There Is Treasure Everywhere: Reductive Plastid Evolution in Apicomplexa in Light of Their Close Relatives
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31430853
PubMed Central
PMC6722601
DOI
10.3390/biom9080378
PII: biom9080378
Knihovny.cz E-zdroje
- Klíčová slova
- Apicomplexa, Chromerid, Corallicolids, apicoplast, plastid reduction,
- MeSH
- Apicomplexa genetika metabolismus MeSH
- světlo * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The phylum Apicomplexa (Alveolates) comprises a group of host-associated protists, predominately intracellular parasites, including devastating parasites like Plasmodium falciparum, the causative agent of malaria. One of the more fascinating characteristics of Apicomplexa is their highly reduced (and occasionally lost) remnant plastid, termed the apicoplast. Four core metabolic pathways are retained in the apicoplast: heme synthesis, iron-sulfur cluster synthesis, isoprenoid synthesis, and fatty acid synthesis. It has been suggested that one or more of these pathways are essential for plastid and plastid genome retention. The past decade has witnessed the discovery of several apicomplexan relatives, and next-generation sequencing efforts are revealing that they retain variable plastid metabolic capacities. These data are providing clues about the core genes and pathways of reduced plastids, while at the same time further confounding our view on the evolutionary history of the apicoplast. Here, we examine the evolutionary history of the apicoplast, explore plastid metabolism in Apicomplexa and their close relatives, and propose that the differences among reduced plastids result from a game of endosymbiotic roulette. Continued exploration of the Apicomplexa and their relatives is sure to provide new insights into the evolution of the apicoplast and apicomplexans as a whole.
Zobrazit více v PubMed
Adl S.M., Leander B.S., Simpson A.G.B., Archibald J.M., Anderson O.R., Bass D., Bowser S.S., Brugerolle G., Farmer M.A., Karpov S., et al. Diversity, nomenclature, and taxonomy of protists. Syst. Biol. 2007;56:684–689. doi: 10.1080/10635150701494127. PubMed DOI
Leander B., Clopton R., Keeling P. Phylogeny of gregarines (Apicomplexa) as inferred from small-subunit rDNA and beta-tubulin. Int. J. Syst. Evol. Microbiol. 2003;53:345–354. doi: 10.1099/ijs.0.02284-0. PubMed DOI
Gentil J., Hempel F., Moog D., Zauner S., Maier U.G. Review: Origin of complex algae by secondary endosymbiosis: A journey through time. Protoplasma. 2017;254:1835–1843. doi: 10.1007/s00709-017-1098-8. PubMed DOI
Archibald J.M. Endosymbiosis and Eukaryotic Cell Evolution. Curr. Biol. 2015;25:R911–R921. doi: 10.1016/j.cub.2015.07.055. PubMed DOI
Fussy Z., Obornik M. Chromerids and their plastids. In: Hirakawa Y., editor. Advances in Botanical Research. Volume 84. Academic Press; Cambridge, MA, USA: 2017. pp. 187–218.
Waller R.F., Kořený L. Chapter Four—Plastid complexity in dinoflagellates: A picture of gains, losses, replacements and revisions. In: Hirakawa Y., editor. Advances in Botanical Research. Volume 84. Academic Press; Cambridge, MA, USA: 2017. pp. 105–143.
