Reduced mitochondria provide an essential function for the cytosolic methionine cycle
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36347252
PubMed Central
PMC9746703
DOI
10.1016/j.cub.2022.10.028
PII: S0960-9822(22)01673-6
Knihovny.cz E-zdroje
- Klíčová slova
- LOPIT, Paratrimastix, glycine cleavage system, methionine cycle, mitochondrion-related organelle, one-carbon metabolism, proteome, spatial proteomics,
- MeSH
- Eukaryota metabolismus MeSH
- methionin * MeSH
- mitochondrie * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- methionin * MeSH
The loss of mitochondria in oxymonad protists has been associated with the redirection of the essential Fe-S cluster assembly to the cytosol. Yet as our knowledge of diverse free-living protists broadens, the list of functions of their mitochondrial-related organelles (MROs) expands. We revealed another such function in the closest oxymonad relative, Paratrimastix pyriformis, after we solved the proteome of its MRO with high accuracy, using localization of organelle proteins by isotope tagging (LOPIT). The newly assigned enzymes connect to the glycine cleavage system (GCS) and produce folate derivatives with one-carbon units and formate. These are likely to be used by the cytosolic methionine cycle involved in S-adenosyl methionine recycling. The data provide consistency with the presence of the GCS in MROs of free-living species and its absence in most endobionts, which typically lose the methionine cycle and, in the case of oxymonads, the mitochondria.
Charles University Faculty of Science BIOCEV Vestec 252 50 Czech Republic
Charles University Faculty of Science Department of Parasitology BIOCEV Vestec 252 50 Czech Republic
Zobrazit více v PubMed
Karnkowska A., Vacek V., Zubáčová Z., Treitli S.C., Petrželková R., Eme L., Novák L., Žárský V., Barlow L.D., Herman E.K., et al. A eukaryote without a mitochondrial organelle. Curr. Biol. 2016;26:1274–1284. PubMed
Roger A.J., Muñoz-Gómez S.A., Kamikawa R. The origin and diversification of mitochondria. Curr. Biol. 2017;27:R1177–R1192. PubMed
Santos H.J., Makiuchi T., Nozaki T. Reinventing an organelle: the reduced mitochondrion in parasitic protists. Trends Parasitol. 2018;34:1038–1055. PubMed
Leger M.M., Kolisko M., Kamikawa R., Stairs C.W., Kume K., Čepička I., Silberman J.D., Andersson J.O., Xu F., Yabuki A., et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat. Ecol. Evol. 2017;1:0092. PubMed PMC
Mi-ichi F., Abu Yousuf M.A., Nakada-Tsukui K., Nozaki T. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc. Natl. Acad. Sci. USA. 2009;106:21731–21736. PubMed PMC
Beltrán N.C., Horváthová L., Jedelský P.L., Šedinová M., Rada P., Marcinčiková M., Hrdý I., Tachezy J. Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes. PLoS One. 2013;8:e65148. PubMed PMC
Rada P., Doležal P., Jedelský P.L., Bursac D., Perry A.J., Šedinová M., Smíšková K., Novotný M., Beltrán N.C., Hrdý I., et al. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS One. 2011;6:e24428. PubMed PMC
