Fe-S Cluster Assembly in Oxymonads and Related Protists
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30184127
PubMed Central
PMC6231488
DOI
10.1093/molbev/msy168
PII: 5089243
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- genom protozoální * MeSH
- molekulární evoluce * MeSH
- Oxymonadida genetika metabolismus MeSH
- proteiny obsahující železo a síru genetika MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny obsahující železo a síru MeSH
The oxymonad Monocercomonoides exilis was recently reported to be the first eukaryote that has completely lost the mitochondrial compartment. It was proposed that an important prerequisite for such a radical evolutionary step was the acquisition of the SUF Fe-S cluster assembly pathway from prokaryotes, making the mitochondrial ISC pathway dispensable. We have investigated genomic and transcriptomic data from six oxymonad species and their relatives, composing the group Preaxostyla (Metamonada, Excavata), for the presence and absence of enzymes involved in Fe-S cluster biosynthesis. None possesses enzymes of mitochondrial ISC pathway and all apparently possess the SUF pathway, composed of SufB, C, D, S, and U proteins, altogether suggesting that the transition from ISC to SUF preceded their last common ancestor. Interestingly, we observed that SufDSU were fused in all three oxymonad genomes, and in the genome of Paratrimastix pyriformis. The donor of the SUF genes is not clear from phylogenetic analyses, but the enzyme composition of the pathway and the presence of SufDSU fusion suggests Firmicutes, Thermotogae, Spirochaetes, Proteobacteria, or Chloroflexi as donors. The inventory of the downstream CIA pathway enzymes is consistent with that of closely related species that retain ISC, indicating that the switch from ISC to SUF did not markedly affect the downstream process of maturation of cytosolic and nuclear Fe-S proteins.
Department of Botany University of British Columbia Vancouver British Columbia Canada
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec Czech Republic
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Science České Budějovice Czech Republic
Zobrazit více v PubMed
Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, et al. 2012. The revised classification of eukaryotes. J Eukaryot Microbiol. 59(5):429–493. PubMed PMC
Albrecht AG, Netz DJA, Miethke M, Pierik AJ, Burghaus O, Peuckert F, Lill R, Marahiel MA.. 2010. SufU is an essential iron–sulfur cluster scaffold protein in Bacillus subtilis. J Bacteriol. 192(6):1643–1651. PubMed PMC
Albrecht AG, Peuckert F, Landmann H, Miethke M, Seubert A, Marahiel MA.. 2011. Mechanistic characterization of sulfur transfer from cysteine desulfurase SufS to the iron–sulfur scaffold SufU in Bacillus subtilis. FEBS Lett. 585(3):465–470. PubMed
Ali V, Shigeta Y, Tokumoto U, Takahashi Y, Nozaki T.. 2004. An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron–sulfur cluster assembly under anaerobic conditions. J Biol Chem. 279(16):16863–16874. PubMed
Antipov D, Korobeynikov A, McLean JS, Pevzner PA.. 2016. HybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 32(7):1009–1015. PubMed PMC
Balk J, Pilon M.. 2011. Ancient and essential: the assembly of iron–sulfur clusters in plants. Trends Plant Sci. 16(4):218–226. PubMed
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477. PubMed PMC
Basu S, Netz DJ, Haindrich AC, Herlerth N, Lagny TJ, Pierik AJ, Lill R, Lukeš J.. 2014. Cytosolic iron–sulphur protein assembly is functionally conserved and essential in procyclic and bloodstream Trypanosoma brucei. Mol Microbiol. 93(5):897–910. PubMed
Biederbick A, Stehling O, Rosser R, Niggemeyer B, Nakai Y, Elsasser H-P, Lill R.. 2006. Role of human mitochondrial Nfs1 in cytosolic iron–sulfur protein biogenesis and iron regulation. Mol Cell Biol. 26(15):5675–5687. PubMed PMC
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W.. 2011. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27(4):578–579. PubMed
Bolger AM, Lohse M, Usadel B.. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. PubMed PMC
Boyd JM, Drevland RM, Downs DM, Graham DE.. 2009. Archaeal ApbC/Nbp35 homologs function as iron–sulfur cluster carrier proteins. J Bacteriol. 191(5):1490–1497. PubMed PMC
Braymer JJ, Lill R.. 2017. Iron–sulfur cluster biogenesis and trafficking in mitochondria. J Biol Chem. 292(31):12754–12763. PubMed PMC