Wetherbee R., Jackson C.J., Repetti S.I., Clementson L.A., Costa J.F., van de Meene A., Crawford S., Verbruggen H. The golden paradox—A new heterokont lineage with chloroplasts surrounded by two membranes. J. Phycol. 2019;55:257–278. doi: 10.1111/jpy.12822. PubMed DOI
Lemgruber L., Kudryashev M., Dekiwadia C., Riglar D.T., Baum J., Stahlberg H., Ralph S.A., Frischknecht F. Cryo-electron tomography reveals four-membrane architecture of the Plasmodium apicoplast. Malaria J. 2013;12:25. doi: 10.1186/1475-2875-12-25. PubMed DOI PMC
Köhler S., Delwiche C.F., Denny P.W., Tilney L.G., Webster P., Wilson R.J.M., Palmer J.D., Roos D.S. A plastid of probable green algal origin in apicomplexan parasites. Science. 1997;275:1485–1489. doi: 10.1126/science.275.5305.1485. PubMed DOI
Diniz J.A.P., Silva E.O., Lainson R., de Souza W. The fine structure of Garnia gonadati and its association with the host cell. Parasitol. Res. 2000;86:971–977. doi: 10.1007/PL00008528. PubMed DOI
Tomova C., Geerts W.J.C., Müller-Reichert T., Entzeroth R., Humbel B.M. New comprehension of the apicoplast of Sarcocystis by transmission electron tomography. Biol. Cell. 2006;98:535–545. doi: 10.1042/BC20060028. PubMed DOI
Boucher M.J., Yeh E. Plastid–endomembrane connections in apicomplexan parasites. PLoS Pathog. 2019;15:1–9. doi: 10.1371/journal.ppat.1007661. PubMed DOI PMC
Waller R., McFadden G. The Apicoplast: A review of the derived plastid of apicomplexan parasites. Curr. Issues Mol. Biol. 2005;7:57–80. PubMed
Striepen B., Crawford M.J., Shaw M.K., Tilney L.G., Seeber F., Roos D.S. The plastid of Toxoplasma gondii is divided by association with the centrosomes. J. Cell Biol. 2000;151:1423–1434. doi: 10.1083/jcb.151.7.1423. PubMed DOI PMC
Janouskovec J., Horak A., Obornik M., Lukes J., Keeling P.J. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl. Acad. Sci. USA. 2010;107:10949–10954. doi: 10.1073/pnas.1003335107. PubMed DOI PMC
Fussy Z., Obornik M. Complex Endosymbioses I: From Primary to Complex Plastids, Multiple Independent Events. In: Marechal E., editor. Plastids. Volume 1829. Humana Press; New York, NY, USA: 2018. pp. 17–35. PubMed
Fichera M.E., Roos D.S. A plastid organelle as a drug target in apicomplexan parasites. Nature. 1997;390:407–409. doi: 10.1038/37132. PubMed DOI
McFadden G., Reith M., Munholland J., LangUnnasch N. Plastid in human parasites. Nature. 1996;381:482. doi: 10.1038/381482a0. PubMed DOI
Moore R.B., Obornik M., Janouskovec J., Chrudimsky T., Vancova M., Green D.H., Wright S.W., Davies N.W., Bolch C.J.S., Heimann K., et al. A photosynthetic alveolate closely related to apicomplexan parasites. Nature. 2008;451:959–963. doi: 10.1038/nature06635. PubMed DOI
Kwong W.K., del Campo J., Mathur V., Vermeij M.J.A., Keeling P.J. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature. 2019;568:103–107. doi: 10.1038/s41586-019-1072-z. PubMed DOI
Mathur V., del Campo J., Kolisko M., Keeling P.J. Global diversity and distribution of close relatives of apicomplexan parasites. Environ. Microbiol. 2018;20:2824–2833. doi: 10.1111/1462-2920.14134. PubMed DOI
Hepler P., Huff C., Sprinz H. Fine structure of exoerythrocytic stages of Plasmodium fallax. J. Cell Biol. 1966;30:333–358. doi: 10.1083/jcb.30.2.333. PubMed DOI PMC
Gardner M., Feagin J., Moore D., Spencer D., Gray M., Williamson D., Wilson R. Organization and expression of small subunit ribosomal-RNA genes encoded by a 35-kilobase circular DNA in Plasmodium falciparum. Mol. Biochem. Parasitol. 1991;48:77–88. doi: 10.1016/0166-6851(91)90166-4. PubMed DOI
Palmer J.D. Green ancestry of malarial parasites? Curr. Biol. 1992;2:318–320. doi: 10.1016/0960-9822(92)90887-G. PubMed DOI
Vaidya A.B., Akella R., Suplick K. Sequences similar to genes for two mitochondrial proteins and portions of ribosomal RNA in tandemly arrayed 6-kilobase-pair DNA of a malarial parasite. Mol. Biol. Parasitol. 1989;35:97–107. doi: 10.1016/0166-6851(89)90112-6. PubMed DOI
Blanchard J., Hicks J. The non-photosynthetic plastid in malarial parasites and other apicomplexans is derived from outside the green plastid lineage. J. Eukaryot. Microbiol. 1999;46:367–375. doi: 10.1111/j.1550-7408.1999.tb04615.x. PubMed DOI
Fast N., Kissinger J., Roos D., Keeling P. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol. Biol. Evol. 2001;18:418–426. doi: 10.1093/oxfordjournals.molbev.a003818. PubMed DOI
Funes S., Reyes-Prieto A., Perez-Martinez X., Gonzalez-Halphen D. On the evolutionary origins of apicoplasts: Revisiting the rhodophyte vs. chlorophyte controversy. Microbes Infect. 2004;6:305–311. doi: 10.1016/j.micinf.2003.11.011. PubMed DOI
Funes S., Davidson E., Reyes-Prieto A., Magallon S., Herion P., King M., Gonzalez-Halphen D. A green algal apicoplast ancestor. Science. 2002;298:2155. doi: 10.1126/science.1076003. PubMed DOI
Huang Y., He L., Hu J., He P., He J., Yu L., Malobi N., Zhou Y., Shen B., Zhao J. Characterization and annotation of Babesia orientalis apicoplast genome. Parasite Vector. 2015;8:543. doi: 10.1186/s13071-015-1158-x. PubMed DOI PMC
Cai X., Fuller A.L., McDougald L.R., Zhu G. Apicoplast genome of the coccidian Eimeria tenella. Gene. 2003;321:39–46. doi: 10.1016/j.gene.2003.08.008. PubMed DOI
Arisue N., Hashimoto T., Mitsui H., Palacpac N.M.Q., Kaneko A., Kawai S., Hasegawa M., Tanabe K., Horii T. The Plasmodium apicoplast genome: Conserved structure and close relationship of P. ovale to rodent malaria parasites. Mol. Biol. Evol. 2012;29:2095–2099. doi: 10.1093/molbev/mss082. PubMed DOI
Waller R., Keeling P., Donald R., Striepen B., Handman E., Lang-Unnasch N., Cowman A., Besra G., Roos D., McFadden G. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl. Acad. Sci. USA. 1998;95:12352–12357. doi: 10.1073/pnas.95.21.12352. PubMed DOI PMC
Ralph S.A., van Dooren G.G., Waller R.F., Crawford M.J., Fraunholz M.J., Foth B.J., Tonkin C.J., Roos D.S., McFadden G.I. Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat. Rev. Microbiol. 2004;2:203–216. doi: 10.1038/nrmicro843. PubMed DOI
Lim L., McFadden G.I. The evolution, metabolism and functions of the apicoplast. Philos. Trans. R. Soc. B. 2010;365:749–763. doi: 10.1098/rstb.2009.0273. PubMed DOI PMC
Zhu G., Marchewka M.J., Keithly J.S. Cryptosporidium parvum appears to lack a plastid genome. Microbiology. 2000;146:315–321. doi: 10.1099/00221287-146-2-315. PubMed DOI
Toso M.A., Omoto C.K. Gregarina niphandroides may lack both a plastid genome and organelle. J. Eukaryot. Microbiol. 2007;54:66–72. doi: 10.1111/j.1550-7408.2006.00229.x. PubMed DOI
Schrevel J. Observations biologiques et ultrastructurales sur les selenidiidaeet leurs consequences sur la systematique des gregarinomorphes. J. Protozool. 1971;18:448–470. doi: 10.1111/j.1550-7408.1971.tb03355.x. DOI
Cumbo V.R., Baird A.H., Moore R.B., Negri A.P., Neilan B.A., Salih A., van Oppen M.J.H., Wang Y., Marquis C.P. Chromera velia is endosymbiotic in larvae of the reef corals Acropora digitifera and A. tenuis. Protist. 2013;164:237–244. doi: 10.1016/j.protis.2012.08.003. PubMed DOI
