Evolution of the Tim17 protein family

. 2016 Oct 19 ; 11 (1) : 54. [epub] 20161019

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27760563
Odkazy

PubMed 27760563
PubMed Central PMC5072337
DOI 10.1186/s13062-016-0157-y
PII: 10.1186/s13062-016-0157-y
Knihovny.cz E-zdroje

BACKGROUND: The Tim17 family of proteins plays a fundamental role in the biogenesis of mitochondria. Three Tim17 family proteins, Tim17, Tim22, and Tim23, are the central components of the widely conserved multi-subunit protein translocases, TIM23 and TIM22, which mediate protein transport across and into the inner mitochondrial membrane, respectively. In addition, several Tim17 family proteins occupy the inner and outer membranes of plastids. RESULTS: We have performed comprehensive sequence analyses on 5631 proteomes from all domains of life deposited in the Uniprot database. The analyses showed that the Tim17 family of proteins is much more diverse than previously thought and involves at least ten functionally and phylogenetically distinct groups of proteins. As previously shown, mitochondrial inner membrane accommodates prototypical Tim17, Tim22 and Tim23 and two Tim17 proteins, TIMMDC1 and NDUFA11, which participate in the assembly of complex I of the respiratory chain. In addition, we have identified Romo1/Mgr2 as Tim17 family member. The protein has been shown to control lateral release of substrates fromTIM23 complex in yeast and to participate in the production of reactive oxygen species in mammalian cells. Two peroxisomal proteins, Pmp24 and Tmem135, of so far unknown function also belong to Tim17 protein family. Additionally, a new group of Tim17 family proteins carrying a C-terminal coiled-coil domain has been identified predominantly in fungi. CONCLUSIONS: We have mapped the distribution of Tim17 family members in the eukaryotic supergroups and found that the mitochondrial Tim17, Tim22 and Tim23 proteins, as well as the peroxisomal Tim17 family proteins, were all likely to be present in the last eukaryotic common ancestor (LECA). Thus, kinetoplastid mitochondria previously identified as carrying a single Tim17protein family homologue are likely to be the outcome of a secondary reduction. The eukaryotic cell has modified mitochondrial Tim17 family proteins to mediate different functions in multiple cellular compartments including mitochondria, plastids and peroxisomes. Concerning the origin of Tim17 protein family, our analyses do not support the affiliation of the protein family and the component of bacterial amino acid permease. Thus, it is likely that Tim17 protein family is exclusive to eukaryotes. REVIEWERS: The article was reviewed by Michael Gray, Martijn Huynen and Kira Makarova.

Zobrazit více v PubMed

Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138:628–44. doi: 10.1016/j.cell.2009.08.005. PubMed DOI PMC

Rehling P, Brandner K, Pfanner N. Mitochondrial import and the twin-pore translocase. Nat Rev Mol Cell Biol. 2004;5:519–30. doi: 10.1038/nrm1426. PubMed DOI

Mokranjac D, Neupert W. The many faces of the mitochondrial TIM23 complex. Biochim Biophys Acta. 2010;1797:1045–54. PubMed

Reinbothe S, Quigley F, Springer A, Schemenewitz A, Reinbothe C. The outer plastid envelope protein Oep16: role as precursor translocase in import of protochlorophyllide oxidoreductase A. Proc Natl Acad Sci U S A. 2004;101:2203–8. doi: 10.1073/pnas.0301962101. PubMed DOI PMC

Rossig C, Reinbothe C, Gray J, Valdes O, von Wettstein D, Reinbothe S. Three proteins mediate import of transit sequence-less precursors into the inner envelope of chloroplasts in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2013;110:19962–7. doi: 10.1073/pnas.1319648110. PubMed DOI PMC

Rassow J, Dekker PJ, van Wilpe S, Meijer M, Soll J. The preprotein translocase of the mitochondrial inner membrane: function and evolution. J Mol Biol. 1999;286:105–20. doi: 10.1006/jmbi.1998.2455. PubMed DOI

Gentle IE, Perry AJ, Alcock FH, Likić VA, Dolezal P, Ng ET, et al. Conserved motifs reveal details of ancestry and structure in the small TIM chaperones of the mitochondrial intermembrane space. Mol Biol Evol. 2007;24:1149–60. doi: 10.1093/molbev/msm031. PubMed DOI

Singha UK, Peprah E, Williams S, Walker R, Saha L, Chaudhuri M. Characterization of the mitochondrial inner membrane protein translocator Tim17 from Trypanosoma brucei. Mol Biochem Parasitol. 2008;159:30–43. doi: 10.1016/j.molbiopara.2008.01.003. PubMed DOI PMC

Schneider A, Bursać D, Lithgow T. The direct route: a simplified pathway for protein import into the mitochondrion of trypanosomes. Trends Cell Biol. 2008;18:12–8. doi: 10.1016/j.tcb.2007.09.009. PubMed DOI

Wrobel L, Trojanowska A, Sztolsztener ME, Chacinska A. Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria. Mol Biol Cell. 2013;24:543–54. doi: 10.1091/mbc.E12-09-0649. PubMed DOI PMC

Okamoto H, Miyagawa A, Shiota T, Tamura Y, Endo T. Intramolecular disulfide bond of TIM22 protein maintains integrity of the TIM22 complex in the mitochondrial inner membrane. J Biol Chem. 2014;289:4827–38. doi: 10.1074/jbc.M113.543264. PubMed DOI PMC

Wang Y, Carrie C, Giraud E, Elhafez D, Narsai R, Duncan O, et al. Dual location of the mitochondrial preprotein transporters B14.7 and Tim23-2 in complex I and the TIM17:23 complex in Arabidopsis links mitochondrial activity and biogenesis. Plant Cell. 2012;24:2675–95. doi: 10.1105/tpc.112.098731. PubMed DOI PMC

Andrews B, Carroll J, Ding S, Fearnley IM, Walker JE. Assembly factors for the membrane arm of human complex I. Proc Natl Acad Sci U S A. 2013;110:18934–9. doi: 10.1073/pnas.1319247110. PubMed DOI PMC

Guarani V, Paulo J, Zhai B, Huttlin EL, Gygi SP, Harper JW. TIMMDC1/C3orf1 functions as a membrane-embedded mitochondrial complex I assembly factor through association with the MCIA complex. Mol Cell Biol. 2014;34:847–61. doi: 10.1128/MCB.01551-13. PubMed DOI PMC

Kulawiak B, Höpker J, Gebert M, Guiard B, Wiedemann N, Gebert N. The mitochondrial protein import machinery has multiple connections to the respiratory chain. Biochim Biophys Acta. 1827;2013:612–26. PubMed

Gebert M, Schrempp SG, Mehnert CS, Heißwolf AK, Oeljeklaus S, Ieva R, et al. Mgr2 promotes coupling of the mitochondrial presequence translocase to partner complexes. J Cell Biol. 2012;197:595–604. doi: 10.1083/jcb.201110047. PubMed DOI PMC

Chung YM, Kim JS, Yoo YD. A novel protein, Romo1, induces ROS production in the mitochondria. Biochem Biophys Res Commun. 2006;347:649–55. doi: 10.1016/j.bbrc.2006.06.140. PubMed DOI

Ieva R, Schrempp SG, Opaliński L, Wollweber F, Höß P, Heißwolf AK, et al. Mgr2 functions as lateral gatekeeper for preprotein sorting in the mitochondrial inner membrane. Mol Cell. 2014;56:641–52. doi: 10.1016/j.molcel.2014.10.010. PubMed DOI

Truscott KN, Kovermann P, Geissler A, Merlin A, Meijer M, Driessen AJ, et al. A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat Struct Biol. 2001;8:1074–82. doi: 10.1038/nsb726. PubMed DOI

Martinez-Caballero S, Grigoriev SM, Herrmann JM, Campo ML, Kinnally KW. Tim17p regulates the twin pore structure and voltage gating of the mitochondrial protein import complex TIM23. J Biol Chem. 2006;282:3584–93. doi: 10.1074/jbc.M607551200. PubMed DOI

Kim JJ, Lee SB, Park JK, Yoo YD. TNF- a -induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X L. Cell Death Differ. 2010;17:1420–34. doi: 10.1038/cdd.2010.19. PubMed DOI

Norton M, Ng AC-H, Baird S, Dumoulin A, Shutt T, Mah N, et al. ROMO1 is an essential redox-dependent regulator of mitochondrial dynamics. Sci Signal. 2014;7:ra10. doi: 10.1126/scisignal.2004374. PubMed DOI

Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–85. doi: 10.1093/nar/gkv1344. PubMed DOI PMC

Reguenga C, Oliveira ME, Gouveia AM, Eckerskorn C, Sá-Miranda C, Azevedo JE. Identification of a 24 kDa intrinsic membrane protein from mammalian peroxisomes. Biochim Biophys Acta. 1999;1445:337–41. doi: 10.1016/S0167-4781(99)00061-5. PubMed DOI

Pinto MP, Grou CP, Alencastre IS, Oliveira ME, Sá-Miranda C, Fransen M, et al. The import competence of a peroxisomal membrane protein is determined by Pex19p before the docking step. J Biol Chem. 2006;281:34492–502. doi: 10.1074/jbc.M607183200. PubMed DOI