Criscuolo A, Gribaldo S.. 2010. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 10(1):210.. PubMed PMC
Diamond LS. 1982. A new liquid medium for xenic cultivation of Entamoeba histolytica and other lumen-dwelling protozoa. J Parasitol. 68(5):958–959. PubMed
Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, Yelton AP, Banfield JF.. 2009. Community-wide analysis of microbial genome sequence signatures. Genome Biol. 10(8):R85.. PubMed PMC
Eddy SR. 2011. Accelerated profile HMM searches. Pearson WR, editor. PLoS Comput Biol. 7(10):e1002195.. PubMed PMC
Fuss JO, Tsai CL, Ishida JP, Tainer JA.. 2015. Emerging critical roles of Fe–S clusters in DNA replication and repair. Biochim Biophys Acta-Mol Cell Res. 1853(6):1253–1271. PubMed PMC
Gerber J, Neumann K, Prohl C, Muhlenhoff U, Lill R.. 2004. The yeast scaffold proteins Isu1p and Isu2p are required inside mitochondria for maturation of cytosolic Fe/S proteins. Mol Cell Biol. 24(11):4848–4857. PubMed PMC
van der Giezen M, Cox S, Tovar J.. 2004. The iron–sulfur cluster assembly genes iscS and iscU of Entamoeba histolytica were acquired by horizontal gene transfer. BMC Evol Biol. 4:7.. PubMed PMC
Goldberg AV, Molik S, Tsaousis AD, Neumann K, Kuhnke G, Delbac F, Vivares CP, Hirt RP, Lill R, Embley TM.. 2008. Localization and functionality of microsporidian iron–sulphur cluster assembly proteins. Nature 452(7187):624–628. PubMed
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 29(7):644–652. PubMed PMC
Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ.. 2009. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA. 106(10):3859–3864. PubMed PMC
Hampl V, Silberman JD, Stechmann A, Diaz-Triviño S, Johnson PJ, Roger AJ.. 2008. Genetic evidence for a mitochondriate ancestry in the “amitochondriate” flagellate Trimastix pyriformis. PLoS One 3(1):e1383.. PubMed PMC
Hausmann A, Netz DJA, Balk J, Pierik AJ, Muhlenhoff U, Lill R.. 2005. The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron–sulfur protein assembly machinery. Proc Natl Acad Sci USA. 102(9):3266–3271. PubMed PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS.. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 14(6):587–589. PubMed PMC
Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, et al. 2016. A eukaryote without a mitochondrial organelle. Curr Biol. 26(10):1274–1284. PubMed
Katinka MD, Duprat S, Cornillot E, Méténier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, et al. 2001. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414(6862):450–453. PubMed
Katoh K, Misawa K, Kuma K, Miyata T.. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30(14):3059–3066. PubMed PMC
Keeling PJ, Leander BS.. 2003. Characterisation of a Non-canonical genetic code in the oxymonad Streblomastix strix. J Mol Biol. 326(5):1337–1349. PubMed
Kispal G, Csere P, Prohl C, Lill R.. 1999. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 18(14):3981–3989. PubMed PMC
Kolisko M, Boscaro V, Burki F, Lynn DH, Keeling PJ.. 2014. Single-cell transcriptomics for microbial eukaryotes. Curr Biol. 24(22):R1081–R1082. PubMed
Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, Silberman JD, Andersson JO, Xu F, Yabuki A, et al. 2017. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol. 1(4):0092.. PubMed PMC
Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, Paul VD, Pierik AJ, Richter N, Stümpfig M, et al. 2015. The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron–sulfur proteins. Eur J Cell Biol. 94(7–9):280–291. PubMed
Mi-ichi F, Yousuf MA, Nakada-Tsukui K, Nozaki T.. 2009. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci USA. 106(51):21731–21736. PubMed PMC
Netz DJA, Mascarenhas J, Stehling O, Pierik AJ, Lill R.. 2014. Maturation of cytosolic and nuclear iron–sulfur proteins. Trends Cell Biol. 24(5):303–312. PubMed
Netz DJA, Pierik AJ, Stümpfig M, Bill E, Sharma AK, Pallesen LJ, Walden WE, Lill R.. 2012. A bridging [4Fe–4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron–sulfur protein maturation. J Biol Chem. 287(15):12365–12378. PubMed PMC
Netz DJA, Stümpfig M, Doré C, Mühlenhoff U, Pierik AJ, Lill R.. 2010. Tah18 transfers electrons to Dre2 in cytosolic iron–sulfur protein biogenesis. Nat Chem Biol. 6(10):758–765. PubMed
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ.. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268–274. PubMed PMC
Nyvltova E, Sutak R, Harant K, Sedinova M, Hrdy I, Paces J, Vlcek C, Tachezy J.. 2013. NIF-type iron–sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi. Proc Natl Acad Sci USA. 110(18):7371–7376. PubMed PMC