Foster C., Portman N., Chen M., Šlapeta J. Increased growth and pigment content of Chromera velia in mixotrophic culture. FEMS Microbiol. Ecol. 2014;88:121–128. doi: 10.1111/1574-6941.12275. PubMed DOI
Mohamed A.R., Cumbo V.R., Harii S., Shinzato C., Chan C.X., Ragan M.A., Satoh N., Ball E.E., Miller D.J. Deciphering the nature of the coral—Chromera association. ISME J. 2018;12:776–790. doi: 10.1038/s41396-017-0005-9. PubMed DOI PMC
Voolstra C.R., Schwarz J.A., Schnetzer J., Sunagawa S., Desalvo M.K., Szmant A.M., Coffroth M.A., Medina M. The host transcriptome remains unaltered during the establishment of coral–algal symbioses. Mol. Ecol. 2009;18:1823–1833. doi: 10.1111/j.1365-294X.2009.04167.x. PubMed DOI
Obornik M., Modry D., Lukes M., Cernotikova-Stribrna E., Cihlar J., Tesarova M., Kotabova E., Vancova M., Prasil O., Lukes J. Morphology, Ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel Chromerid from the Great Barrier Reef. Protist. 2012;163:306–323. doi: 10.1016/j.protis.2011.09.001. PubMed DOI
Woo Y.H., Ansari H., Otto T.D., Klinger C.M., Kolisko M., Michalek J., Saxena A., Shanmugam D., Tayyrov A., Veluchamy A., et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife. 2015;4:e06974. doi: 10.7554/eLife.06974. PubMed DOI PMC
Sevcikova T., Horak A., Klimes V., Zbrankova V., Demir-Hilton E., Sudek S., Jenkins J., Schmutz J., Pribyl P., Fousek J., et al. Updating algal evolutionary relationships through plastid genome sequencing: Did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci. Rep. 2015;5:10134. doi: 10.1038/srep10134. PubMed DOI PMC
Janouskovec J., Horak A., Barott K.L., Rohwer F.L., Keeling P.J. Global analysis of plastid diversity reveals apicomplexan-related lineages in coral reefs. Curr. Biol. 2012;22:R518–R519. doi: 10.1016/j.cub.2012.04.047. PubMed DOI
Brugerolle G., Mignot J.P. Observations sur le cycle l’ultrastructure et la position systématique de. Spiromonas perforans. 1938;15:183–196.
Cavalier-Smith T., Chao E.E. Protalveolate phylogeny and systematics and the origins of Sporozoa and dinoflagellates (phylum Myzozoa nom. nov.) Eur. J. Protistol. 2004;40:185–212. doi: 10.1016/j.ejop.2004.01.002. DOI
Kuvardina O., Leander B., Aleshin V., Myl’nikov A., Keeling P., Simdyanov T. The phylogeny of colpodellids (alveolata) using small subunit rRNA gene sequences suggests they are the free-living sister group to apicomplexans. J. Eucariot. Microbiol. 2002;49:498–504. doi: 10.1111/j.1550-7408.2002.tb00235.x. PubMed DOI
Gile G.H., Slamovits C.H. Transcriptomic analysis reveals evidence for a cryptic plastid in the colpodellid Voromonas pontica, a close relative of chromerids and apicomplexan parasites. PLoS ONE. 2014;9:e96258. doi: 10.1371/journal.pone.0096258. PubMed DOI PMC
Janouskovec J., Tikhonenkov D.V., Burki F., Howe A.T., Kolisko M., Mylnikov A.P., Keeling P.J. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc. Natl. Acad. Sci. USA. 2015;112:10200–10207. doi: 10.1073/pnas.1423790112. PubMed DOI PMC
Janouskovec J., Horak A., Barott K.L., Rohwer F.L., Keeling P.J. Environmental distribution of coral-associated relatives of apicomplexan parasites. ISME J. 2013;7:444–447. doi: 10.1038/ismej.2012.129. PubMed DOI PMC
Toller W., Rowan R., Knowlton N. Genetic evidence for a protozoan (phylum Apicomplexa) associated with corals of the Montastraea annularis species complex. Coral Reefs. 2002;21:143–146.
Patten R. Notes on a new protozoon, Piridium sociabile n.gen., n.sp., from the foot of Buccinum undatum. Parasitology. 1936;28:502–516. doi: 10.1017/S003118200002268X. DOI
Adl S.M., Simpson A.G.B., Lane C.E., Lukes J., Bass D., Bowser S.S., Brown M.W., Burki F., Dunthorn M., Hampl V., et al. The revised classification of eukaryotes. J. Eukaryot. Mikrobiol. 2012;59:429–493. doi: 10.1111/j.1550-7408.2012.00644.x. PubMed DOI PMC
Cavalier-Smith T. Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa. Eur. J. Protistol. 2014;50:472–495. doi: 10.1016/j.ejop.2014.07.002. PubMed DOI
Mathur V., Kolisko M., Hehenberger E., Irwin N.A., Leander B.S., Kristmundsson Á., Freeman M.A., Keeling P.J. Multiple independent origins of apicomplexan-like parasites. Biorxiv. 2019 doi: 10.1016/j.cub.2019.07.019. PubMed DOI
Barbrook A.C., Voolstra C.R., Howe C.J. The chloroplast genome of a Symbiodinium sp. clade c3 isolate. Protist. 2014;165:1–13. doi: 10.1016/j.protis.2013.09.006. PubMed DOI
Smith D.R., Keeling P.J. Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes. Proc. Natl. Acad. Sci. USA. 2015;112:10177–10184. doi: 10.1073/pnas.1422049112. PubMed DOI PMC
Garg A., Stein A., Zhao W., Dwivedi A., Frutos R., Cornillot E., Ben Mamoun C. Sequence and annotation of the apicoplast genome of the human pathogen Babesia microti. PLoS ONE. 2014;9:e107939. doi: 10.1371/journal.pone.0107939. PubMed DOI PMC
Sato S. The apicomplexan plastid and its evolution. Cell Mol. Life Sci. 2011;68:1285–1296. doi: 10.1007/s00018-011-0646-1. PubMed DOI PMC
de Vries J., Archibald J.M. Plastid genomes. Curr. Biol. 2018;28:R336–R337. doi: 10.1016/j.cub.2018.01.027. PubMed DOI
Salomaki E.D., Nickles K.R., Lane C.E. The ghost plastid of Choreocolax polysiphoniae. J. Phycol. 2015;51:217–221. doi: 10.1111/jpy.12283. PubMed DOI
Salomaki E.D., Lane C.E. Molecular phylogenetics supports a clade of red algal parasites retaining native plastids: Taxonomy and terminology revised. J. Phycol. 2019;55:279–288. doi: 10.1111/jpy.12823. PubMed DOI
Evans J.R., Amour N.S., Verbruggen H., Salomaki E.D., Vis M.L. Chloroplast and mitochondrial genomes of Balbiania investiens (Balbianiales, Nemaliophycidae) Phycologia. 2019;58:310–318. doi: 10.1080/00318884.2019.1573349. DOI
McFadden G.I. The apicoplast. Protoplasma. 2011;248:641–650. doi: 10.1007/s00709-010-0250-5. PubMed DOI
Glaser S., van Dooren G.G., Agrawal S., Brooks C.F., McFadden G.I., Striepen B., Higgins M.K. Tic22 is an essential chaperone required for protein import into the apicoplast. J. Biol. Chem. 2012;287:39505–39512. doi: 10.1074/jbc.M112.405100. PubMed DOI PMC
Soll J., Schleiff E. Protein import into chloroplasts. Nat. Rev. Mol. Cell Biol. 2004;5:198–208. doi: 10.1038/nrm1333. PubMed DOI
Sommer M.S., Gould S.B., Lehmann P., Gruber A., Przyborski J.M., Maier U.-G. Der1-mediated preprotein import into the periplastid compartment of chromalveolates? Mol. Biol. Evol. 2007;24:918–928. doi: 10.1093/molbev/msm008. PubMed DOI
Hempel F., Bullmann L., Lau J., Zauner S., Maier U.G. ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Mol. Biol. Evol. 2009;26:1781–1790. doi: 10.1093/molbev/msp079. PubMed DOI
Spork S., Hiss J.A., Mandel K., Sommer M., Kooij T.W.A., Chu T., Schneider G., Maier U.G., Przyborski J.M. An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryot. Cell. 2009;8:1134–1145. doi: 10.1128/EC.00083-09. PubMed DOI PMC
Nagaraj V.A., Arumugam R., Prasad D., Rangarajan P.N., Padmanaban G. Protoporphyrinogen IX oxidase from Plasmodium falciparum is anaerobic and is localized to the mitochondrion. Mol. Biochem. Parasitol. 2010;174:44–52. doi: 10.1016/j.molbiopara.2010.06.012. PubMed DOI
Nagaraj V.A., Prasad D., Arumugam R., Rangarajan P.N., Padmanaban G. Characterization of coproporphyrinogen III oxidase in Plasmodium falciparum cytosol. Parasitol. Int. 2010;59:121–127. doi: 10.1016/j.parint.2009.12.001. PubMed DOI
Sato S., Clough B., Coates L., Wilson R.J.M. Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist. 2004;155:117–125. doi: 10.1078/1434461000169. PubMed DOI
Koreny L., Sobotka R., Janouskovec J., Keeling P.J., Obornik M. Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. Plant Cell. 2011;23:3454–3462. doi: 10.1105/tpc.111.089102. PubMed DOI PMC
Nagaraj V.A., Sundaram B., Varadarajan N.M., Subramani P.A., Kalappa D.M., Ghosh S.K., Padmanaban G. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection. PLoS Pathogens. 2013;9:1–13. doi: 10.1371/journal.ppat.1003522. PubMed DOI PMC
Botte C.Y., Yamaryo-Botte Y. Complex Endosymbioses II: The nonphotosynthetic plastid of apicomplexa parasites (the apicoplast) and its integrated metabolism. In: Marechal E., editor. Plastids. Volume 1829. Humana Press; New York, NY, USA: 2018. pp. 37–54. PubMed
Gornicki P. Apicoplast fatty acid biosynthesis as a target for medical intervention in Apicomplexan parasites. Int. J. Parasitol. 2003;33:885–896. doi: 10.1016/S0020-7519(03)00133-4. PubMed DOI
Goodman C.D., McFadden G.I. Fatty acid biosynthesis as a drug target in apicomplexan parasites. Curr. Drug Targets. 2007;8:15–30. doi: 10.2174/138945007779315579. PubMed DOI
Gardner M.J., Bishop R., Shah T., de Villiers E.P., Carlton J.M., Hall N., Ren Q., Paulsen I.T., Pain A., Berriman M., et al. Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes. Science. 2005;309:134–137. doi: 10.1126/science.1110439. PubMed DOI
Vaughan A.M., O’Neill M.T., Tarun A.S., Camargo N., Phuong T.M., Aly A.S.I., Cowman A.F., Kappe S.H.I. Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell. Microbiol. 2009;11:506–520. doi: 10.1111/j.1462-5822.2008.01270.x. PubMed DOI PMC
van Schaijk B.C.L., Kumar T.R.S., Vos M.W., Richman A., van Gemert G.-J., Li T., Eappen A.G., Williamson K.C., Morahan B.J., Fishbaugher M., et al. Type II fatty acid biosynthesis is essential for Plasmodium falciparum sporozoite development in the midgut of Anopheles mosquitoes. Eukaryot. Cell. 2014;13:550–559. doi: 10.1128/EC.00264-13. PubMed DOI PMC
Mazumdar J., Striepen B. Make it or take it: Fatty acid metabolism of Apicomplexan parasites. Eukaryot. Cell. 2007;6:1727–1735. doi: 10.1128/EC.00255-07. PubMed DOI PMC
Zhu G., Marchewka M.J., Woods K.M., Upton S.J., Keithly J.S. Molecular analysis of a Type I fatty acid synthase in Cryptosporidium parvum. Mol. Biochem. Parasitol. 2000;105:253–260. doi: 10.1016/S0166-6851(99)00183-8. PubMed DOI
Abrahamsen M.S., Templeton T.J., Enomoto S., Abrahante J.E., Zhu G., Lancto C.A., Deng M., Liu C., Widmer G., Tzipori S., et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science. 2004;304:441. doi: 10.1126/science.1094786. PubMed DOI
Caballero M.C., Pedroni M.J., Palmer G.H., Suarez C.E., Davitt C., Lau A.O.T. Characterization of acyl carrier protein and LytB in Babesia bovis apicoplast. Mol. Biochem. Parasit. 2012;181:125–133. doi: 10.1016/j.molbiopara.2011.10.009. PubMed DOI PMC
Cassera M., Gozzo F., D’Alexandri F., Merino E., del Portillo H., Peres V., Almeida I., Eberlin M., Wunderlich G., Wiesner J., et al. The methylerythritol phosphate pathway is functionally active in all intraerythrocytic stages of Plasmodium falciparum. J. Biol. Chem. 2004;279:51749–51759. doi: 10.1074/jbc.M408360200. PubMed DOI
Yeh E., DeRisi J.L. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol. 2011;9:e1001138. doi: 10.1371/journal.pbio.1001138. PubMed DOI PMC
Suazo K.F., Schaber C., Palsuledesai C.C., Odom John A.R., Distefano M.D. Global proteomic analysis of prenylated proteins in Plasmodium falciparum using an alkyne-modified isoprenoid analogue. Sci. Rep. 2016;6:38615. doi: 10.1038/srep38615. PubMed DOI PMC
Gisselberg J.E., Zhang L., Elias J.E., Yeh E. The prenylated proteome of Plasmodium falciparum reveals pathogen-specific prenylation activity and drug mechanism-of-action. Mol. Cell. Proteom. 2017;16:S54. doi: 10.1074/mcp.M116.064550. PubMed DOI PMC
Johnson D., Dean D., Smith A., Johnson M. Structure, function, and formation of biological iron-sulfur clusters. Annu. Rev. Biochem. 2005;74:247–281. doi: 10.1146/annurev.biochem.74.082803.133518. PubMed DOI
Gisselberg J.E., Dellibovi-Ragheb T.A., Matthews K.A., Bosch G., Prigge S.T. The suf iron-sulfur cluster synthesis pathway is required for apicoplast maintenance in malaria parasites. PLoS Pathogens. 2013;9:e1003655. doi: 10.1371/journal.ppat.1003655. PubMed DOI PMC
Strassert J.F.H., Karnkowska A., Hehenberger E., del Campo J., Kolisko M., Okamoto N., Burki F., Janouskovec J., Poirier C., Leonard G., et al. Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates. ISME J. 2018;12:304–308. doi: 10.1038/ismej.2017.167. PubMed DOI PMC
Gawryluk R.M.R., del Campo J., Okamoto N., Strassert J.F.H., Lukeš J., Richards T.A., Worden A.Z., Santoro A.E., Keeling P.J. Morphological identification and single-cell genomics of marine diplonemids. Curr. Biol. 2016;26:3053–3059. doi: 10.1016/j.cub.2016.09.013. PubMed DOI
Kolisko M., Boscaro V., Burki F., Lynn D.H., Keeling P.J. Single-cell transcriptomics for microbial eukaryotes. Curr. Biol. 2014;24:R1081–R1082. doi: 10.1016/j.cub.2014.10.026. PubMed DOI
Picelli S., Faridani O.R., Björklund Å.K., Winberg G., Sagasser S., Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protocols. 2014;9:171. doi: 10.1038/nprot.2014.006. PubMed DOI
Leger M.M., Kolisko M., Kamikawa R., Stairs C.W., Kume K., Cepicka I., Silberman J.D., Andersson J.O., Xu F., Yabuki A., et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat. Rvol. Evol. 2017;1:0092. doi: 10.1038/s41559-017-0092. PubMed DOI PMC
Vacek V., Novak L.V.F., Treitli S.C., Taborsky P., Cepicka I., Kolisko M., Keeling P.J., Hampl V. Fe-S cluster assembly in oxymonads and related protists. Mol. Biol. Evol. 2018;35:2712–2718. doi: 10.1093/molbev/msy168. PubMed DOI PMC
McFadden G.I., Yeh E. The apicoplast: Now you see it, now you don’t. Int. J. Parasitol. 2017;47:137–144. doi: 10.1016/j.ijpara.2016.08.005. PubMed DOI PMC
Tovar J., León-Avila G., Sánchez L.B., Sutak R., Tachezy J., van der Giezen M., Hernández M., Müller M., Lucocq J.M. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature. 2003;426:172–176. doi: 10.1038/nature01945. PubMed DOI
Lill R., Dutkiewicz R., Freibert S.A., Heidenreich T., Mascarenhas J., Netz D.J., Paul V.D., Pierik A.J., Richter N., Stümpfig M., et al. The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron–sulfur proteins. Eur. J. Cell Biol. 2015;94:280–291. doi: 10.1016/j.ejcb.2015.05.002. PubMed DOI
Karnkowska A., Vacek V., Zubáčová Z., Treitli S.C., Petrželková R., Eme L., Novák L., Žárský V., Barlow L.D., Herman E.K., et al. A eukaryote without a mitochondrial organelle. Curr. Biol. 2016;26:1274–1284. doi: 10.1016/j.cub.2016.03.053. PubMed DOI
Wang X., Wang J., Liu J., Liu A., He X., Xu J., Li Z., Zhao S., Li Y., Yin H., et al. Comparative analysis of apicoplast genomes of Babesia infective to small ruminants in China. Parasites Vectors. 2019;12:312. doi: 10.1186/s13071-019-3581-x. PubMed DOI PMC
Barbrook A.C., Howe C.J., Purton S. Why are plastid genomes retained in non-photosynthetic organisms? Trends Plant Sci. 2006;11:101–108. doi: 10.1016/j.tplants.2005.12.004. PubMed DOI
Goodman C.D., McFadden G.I. Ycf93 (Orf105), a small Apicoplast-encoded membrane protein in the relict plastid of the malaria parasite Plasmodium falciparum that is conserved in apicomplexa. PLoS ONE. 2014;9:e91178. doi: 10.1371/journal.pone.0091178. PubMed DOI PMC