Jedelský P.L., Doležal P., Rada P., Pyrih J., Šmíd O., Hrdý I., Šedinová M., Marcinčiková M., Voleman L., Perry A.J., et al. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One. 2011;6:e17285. PubMed PMC
Jerlström-Hultqvist J., Einarsson E., Xu F., Hjort K., Ek B., Steinhauf D., Hultenby K., Bergquist J., Andersson J.O., Svärd S.G. Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat. Commun. 2013;4:2493. PubMed PMC
Fang Y.K., Chien K.Y., Huang K.Y., Cheng W.H., Ku F.M., Lin R., Chen T.W., Huang P.J., Chiu C.H., Tang P. Responding to a zoonotic emergency with multi-omics research: Pentatrichomonas hominis hydrogenosomal protein characterization with use of RNA sequencing and proteomics. Omics. 2016;20:662–669. PubMed
Schneider R.E., Brown M.T., Shiflett A.M., Dyall S.D., Hayes R.D., Xie Y., Loo J.A., Johnson P.J. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int. J. Parasitol. 2011;41:1421–1434. PubMed PMC
Vacek V., Novák L.V.F., Treitli S.C., Táborský P., Cepicka I., Kolısko M., Keeling P.J., Hampl V. Fe–S cluster assembly in oxymonads and related protists. Mol. Biol. Evol. 2018;35:2712–2718. PubMed PMC
Braymer J.J., Freibert S.A., Rakwalska-Bange M., Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in biology. Biochim. Biophys. Acta Mol. Cell Res. 2021;1868:118863. PubMed
Hampl V., Silberman J.D., Stechmann A., Diaz-Triviño S., Johnson P.J., Roger A.J. Genetic evidence for a mitochondriate ancestry in the “amitochondriate” flagellate Trimastix pyriformis. PLoS One. 2008;3:e1383. PubMed PMC
Zubáčová Z., Novák L., Bublíková J., Vacek V., Fousek J., Rídl J., Tachezy J., Doležal P., Vlček C., Hampl V. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system. PLoS One. 2013;8:e55417. PubMed PMC
O’Kelly C.J., Farmer M.A., Nerad T.A. Ultrastructure of Trimastix pyriformis (Klebs) Bernard et al.: similarities of Trimastix species with retortamonad and jakobid flagellates. Protist. 1999;150:149–162. PubMed
Hrdy I., Hirt R.P., Dolezal P., Bardonová L., Foster P.G., Tachezy J., Embley T.M. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature. 2004;432:618–622. PubMed
McGlynn S.E., Ruebush S.S., Naumov A., Nagy L.E., Dubini A., King P.W., Broderick J.B., Posewitz M.C., Peters J.W. In vitro activation of [FeFe] hydrogenase: new insights into hydrogenase maturation. J. Biol. Inorg. Chem. 2007;12:443–447. PubMed
Geladaki A., Kočevar Britovšek N., Breckels L.M., Smith T.S., Vennard O.L., Mulvey C.M., Crook O.M., Gatto L., Lilley K.S. Combining Lopit with differential ultracentrifugation for high-resolution spatial proteomics. Nat. Commun. 2019;10:331. PubMed PMC
Sadowski P.G., Dunkley T.P.J., Shadforth I.P., Dupree P., Bessant C., Griffin J.L., Lilley K.S. Quantitative proteomic approach to study subcellular localization of membrane proteins. Nat. Protoc. 2006;1:1778–1789. PubMed
R Development Core Team . R: A language and environment for statistical computing. R Foundation for Statistical Computing; 2020.