Pastore A, Puccio H.. 2013. Frataxin: a protein in search for a function. J Neurochem. 126:43–52. PubMed
Paul VD, Lill R.. 2015. Biogenesis of cytosolic and nuclear iron–sulfur proteins and their role in genome stability. Biochim Biophys Acta-Mol Cell Res. 1853(6):1528–1539. PubMed
Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R.. 2014. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 9(1):171–181. PubMed
Pondarré C, Antiochos BB, Campagna DR, Clarke SL, Greer EL, Deck KM, McDonald A, Han AP, Medlock A, Kutok JL, et al. 2006. The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron–sulfur cluster biogenesis. Hum Mol Genet. 15(6):953–964. PubMed
Pyrih J, Pyrihová E, Kolísko M, Stojanovová D, Basu S, Harant K, Haindrich AC, Doležal P, Lukeš J, Roger A, et al. 2016. Minimal cytosolic iron–sulfur cluster assembly machinery of Giardia intestinalis is partially associated with mitosomes. Mol Microbiol. 102(4):701–714. PubMed
Riboldi GP, Larson TJ, Frazzon J.. 2011. Enterococcus faecalis sufCDSUB complements Escherichia coli sufABCDSE. FEMS Microbiol Lett. 320(1):15–24. PubMed
Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F.. 2013. Reprint of: iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta-Bioenergy. 1827(8–9):923–937. PubMed
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP.. 2012. Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542. PubMed PMC
Rudolf J, Makrantoni V, Ingledew WJ, Stark MJR, White MF.. 2006. The DNA repair helicases XPD and FancJ have essential iron–sulfur domains. Mol Cell. 23(6):801–808. PubMed
Sharma AK, Pallesen LJ, Spang RJ, Walden WE.. 2010. Cytosolic iron–sulfur cluster assembly (CIA) system: factors, mechanism, and relevance to cellular iron regulation. J Biol Chem. 285(35):26745–26751. PubMed PMC
Stairs CW, Eme L, Brown MW, Mutsaers C, Susko E, Dellaire G, Soanes DM, Van Der Giezen M, Roger AJ.. 2014. A SUF Fe–S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr Biol. 24(11):1176–1186. PubMed
Stanke M, Waack S.. 2003. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19(Suppl. 2):ii215–ii225. PubMed
Sutak R, Dolezal P, Fiumera HL, Hrdy I, Dancis A, Delgadillo-Correa M, Johnson PJ, Muller M, Tachezy J.. 2004. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci USA. 101(28):10368–10373. PubMed PMC
Tachezy J, Sánchez LB, Müller M.. 2001. Mitochondrial type iron–sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol. 18(10):1919–1928. PubMed
Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, Van Der Giezen M, Hernández M, Müller M, Lucocq JM.. 2003. Mitochondrial remnant organelles of Giardia function in iron–sulphur protein maturation. Nature 426(6963):172–176. PubMed
Treitli SC, Kotyk M, Yubuki N, Jirounková E, Vlasáková J, Smejkalová P, Šípek P, Čepička I, Hampl V.. 2018. Molecular and morphological diversity of the Oxymonad Genera Monocercomonoides and Blattamonas gen. nov. Protist 169(5):744–783. PubMed
Tsaousis AD, Gentekaki E, Eme L, Gaston D, Roger AJ.. 2014. Evolution of the cytosolic iron–sulfur cluster assembly machinery in Blastocystis species and other microbial eukaryotes. Eukaryot Cell. 13(1):143–153. PubMed PMC
Williams BAP, Hirt RP, Lucocq JM, Embley TM.. 2002. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418(6900):865–869. PubMed
Yoon H, Knight SAB, Pandey A, Pain J, Turkarslan S, Pain D, Dancis A.. 2015. Turning Saccharomyces cerevisiae into a frataxin-independent organism. PLoS Genet. 11(5):e1005135. PubMed PMC
Zhang Q, Táborský P, Silberman JD, Pánek T, Čepička I, Simpson AGB.. 2015. Marine isolates of Trimastix marina form a plesiomorphic deep-branching lineage within preaxostyla, separate from other known trimastigids (Paratrimastix n. gen.). Protist 166(4):468–491. PubMed
Zhang Y, Lyver ER, Nakamaru-Ogiso E, Yoon H, Amutha B, Lee D-W, Bi E, Ohnishi T, Daldal F, Pain D, et al. 2008. Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis. Mol Cell Biol. 28(18):5569–5582. PubMed PMC
Zubáčová Z, Novák L, Bublíková J, Vacek V, Fousek J, Rídl J, Tachezy J, Doležal P, Vlček Č, Hampl V.. 2013. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system. PLoS One 8(3):e55417. PubMed PMC
Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria
Reduced mitochondria provide an essential function for the cytosolic methionine cycle
The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion