lindahl E. Accelerated cryo-EM structure determination with parallelisation using GPUS in RELION-2. eLife. 2016;5:e18722. doi: 10.7554/eLife.18722. PubMed DOI PMC
Scheres SHW. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol. 2012;180(3):519–30. doi: 10.1016/j.jsb.2012.09.006. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210. doi: 10.1186/1471-2148-10-210. PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–50. doi: 10.1093/nar/gky1106. PubMed DOI PMC