Gatto L., Breckels L.M., Wieczorek S., Burger T., Lilley K.S. Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata. Bioinformatics. 2014;30:1322–1324. PubMed PMC
Gatto L., Breckels L.M., Lilley K.S. Assessing sub-cellular resolution in spatial proteomics experiments. Curr. Opin. Chem. Biol. 2019;48:123–149. PubMed PMC
Wiedemann N., Pfanner N. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 2017;86:685–714. PubMed
Roise D., Horvath S.J., Tomich J.M., Richards J.H., Schatz G. A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J. 1986;5:1327–1334. PubMed PMC
Kunze M., Berger J. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance. Front. Physiol. 2015;6:259. PubMed PMC
Schneider K., Zimmer D., Nielsen H., Herrmann J.M., Mühlhaus T. iMLP, a predictor for internal matrix targeting-like sequences in mitochondrial proteins. Biol. Chem. 2021;402:937–943. PubMed
Garg S., Stölting J., Zimorski V., Rada P., Tachezy J., Martin W.F., Gould S.B. Conservation of transit peptide-independent protein import into the mitochondrial and hydrogenosomal matrix. Genome Biol. Evol. 2015;7:2716–2726. PubMed PMC
Stairs C.W., Táborský P., Salomaki E.D., Kolisko M., Pánek T., Eme L., Hradilová M., Vlček Č., Jerlström-Hultqvist J., Roger A.J., Čepička I. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr. Biol. 2021;31:5605–5612.e5. PubMed
Garg S.G., Gould S.B. The role of charge in protein targeting evolution. Trends Cell Biol. 2016;26:894–905. PubMed
Yu C.S., Chen Y.C., Lu C.H., Hwang J.K. Prediction of protein subcellular localization. Proteins. 2006;64:643–651. PubMed
Bannai H., Tamada Y., Maruyama O., Nakai K., Miyano S. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics. 2002;18:298–305. PubMed
Thumuluri V., Almagro Armenteros J.J., Johansen A.R., Nielsen H., Winther O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 2022;50:W228–W234. PubMed PMC
Fukasawa Y., Tsuji J., Fu S.C., Tomii K., Horton P., Imai K. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell. Proteomics. 2015;14:1113–1126. PubMed PMC
Blum T., Briesemeister S., Kohlbacher O. MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction. BMC Bioinformatics. 2009;10:274. PubMed PMC
Kume K., Amagasa T., Hashimoto T., Kitagawa H. NommPred: prediction of mitochondrial and mitochondrion-related organelle proteins of nonmodel organisms. Evol. Bioinform. Online. 2018;14 1176934318819835. PubMed PMC
Hawkins J., Bodén M. Detecting and sorting targeting peptides with neural networks and support vector machines. J. Bioinform. Comput. Biol. 2006;4:1–18. PubMed
Almagro Armenteros J.J.A., Salvatore M., Emanuelsson O., Winther O., von Heijne G., Elofsson A., Nielsen H. Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance. 2019;2 e201900429. PubMed PMC
Lawrence S.A., Titus S.A., Ferguson J., Heineman A.L., Taylor S.M., Moran R.G. Mammalian mitochondrial and cytosolic folylpolyglutamate synthetase maintain the subcellular compartmentalization of folates. J. Biol. Chem. 2014;289:29386–29396. PubMed PMC
Tibbetts A.S., Appling D.R. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu. Rev. Nutr. 2010;30:57–81. PubMed
Mudd S.H., Brosnan J.T., Brosnan M.E., Jacobs R.L., Stabler S.P., Allen R.H., Vance D.E., Wagner C. Methyl balance and transmethylation fluxes in humans. Am. J. Clin. Nutr. 2007;85:19–25. PubMed
Solmonson A., DeBerardinis R.J. Lipoic acid metabolism and mitochondrial redox regulation. J. Biol. Chem. 2018;293:7522–7530. PubMed PMC
Green D.E., Morris T.W., Green J., Cronan J.E., Guest J.R. Purification and properties of the lipoate protein ligase of Escherichia coli. Biochem. J. 1995;309:853–862. PubMed PMC
Rowland E.A., Snowden C.K., Cristea I.M. Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease. Curr. Opin. Chem. Biol. 2018;42:76–85. PubMed PMC
Fransson A., Ruusala A., Aspenström P. Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J. Biol. Chem. 2003;278:6495–6502. PubMed
Dowhan W., Snell E.E. D-serine dehydratase from Escherichia coli. II. Analytical studies and subunit structure. J. Biol. Chem. 1970;245:4618–4628. PubMed
Boorstein W.R., Ziegelhoffer T., Craig E.A. Molecular evolution of the HSP70 multigene family. J. Mol. Evol. 1994;38:1–17. PubMed
Söding J. Protein homology detection by HMM-HMM comparison. Bioinformatics. 2005;21:951–960. PubMed
Eddy S.R. Accelerated profile HMM Searches. PLoS Comput. Biol. 2011;7 e1002195. PubMed PMC
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. PubMed PMC
Gincel D., Shoshan-Barmatz V. Glutamate interacts with VDAC and modulates opening of the mitochondrial permeability transition pore. J. Bioenerg. Biomembr. 2004;36:179–186. PubMed
Rostovtseva T., Colombini M. VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. Biophys. J. 1997;72:1954–1962. PubMed PMC
Yazawa M., Ferrante C., Feng J., Mio K., Ogura T., Zhang M., Lin P.H., Pan Z., Komazaki S., Kato K., et al. TRIC channels are essential for Ca2+ handling in intracellular stores. Nature. 2007;448:78–82. PubMed
Brix J., Dietmeier K., Pfanner N. Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J. Biol. Chem. 1997;272:20730–20735. PubMed
Neupert W., Brunner M. The protein import motor of mitochondria. Nat. Rev. Mol. Cell Biol. 2002;3:555–565. PubMed
Pyrihová E., Motyčková A., Voleman L., Wandyszewska N., Fišer R., Seydlová G., Roger A., Kolísko M., Doležal P. A single Tim translocase in the mitosomes of Giardia intestinalis illustrates convergence of protein import machines in anaerobic eukaryotes. Genome Biol. Evol. 2018;10:2813–2822. PubMed PMC
Rassow J., Dekker P.J.T., van Wilpe S., Meijer M., Soll J. The preprotein translocase of the mitochondrial inner membrane: function and evolution. J. Mol. Biol. 1999;286:105–120. PubMed
Žárský V., Doležal P. Evolution of the Tim17 protein family. Biol. Direct. 2016;11:54. PubMed PMC
Chaudhuri M., Darden C., Soto Gonzalez F.S., Singha U.K., Quinones L., Tripathi A. Tim17 updates: a comprehensive review of an ancient mitochondrial protein translocator. Biomolecules. 2020;10:1–20. PubMed PMC
Richter D.J., Berney C., Strassert J.F.H., Burki F., de Vargas C. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotic life. Peer Community J. 2020;2:e56.
Fang Y., Morrell J.C., Jones J.M., Gould S.J. PEX3 functions as a PEX19 docking factor in the import of class I peroxisomal membrane proteins. J. Cell Biol. 2004;164:863–875. PubMed PMC
Hampl, V. (2017). Preaxostyla. Handbook of the Protists, Second Edition, pp. 1139–1174.
Karnkowska A., Treitli S.C., Brzoň O., Novák L., Vacek V., Soukal P., Barlow L.D., Herman E.K., Pipaliya S.V., Pánek T., et al. The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion. Mol. Biol. Evol. 2019;36:2292–2312. PubMed PMC
Lindmark D.G., Muller M., Shio H. Hydrogenosomes in Trichomonas vaginalis. J. Parasitol. 1975;61:552–554.
Doležal P., Vaňáčová S., Tachezy J., Hrdý I. Malic enzymes of Trichomonas vaginalis: two enzyme families, two distinct origins. Gene. 2004;329:81–92. PubMed
Christoforou A., Mulvey C.M., Breckels L.M., Geladaki A., Hurrell T., Hayward P.C., Naake T., Gatto L., Viner R., Martinez Arias A.M., et al. A draft map of the mouse pluripotent stem cell spatial proteome. Nat. Commun. 2016;7:8992. PubMed PMC
Barylyuk K., Koreny L., Ke H., Butterworth S., Crook O.M., Lassadi I., Gupta V., Tromer E., Mourier T., Stevens T.J., et al. A comprehensive subcellular atlas of the Toxoplasma proteome via hyperLOPIT provides spatial context for protein functions. Cell Host Microbe. 2020;28:752–766.e9. PubMed PMC
Mulvey C.M., Breckels L.M., Geladaki A., Britovšek N.K., Nightingale D.J.H., Christoforou A., Elzek M., Deery M.J., Gatto L., Lilley K.S. Using hyperLOPIT to perform high-resolution mapping of the spatial proteome. Nat. Protoc. 2017;12:1110–1135. PubMed
Breckels L.M., Mulvey C.M., Lilley K.S., Gatto L., Foster L.J., Stekhoven D.J., Zurich E. A bioconductor workflow for processing and analysing spatial proteomics data. F1000Res. 2018;5:2926. PubMed PMC
Ducker G.S., Rabinowitz J.D. One-carbon metabolism in health and disease. Cell Metab. 2017;25:27–42. PubMed PMC
Tan Y.L., Sou N.L., Tang F.Y., Ko H.A., Yeh W.T., Peng J.H., Chiang E.I. Tracing metabolic fate of mitochondrial glycine cleavage system derived formate in vitro and in vivo. Int. J. Mol. Sci. 2020;21:8808. PubMed PMC
Horne D.W., Holloway R.S., Said H.M. Uptake of 5-formyltetrahydrofolate in isolated rat liver mitochondria is carrier-mediated. J. Nutr. 1992;122:2204–2209. PubMed
Pasternack L.B., Laude D.A., Appling D.R. Carbon-13 NMR detection of folate-mediated serine and glycine synthesis in vivo in Saccharomyces cerevisiae. Biochemistry. 2002;31:8713–8719. doi: 10.1021/BI00152A005. PubMed DOI
Cybulski R.L., Fisher R.R. Uptake of oxidized folates by rat liver mitochondria. Biochim. Biophys. Acta. 1981;646:329–333. PubMed
Lichtenstein N.S., Oliverio V.T., Goldman I.D. Characteristics of folic acid transport in the L1210 leukemia cell. Biochim. Biophys. Acta. 1969;193:456–467. PubMed
Yazaki E., Kume K., Shiratori T., Eglit Y., Tanifuji G., Harada R., Simpson A.G.B., Ishida K.I., Hashimoto T., Inagaki Y. Barthelonids represent a deep-branching metamonad clade with mitochondrion-related organelles predicted to generate no ATP. Proc. Biol. Sci. 2020;287 20201538. PubMed PMC
Nývltová E., Stairs C.W., Hrdý I., Rídl J., Mach J., Pa J., Roger A.J., Tachezy J.ɥes. Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. Mol. Biol. Evol. 2015;32:1039–1055. PubMed PMC
Záhonová K., Treitli S.C., Le T., Škodová-Sveráková I., Hanousková P., Čepička I., Tachezy J., Hampl V. Anaerobic derivates of mitochondria and peroxisomes in the free-living amoeba Pelomyxa schiedti revealed by single-cell genomics. BMC Biol. 2022;20:56. PubMed PMC
Rotterová J., Salomaki E., Pánek T., Bourland W., Žihala D., Táborský P., Edgcomb V.P., Beinart R.A., Kolísko M., Čepička I. Genomics of new ciliate lineages provides insight into the evolution of obligate anaerobiosis. Curr. Biol. 2020;30:2037–2050.e6. PubMed
Gawryluk R.M.R., Kamikawa R., Stairs C.W., Silberman J.D., Brown M.W., Roger A.J. The earliest stages of mitochondrial adaptation to low oxygen revealed in a novel rhizarian. Curr. Biol. 2016;26:2729–2738. PubMed
Lewis W.H., Lind A.E., Sendra K.M., Onsbring H., Williams T.A., Esteban G.F., Hirt R.P., Ettema T.J.G., Embley T.M. Convergent evolution of hydrogenosomes from mitochondria by gene transfer and loss. Mol. Biol. Evol. 2020;37:524–539. PubMed PMC
Salomaki E.D., Terpis K.X., Rueckert S., Kotyk M., Varadínová Z.K., Čepička I., Lane C.E., Kolisko M. Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans. BMC Biol. 2021;19:77. PubMed PMC
Mathur V., Kolísko M., Hehenberger E., Irwin N.A.T., Leander B.S., Kristmundsson Á., Freeman M.A., Keeling P.J. Multiple independent origins of apicomplexan-like parasites. Curr. Biol. 2019;29:2936–2941.e5. PubMed
Stairs C.W., Eme L., Brown M.W., Mutsaers C., Susko E., Dellaire G., Soanes D.M., van der Giezen M., Roger A.J. A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr. Biol. 2014;24:1176–1186. PubMed
Barberà M.J., Ruiz-Trillo I., Tufts J.Y.A., Bery A., Silberman J.D., Roger A.J. Sawyeria marylandensis (Heterolobosea) has a hydrogenosome with novel metabolic properties. Eukaryot. Cell. 2010;9:1913–1924. PubMed PMC
Leger M.M., Eme L., Hug L.A., Roger A.J. Novel hydrogenosomes in the microaerophilic jakobid Stygiella incarcerata. Mol. Biol. Evol. 2016;33:2318–2336. PubMed PMC
Nozaki T., Ali V., Tokoro M. Sulfur-containing amino acid metabolism in parasitic protozoa. Adv. Parasitol. 2005;60:1–99. PubMed
Makki A., Rada P., Žárský V., Kereïche S., Kováčik L., Novotný M., Jores T., Rapaport D., Tachezy J. Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biol. 2019;17 e3000098. PubMed PMC
Saotome M., Safiulina D., Szabadkai G., Das S., Fransson A., Aspenstrom P., Rizzuto R., Hajnóczky G. Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc. Natl. Acad. Sci. USA. 2008;105:20728–20733. PubMed PMC
Yamaoka S., Hara-Nishimura I. The mitochondrial ras-related GTPase miro: views from inside and outside the metazoan kingdom. Front. Plant Sci. 2014;5:350. PubMed PMC
Vlahou G., Eliáš M., von Kleist-Retzow J.C., Wiesner R.J., Rivero F. The Ras related GTPase Miro is not required for mitochondrial transport in Dictyostelium discoideum. Eur. J. Cell Biol. 2011;90:342–355. PubMed
Gentekaki E., Curtis B.A., Stairs C.W., Klimeš V., Eliáš M., Salas-Leiva D.E., Herman E.K., Eme L., Arias M.C., Henrissat B., et al. Extreme genome diversity in the hyper-prevalent parasitic eukaryote blastocystis. PLoS Biol. 2017;15 e2003769. PubMed PMC
Covill-Cooke C., Toncheva V.S., Drew J., Birsa N., López-Doménech G., Kittler J.T. Peroxisomal fission is modulated by the mitochondrial Rho-GTPases, Miro1 and Miro2. EMBO Rep. 2020;21 e49865. PubMed PMC
Cichocki B.A., Krumpe K., Vitali D.G., Rapaport D. Pex19 is involved in importing dually targeted tail-anchored proteins to both mitochondria and peroxisomes. Traffic. 2018;19:770–785. PubMed
Sugiura A., Mattie S., Prudent J., Mcbride H.M. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature. 2017;542:251–254. PubMed
Maralikova B., Ali V., Nakada-Tsukui K., Nozaki T., van der Giezen M., Henze K., Tovar J. Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria. Cell. Microbiol. 2010;12:331–342. PubMed
Britt R.D., Rao G., Tao L. Biosynthesis of the catalytic H-cluster of [FeFe] hydrogenase: the roles of the Fe–S maturase proteins HydE, HydF, and HydG. Chem. Sci. 2020;11:10313–10323. PubMed PMC
Lloyd D., Ralphs J.R., Harris J.C. Giardia intestinalis, a eukaryote without hydrogenosomes, produces hydrogen. Microbiol. (Reading) 2002;148:727–733. PubMed
Smutná T., Dohnálková A., Sutak R., Narayanasamy R.K., Tachezy J., Hrdý I. A cytosolic ferredoxin-independent hydrogenase possibly mediates hydrogen uptake in Trichomonas vaginalis. Curr. Biol. 2022;32:124–135.e5. PubMed
RStudio Team (2020). RStudio: integrated development environment for R (RStudio).
Dawson S.C., Pham J.K., House S.A., Slawson E.E., Cronembold D., Cande W.Z. Stable transformation of an episomal protein-tagging shuttle vector in the piscine diplomonad Spironucleus vortens. BMC Microbiol. 2008;8:71. PubMed PMC
Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015;10:845–858. PubMed PMC
Gatto L., Christoforou A. Using R and bioconductor for proteomics data analysis. Biochim. Biophys. Acta. 2014;1844:42–51. PubMed
Breckels L.M., Gatto L., Christoforou A., Groen A.J., Lilley K.S., Trotter M.W.B. The effect of organelle discovery upon sub-cellular protein localisation. J. Proteomics. 2013;88:129–140. PubMed
Crook O.M., Mulvey C.M., Kirk P.D.W., Lilley K.S., Gatto L. A Bayesian mixture modelling approach for spatial proteomics. PLoS Comput. Biol. 2018;14 e1006516. PubMed PMC
Wang H.C., Susko E., Roger A.J. The relative importance of modeling site pattern heterogeneity versus partition-wise heterotachy in phylogenomic inference. Syst. Biol. 2019;68:1003–1019. PubMed
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. PubMed PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. PubMed PMC
Jones P., Binns D., Chang H.Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A., Nuka G., et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. PubMed PMC
Sonneborn T.M. Methods in the general biology and genetics of Paramecium aurelia. J. Exp. Zool. 1950;113:87–147.
Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 1951;62:293–300. PubMed PMC
Diamond L.S. The establishment of various trichomonads of animals and man in axenic cultures. J. Parasitol. 1957;43:488–490. PubMed
Novák L., Zubáčová Z., Karnkowska A., Kolisko M., Hroudová M., Stairs C.W., Simpson A.G.B., Keeling P.J., Roger A.J., Čepička I., Hampl V. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC Evol. Biol. 2016;16:197. PubMed PMC
Hughes C.S., Moggridge S., Müller T., Sorensen P.H., Morin G.B., Krijgsveld J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 2019;14:68–85. PubMed
Kulak N.A., Pichler G., Paron I., Nagaraj N., Mann M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods. 2014;11:319–324. PubMed
Kulak N.A., Geyer P.E., Mann M. Loss-less nano-fractionator for high sensitivity, high coverage proteomics. Mol. Cell. Proteomics. 2017;16:694–705. PubMed PMC
Wang Y., Yang F., Gritsenko M.A., Wang Y., Clauss T., Liu T., Shen Y., Monroe M.E., Lopez-Ferrer D., Reno T., et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics. 2011;11:2019–2026. PubMed PMC
Le T., Žárský V., Nývltová E., Rada P., Harant K., Vancová M., Verner Z., Hrdý I., Tachezy J. Anaerobic peroxisomes in Mastigamoeba balamuthi. Proc. Natl. Acad. Sci. USA. 2020;117:2065–2075. PubMed PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. PubMed PMC
Crook O.M., Breckels L.M., Lilley K.S., Kirk P.D.W., Gatto L. A bioconductor workflow for the Bayesian analysis of spatial proteomics. F1000Res. 2019;8:446. PubMed PMC
Campello R.J.G.B., Moulavi D., Sander J. Springer; 2013. Density-based clustering based on hierarchical density estimates. Advances in Knowledge Discovery and Data; pp. 160–172.
Wang H.C., Minh B.Q., Susko E., Roger A.J. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 2018;67:216–235. PubMed
Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria
Comparative analysis of mitochondrion-related organelles in anaerobic amoebozoans