Islinger M, Lüers GH, Li KW, Loos M, Völkl A. Rat liver peroxisomes after fibrate treatment. A survey using quantitative mass spectrometry. J Biol Chem. 2007;282:23055–69. doi: 10.1074/jbc.M610910200. PubMed DOI

Wiese S, Gronemeyer T, Ofman R, Kunze M, Grou CP, Almeida JA, et al. Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol Cell Proteomics. 2007;6:2045–57. doi: 10.1074/mcp.M700169-MCP200. PubMed DOI

Scheideler M, Elabd C, Zaragosi L-E, Chiellini C, Hackl H, Sanchez-Cabo F, et al. Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis. BMC Genomics. 2008;9:340. doi: 10.1186/1471-2164-9-340. PubMed DOI PMC

Exil VJ, Silva Avila D, Benedetto A, Exil EA, Adams MR, Au C, et al. Stressed-induced TMEM135 protein is part of a conserved genetic network involved in fat storage and longevity regulation in Caenorhabditis elegans. PLoS One. 2010;5:e14228. doi: 10.1371/journal.pone.0014228. PubMed DOI PMC

Wylin T, Baes M, Brees C, Mannaerts GP, Fransen M, Van Veldhoven PP. Identification and characterization of human PMP34, a protein closely related to the peroxisomal integral membrane protein PMP47 of Candida boidinii. Eur J Biochem. 1998;258:332–8. doi: 10.1046/j.1432-1327.1998.2580332.x. PubMed DOI

Dolezal P, Dagley MJ, Kono M, Wolynec P, Likić VA, Foo JH, et al. The essentials of protein import in the degenerate mitochondrion of Entamoba histolytica. PLoS Pathog. 2010;6:e1000812. doi: 10.1371/journal.ppat.1000812. PubMed DOI PMC

Martincová E, Voleman L, Pyrih J, Žárský V, Vondráčková P, Kolísko M, et al. Probing the biology of Giardia intestinalis mitosomes using in vivo enzymatic tagging. Mol Cell Biol. 2015;35:2864–74. doi: 10.1128/MCB.00448-15. PubMed DOI PMC

Adams MD, Wagner LM, Graddis TJ, Landick R, Antonucci TK, Gibson AL, et al. Nucleotide sequence and genetic characterization reveal six essential genes for the LIV-I and LS transport systems of Escherichia coli. J Biol Chem. 1990;265:11436–43. PubMed

Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res England. 2011;39:W29–37. doi: 10.1093/nar/gkr367. PubMed DOI PMC

Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50. doi: 10.1093/molbev/msp077. PubMed DOI PMC

Käll L, Krogh A, Sonnhammer ELL. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Res. 2007;35:W429–32. doi: 10.1093/nar/gkm256. PubMed DOI PMC

Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80. doi: 10.1006/jmbi.2000.4315. PubMed DOI

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol United States. 2013;30:772–80. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol England. 2010;10:210. doi: 10.1186/1471-2148-10-210. PubMed DOI PMC

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. England. 2010;59:307–21. PubMed

Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics England. 2003;19:1572–4. doi: 10.1093/bioinformatics/btg180. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Pam16 and Pam18 were repurposed during Trypanosoma brucei evolution to regulate the replication of mitochondrial DNA

. 2024 Aug ; 22 (8) : e3002449. [epub] 20240815

A hybrid TIM complex mediates protein import into hydrogenosomes of Trichomonas vaginalis

. 2024 Jun 03 ; 22 (1) : 130. [epub] 20240603

Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes

. 2023 Dec ; 98 (6) : 1910-1927. [epub] 20230619

Reduced mitochondria provide an essential function for the cytosolic methionine cycle

. 2022 Dec 05 ; 32 (23) : 5057-5068.e5. [epub] 20221107

Fates of Sec, Tat, and YidC Translocases in Mitochondria and Other Eukaryotic Compartments

. 2021 Dec 09 ; 38 (12) : 5241-5254.

The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome

. 2020 Mar 02 ; 18 (1) : 22. [epub] 20200302

Evolution of mitochondrial TAT translocases illustrates the loss of bacterial protein transport machines in mitochondria

. 2018 Nov 22 ; 16 (1) : 141. [epub] 20181122

A Single Tim Translocase in the Mitosomes of Giardia intestinalis Illustrates Convergence of Protein Import Machines in Anaerobic Eukaryotes

. 2018 Oct 01 ; 10 (10) : 2813-2822. [epub] 20181001

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace