Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin

. 2024 Jan 08 ; 18 (1) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39077993

Grantová podpora
2119963 National Science Foundation
GBMF9201 Gordon and Betty Moore Foundation
CZ.02.01.01/00/22_010/0008117 VEDA FELLOWSHIPS within the Operational program Jan Amos Komensky

Stramenopiles represent a significant proportion of aquatic and terrestrial biota. Most biologists can name a few, but these are limited to the phototrophic (e.g. diatoms and kelp) or parasitic species (e.g. oomycetes, Blastocystis), with free-living heterotrophs largely overlooked. Though our attention is slowly turning towards heterotrophs, we have only a limited understanding of their biology due to a lack of cultured models. Recent metagenomic and single-cell investigations have revealed the species richness and ecological importance of stramenopiles-especially heterotrophs. However, our lack of knowledge of the cell biology and behaviour of these organisms leads to our inability to match species to their particular ecological functions. Because photosynthetic stramenopiles are studied independently of their heterotrophic relatives, they are often treated separately in the literature. Here, we present stramenopiles as a unified group with shared synapomorphies and evolutionary history. We introduce the main lineages, describe their important biological and ecological traits, and provide a concise update on the origin of the ochrophyte plastid. We highlight the crucial role of heterotrophs and mixotrophs in our understanding of stramenopiles with the goal of inspiring future investigations in taxonomy and life history. To understand each of the many diversifications within stramenopiles-towards autotrophy, osmotrophy, or parasitism-we must understand the ancestral heterotrophic flagellate from which they each evolved. We hope the following will serve as a primer for new stramenopile researchers or as an integrative refresher to those already in the field.

Zobrazit více v PubMed

Lefèvre  E, Roussel  B, Amblard  C  et al.  The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS One  2008;3:e2324. 10.1371/journal.pone.0002324 PubMed DOI PMC

Singer  D, Seppey  CVW, Lentendu  G  et al.  Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environ Int  2021;146:106262. 10.1016/j.envint.2020.106262 PubMed DOI

Seeleuthner  Y, Mondy  S, Lombard  V  et al.  Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat Commun  2018;9:310. 10.1038/s41467-017-02235-3 PubMed DOI PMC

Massana  R, del Campo  J, Sieracki  ME  et al.  Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME J  2014;8:854–66. 10.1038/ismej.2013.204 PubMed DOI PMC

Thaler  M, Lovejoy  C. Environmental selection of marine stramenopile clades in the Arctic Ocean and coastal waters. Polar Biol  2014;37:347–57. 10.1007/s00300-013-1435-0 DOI

Xu  Z, Wang  M, Wu  W  et al.  Vertical distribution of microbial eukaryotes from surface to the hadal zone of the Mariana trench. Front Microbiol  2018;9:2023. 10.3389/fmicb.2018.02023 PubMed DOI PMC

Schoenle  A, Hohlfeld  M, Rosse  M  et al.  Global comparison of bicosoecid Cafeteria-like flagellates from the deep ocean and surface waters, with reorganization of the family Cafeteriaceae. Eur J Protistol  2020;73:125665. 10.1016/j.ejop.2019.125665 PubMed DOI

Park  JS, Cho  BC, Simpson  AGB. Halocafeteria seosinensis gen. Et sp. nov. (Bicosoecida), a halophilic bacterivorous nanoflagellate isolated from a solar saltern. Extremophiles  2006;10:493–504. 10.1007/s00792-006-0001-x PubMed DOI

Schoenle  A, Hohlfeld  M, Rybarski  A  et al.  Cafeteria in extreme environments: investigations on C. burkhardae and three new species from the Atacama Desert and the deep ocean. Eur J Protistol  2022;85:125905. 10.1016/j.ejop.2022.125905 PubMed DOI

Haas  BJ, Kamoun  S, Zody  MC  et al.  Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature  2009;461:393–8. 10.1038/nature08358 PubMed DOI

Lhotská  Z, Jirků  M, Hložková  O  et al.  A study on the prevalence and subtype diversity of the intestinal protist Blastocystis sp. in a gut-healthy human population in the Czech Republic. Front Cell Infect Microbiol  2020;10:544335. 10.3389/fcimb.2020.544335 PubMed DOI PMC

Benoiston  A-S, Ibarbalz  FM, Bittner  L  et al.  The evolution of diatoms and their biogeochemical functions. Philos Trans R Soc B Biol Sci  2017;372:20160397. 10.1098/rstb.2016.0397 PubMed DOI PMC

Nakano  S, Ishii  N, Manage  P  et al.  Trophic roles of heterotrophic nanoflagellates and ciliates among planktonic organisms in a hypereutrophic pond. Aquat Microb Ecol  1998;16:153–61. 10.3354/ame016153 DOI

Sanders  RW. Protists: Flagellates and amoebae. In: Mehner T and Tockner K (eds), Encyclopedia of Inland Waters, 2nd edn. Elsevier, 2022, 630–8.

Kristiansen  J. Chrysophytes – Golden algae. In: Likens  G.E. (ed.), Plankton of Inland Waters, 1st edn. Elsevier, 2009, 123–9.

Oborník  M, Dorrell  RG, Tikhonenkov  DV. Editorial: mixotrophic, secondary heterotrophic, and parasitic algae. Front Plant Sci  2021;12:798555. 10.3389/fpls.2021.798555 PubMed DOI PMC

Ban  H, Sato  S, Yoshikawa  S  et al.  Genome analysis of Parmales, the sister group of diatoms, reveals the evolutionary specialization of diatoms from phago-mixotrophs to photoautotrophs. Commun Biol  2023;6:697. 10.1038/s42003-023-05002-x PubMed DOI PMC

Obiol  A, Muhovic  I, Massana  R. Oceanic heterotrophic flagellates are dominated by a few widespread taxa. Limnol Oceanogr  2021;66:4240–53. 10.1002/lno.11956 DOI

Delmont TO, Gaia  M, Hinsinger  DD  et al.  Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics  2022;2:100123. 10.1016/j.xgen.2022.100123 PubMed DOI PMC

Jamy  M, Biwer  C, Vaulot  D  et al.  Global patterns and rates of habitat transitions across the eukaryotic tree of life. Nat Ecol Evol  2022;6:1458–70. 10.1038/s41559-022-01838-4 PubMed DOI PMC

Poulsen  CS, Ekstrøm  CT, Aarestrup  FM  et al.  Library preparation and sequencing platform introduce bias in metagenomic-based characterizations of microbiomes. Microbiol Spectr  2022;10:e0009022. 10.1128/spectrum.00090-22 PubMed DOI PMC

McLaren  MR, Willis  AD, Callahan  BJ. Consistent and correctable bias in metagenomic sequencing experiments. elife  2019;8:e46923. 10.7554/eLife.46923 PubMed DOI PMC

Sunagawa  S, Acinas  SG, Bork  P  et al.  Tara Oceans: towards global ocean ecosystems biology. Nat Rev Microbiol  2020;18:428–45. 10.1038/s41579-020-0364-5 PubMed DOI

Sibbald  SJ, Archibald  JM. More protist genomes needed. Nat Ecol Evol  2017;1:0145. 10.1038/s41559-017-0145 PubMed DOI

Graupner  N, Jensen  M, Bock  C  et al.  Evolution of heterotrophy in chrysophytes as reflected by comparative transcriptomics. FEMS Microbiol Ecol  2018;94:fiy039. 10.1093/femsec/fiy039 PubMed DOI PMC

Hu  A, Meng  F, Tanentzap  AJ  et al.  Dark matter enhances interactions within both microbes and dissolved organic matter under global change. Environ Sci Technol  2023;57:761–9. 10.1021/acs.est.2c05052 PubMed DOI

Cavalier-Smith  T, Chao  EE-Y. Phylogeny and megasystematics of phagotrophic heterokonts (kingdom Chromista). J Mol Evol  2006;62:388–420. PubMed

Petersen  JB. Beiträge zur Kenntnis der Flagellatengeißeln. Bot Tidsskr  1929;40:373–89.

Dodge  JD. Flagella and associated structures. In: Dodge  JD (ed.), The Fine Structure of Algal Cells, 1st edn. Academic Press Inc, London and New York. 1973, 57–79.

South  GR, Whittick  A. An Introduction to Phycology, 1st edn. Wiley, 1988, Hoboken, NJ.

Shukla  SK, Mohan  R, Sudhakar  M. Diatoms: a potential tool to understand past oceanographic settings. Curr Sci  2009;97:1726–34.

Jirsová  D, Füssy  Z, Richtová  J  et al.  Morphology, ultrastructure, and mitochondrial genome of the marine non-photosynthetic bicosoecid Cafileria marina gen. et sp. nov. Microorganisms  2019;7:240. 10.3390/microorganisms7080240 PubMed DOI PMC

Santore  UJ. Flagellar and body scales in the Cryptophyceae. Br Phycol J  1983;18:239–48. 10.1080/00071618300650251 DOI

Brooker  BE. Mastigonemes in a bodonid flagellate. Exp Cell Res  1965;37:300–5. 10.1016/0014-4827(65)90178-3 PubMed DOI

Fu  G, Nagasato  C, Oka  S  et al.  Proteomics analysis of heterogeneous flagella in brown algae (Stramenopiles). Protist  2014;165:662–75. 10.1016/j.protis.2014.07.007 PubMed DOI

Walker  CA, van West  P. Zoospore development in the oomycetes. Fungal Biol Rev  2007;21:10–8. 10.1016/j.fbr.2007.02.001 DOI

Iwata  I, Kimura  K, Tomaru  Y  et al.  Bothrosome formation in Schizochytrium aggregatum (Labyrinthulomycetes, Stramenopiles) during zoospore settlement. Protist  2017;168:206–19. 10.1016/j.protis.2016.12.002 PubMed DOI

Nakamura  S, Tanaka  G, Maeda  T  et al.  Assembly and function of Chlamydomonas flagellar mastigonemes as probed with a monoclonal antibody. J Cell Sci  1996;109:57–62. 10.1242/jcs.109.1.57 PubMed DOI

Liu  P, Lou  X, Wingfield  JL  et al.  Chlamydomonas PKD2 organizes mastigonemes, hair-like glycoprotein polymers on cilia. J Cell Biol  2020;219:e202001122. 10.1083/jcb.202001122 PubMed DOI PMC

Hee  WY, Blackman  LM, Hardham  AR. Characterisation of Stramenopile-specific mastigoneme proteins in Phytophthora parasitica. Protoplasma  2019;256:521–35. 10.1007/s00709-018-1314-1 PubMed DOI

Sengupta  S, Yang  X, Higgs  PG. The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol  2007;64:662–88. 10.1007/s00239-006-0284-7 PubMed DOI PMC

Liaud  MF, Lichtlé  C, Apt  K  et al.  Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway. Mol Biol Evol  2000;17:213–23. 10.1093/oxfordjournals.molbev.a026301 PubMed DOI

Nakayama  T, Ishida  K, Archibald  JM. Broad distribution of TPI-GAPDH fusion proteins among eukaryotes: evidence for glycolytic reactions in the mitochondrion?  PLoS One  2012;7:e52340. 10.1371/journal.pone.0052340 PubMed DOI PMC

Río Bártulos  C, Rogers  MB, Williams  TA  et al.  Mitochondrial glycolysis in a major lineage of eukaryotes. Genome Biol Evol  2018;10:2310–25. 10.1093/gbe/evy164 PubMed DOI PMC

Azuma  T, Pánek  T, Tice  AK  et al.  An enigmatic stramenopile sheds light on early evolution in ochrophyta plastid organellogenesis. Mol Biol Evol  2022;39:msac065. 10.1093/molbev/msac065 PubMed DOI PMC

Cho  A, Tikhonenkov  DV, Hehenberger  E  et al.  Monophyly of diverse Bigyromonadea and their impact on phylogenomic relationships within stramenopiles. Mol Phylogenet Evol  2022;171:107468. 10.1016/j.ympev.2022.107468 PubMed DOI

Khanipour Roshan  S, Dumack  K, Bonkowski  M  et al.  Stramenopiles and Cercozoa dominate the heterotrophic protist community of biological soil crusts irrespective of edaphic factors. Pedobiologia - J Soil Ecol  2020;83:150673. 10.1016/j.pedobi.2020.150673 DOI

Terpis  KX, Salomaki  ED, Barcytė  D  et al.  Multiple plastid losses within photosynthetic stramenopiles revealed by comprehensive phylogenomics. bioRxiv  2024; 2024.02.03.578753

Burki  F, Shalchian-Tabrizi  K, Minge  M  et al.  Phylogenomics reshuffles the eukaryotic supergroups. PLoS One  2007;2:e790. 10.1371/journal.pone.0000790 PubMed DOI PMC

Burki  F, Roger  AJ, Brown  MW  et al.  The new tree of eukaryotes. Trends Ecol Evol  2020;35:43–55. 10.1016/j.tree.2019.08.008 PubMed DOI

Burki  F, Inagaki  Y, Bråte  J  et al.  Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, Telonemia and Centroheliozoa, are related to photosynthetic Chromalveolates. Genome Biol Evol  2009;1:231–8. 10.1093/gbe/evp022 PubMed DOI PMC

Hampl  V, Hug  L, Leigh  JW  et al.  Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci  2009;106:3859–64. 10.1073/pnas.0807880106 PubMed DOI PMC

He  D, Sierra  R, Pawlowski  J  et al.  Reducing long-branch effects in multi-protein data uncovers a close relationship between Alveolata and Rhizaria. Mol Phylogenet Evol  2016;101:1–7. 10.1016/j.ympev.2016.04.033 PubMed DOI

Sierra  R, Matz  MV, Aglyamova  G  et al.  Deep relationships of Rhizaria revealed by phylogenomics: a farewell to Haeckel’s Radiolaria. Mol Phylogenet Evol  2013;67:53–9. 10.1016/j.ympev.2012.12.011 PubMed DOI

Sinha  SD, Wideman  JG. The persistent homology of mitochondrial ATP synthases. iScience  2023;26:106700. 10.1016/j.isci.2023.106700 PubMed DOI PMC

Patterson  DJ. Stramenopiles: Chromophytes from a protistan perspective. In: Green  JC, Leadbeater  BSC, Diver  WL (eds.), The Chromophyte Algae. Oxford University Press, Oxford UK, 1990, 357–80.

Derelle  R, López-García  P, Timpano  H  et al.  A phylogenomic framework to study the diversity and evolution of stramenopiles (=heterokonts). Mol Biol Evol  2016;33:2890–8. 10.1093/molbev/msw168 PubMed DOI PMC

Riisberg  I, Orr  RJS, Kluge  R  et al.  Seven gene phylogeny of Heterokonts. Protist  2009;160:191–204. 10.1016/j.protis.2008.11.004 PubMed DOI

Thakur  R, Shiratori  T, Ishida  K. Taxon-rich multigene phylogenetic analyses resolve the phylogenetic relationship among deep-branching Stramenopiles. Protist  2019;170:125682. 10.1016/j.protis.2019.125682 PubMed DOI

Cho  A, Tikhonenkov  DV, Lax  G  et al.  Phylogenomic position of genetically diverse phagotrophic stramenopile flagellates in the sediment-associated MAST-6 lineage and a potentially halotolerant placididean. Mol Phylogenet Evol  2024;190:107964. 10.1016/j.ympev.2023.107964 PubMed DOI

Cho  A, Lax  G, Keeling  PJ. Phylogenomic analyses of ochrophytes (stramenopiles) with an emphasis on neglected lineages. Mol Phylogenet Evol  2024;198:108120. 10.1016/j.ympev.2024.108120 PubMed DOI

Moriya  M, Nakayama  T, Inouye  I. Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et sp. nov., a new heterotrophic flagellate (Stramenopiles, Incertae Sedis). Protist  2000;151:41–55. 10.1078/1434-4610-00006 PubMed DOI

Sekiguchi  H, Moriya  M, Nakayama  T  et al.  Vestigial chloroplasts in heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum (Dictyochophyceae). Protist  2002;153:157–67. 10.1078/1434-4610-00094 PubMed DOI

Simon  M, Jardillier  L, Deschamps  P  et al.  Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems. Environ Microbiol  2015;17:3610–27. 10.1111/1462-2920.12591 PubMed DOI PMC

Adl  SM, Bass  D, Lane  CE  et al.  Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol  2019;66:4–119. 10.1111/jeu.12691 PubMed DOI PMC

Sibbald  SJ, Archibald  JM. Genomic insights into plastid evolution. Genome Biol Evol  2020;12:978–90. 10.1093/gbe/evaa096 PubMed DOI PMC

Kamikawa  R, Moog  D, Zauner  S  et al.  A non-photosynthetic diatom reveals early steps of reductive evolution in plastids. Mol Biol Evol  2017;34:2355–66. 10.1093/molbev/msx172 PubMed DOI

Kamikawa  R, Azuma  T, Ishii  K  et al.  Diversity of organellar genomes in non-photosynthetic diatoms. Protist  2018;169:351–61. 10.1016/j.protis.2018.04.009 PubMed DOI

Dorrell  RG, Azuma  T, Nomura  M  et al.  Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci  2019;116:6914–23. 10.1073/pnas.1819976116 PubMed DOI PMC

Kayama  M, Maciszewski  K, Yabuki  A  et al.  Highly reduced plastid genomes of the non-photosynthetic dictyochophyceans Pteridomonas spp. (Ochrophyta, SAR) are retained for tRNA-Glu-based organellar heme biosynthesis. Front Plant Sci  2020;11:602455. 10.3389/fpls.2020.602455 PubMed DOI PMC

Barcytė  D, Jaške  K, Pánek  T  et al.  The net-like heterotrophic amoeba Leukarachnion salinum sp. nov. (Ochrophyta, Stramenopiles) has a cryptic plastid. bioRxiv  2022;2003–5.

McKie-Krisberg  ZM, Sanders  RW, Gast  RJ. Evaluation of mixotrophy-associated gene expression in two species of polar marine algae. Front Mar Sci  2018;5:273. 10.3389/fmars.2018.00273 DOI

Li  M, Chen  Y, Zhang  F  et al.  A three-dimensional mixotrophic model of Karlodinium veneficum blooms for a eutrophic estuary. Harmful Algae  2022;113:102203. 10.1016/j.hal.2022.102203 PubMed DOI

Koppelle  S, López-Escardó  D, Brussaard  CPD  et al.  Mixotrophy in the bloom-forming genus Phaeocystis and other haptophytes. Harmful Algae  2022;117:102292. 10.1016/j.hal.2022.102292 PubMed DOI

Ptacnik  R, Gomes  A, Royer  S-J  et al.  A light-induced shortcut in the planktonic microbial loop. Sci Rep  2016;6:29286. 10.1038/srep29286 PubMed DOI PMC

Wilken  S, Yung  CCM, Hamilton  M  et al.  The need to account for cell biology in characterizing predatory mixotrophs in aquatic environments. Philos Trans R Soc B Biol Sci  2019;374:20190090. 10.1098/rstb.2019.0090 PubMed DOI PMC

Barbaglia  GS, Paight  C, Honig  M  et al.  Environment-dependent metabolic investments in the mixotrophic chrysophyte Ochromonas. J Phycol  2024;60:170–84. 10.1111/jpy.13418 PubMed DOI

Green  BR. After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c. Photosynth Res  2011;107:103–15. 10.1007/s11120-010-9584-2 PubMed DOI

Streckaite  S, Gardian  Z, Li  F  et al.  Pigment configuration in the light-harvesting protein of the xanthophyte alga Xanthonema debile. Photosynth Res  2018;138:139–48. 10.1007/s11120-018-0557-1 PubMed DOI

Jeffrey  S, Wright  SW, Zapata  M. Microalgal classes and their signature pigments. In: Roy  S, Llewellyn  C, Skarstad  E, Johnsen  G (eds). Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography. 2011. Cambridge University Press, Cambridge, UK. pp. 3–77.

Pierella Karlusich  JJ, Bowler  C, Biswas  H. Carbon dioxide concentration mechanisms in natural populations of marine diatoms: insights from Tara Oceans. Front Plant Sci  2021;12:657821. 10.3389/fpls.2021.657821 PubMed DOI PMC

Tokushima  H, Inoue-Kashino  N, Nakazato  Y  et al.  Advantageous characteristics of the diatom Chaetoceros gracilis as a sustainable biofuel producer. Biotechnol Biofuels  2016;9:235. 10.1186/s13068-016-0649-0 PubMed DOI PMC

Zeni  V, Baliota  GV, Benelli  G  et al.  Diatomaceous earth for arthropod pest control: back to the future. Molecules  2021;26:7487. 10.3390/molecules26247487 PubMed DOI PMC

Piotrowski  K, Romanowska-Duda  Z, Messyasz  B. Cultivation of energy crops by ecological methods under the conditions of global climate and environmental changes with the use of diatom extract as a natural source of chemical compounds. Acta Physiol Plant  2020;42:146. 10.1007/s11738-020-03135-8 DOI

Kroth  PG, Bones  AM, Daboussi  F  et al.  Genome editing in diatoms: achievements and goals. Plant Cell Rep  2018;37:1401–8. 10.1007/s00299-018-2334-1 PubMed DOI

Huang  W, Daboussi  F. Genetic and metabolic engineering in diatoms. Philos Trans R Soc B Biol Sci  2017;372:20160411. 10.1098/rstb.2016.0411 PubMed DOI PMC

Vergés  A, Campbell  AH. Kelp forests. Curr Biol  2020;30:R919–20. 10.1016/j.cub.2020.06.053 PubMed DOI

Smale  DA. Impacts of ocean warming on kelp forest ecosystems. New Phytol  2020;225:1447–54. 10.1111/nph.16107 PubMed DOI

Neushul  M. Studies on the giant kelp, macrocystis.II.Reproduction. Am J Bot  1963;50:354–9. 10.1002/j.1537-2197.1963.tb07203.x DOI

B-Béres  V, Stenger-Kovács  C, Buczkó  K  et al.  Ecosystem services provided by freshwater and marine diatoms. Hydrobiologia  2023;850:2707–33. 10.1007/s10750-022-04984-9 DOI

Kim  MJ, Yun  HY, Shin  K-H  et al.  Evaluation of food web structure and complexity in the process of kelp bed recovery using stable isotope analysis. Front Mar Sci  2022;9:885676. 10.3389/fmars.2022.885676 DOI

Taucher  J, Bach  LT, Prowe  AEF  et al.  Enhanced silica export in a future ocean triggers global diatom decline. Nature  2022;605:696–700. 10.1038/s41586-022-04687-0 PubMed DOI PMC

Pernice  MC, Giner  CR, Logares  R  et al.  Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J  2016;10:945–58. 10.1038/ismej.2015.170 PubMed DOI PMC

Nicholls  KH, Wujek  DE. Chrysophyceae and Phaeothamniophyceae. In: Wehr  JD, Sheath  RG, Kociolek  JP (eds.), Freshwater Algae of North America, 2nd edn. Academic Press Inc Hoboken, NJ, 2015, 537–86.

Lie  AAY, Liu  Z, Terrado  R  et al.  A tale of two mixotrophic chrysophytes: insights into the metabolisms of two Ochromonas species (Chrysophyceae) through a comparison of gene expression. PLoS One  2018;13:e0192439. 10.1371/journal.pone.0192439 PubMed DOI PMC

Wilken  S, Choi  CJ, Worden  AZ. Contrasting mixotrophic lifestyles reveal different ecological niches in two closely related marine protists. J Phycol  2020;56:52–67. 10.1111/jpy.12920 PubMed DOI PMC

Holen  DA, Boraas  ME. The feeding behavior of Spumella sp. as a function of particle size: implications for bacterial size in pelagic systems. Hydrobiologia  1991;220:73–88. 10.1007/BF00017493 DOI

Meyer  N, Rydzyk  A, Pohnert  G. Pronounced uptake and metabolism of organic substrates by diatoms revealed by pulse-labeling metabolomics. Front Mar Sci  2022;9:821167. 10.3389/fmars.2022.821167 DOI

Mitra  A, Caron  DA, Faure  E  et al.  The Mixoplankton Database (MDB): diversity of photo-phago-trophic plankton in form, function, and distribution across the global ocean. J Eukaryot Microbiol  2023;70:e12972. 10.1111/jeu.12972 PubMed DOI

Godrijan  J, Drapeau  D, Balch  WM. Mixotrophic uptake of organic compounds by coccolithophores. Limnol Oceanogr  2020;65:1410–21. 10.1002/lno.11396 DOI

Balch  WM, Drapeau  DT, Poulton  N  et al.  Osmotrophy of dissolved organic compounds by coccolithophore populations: fixation into particulate organic and inorganic carbon. Sci Adv  2023;9:eadf6973. 10.1126/sciadv.adf6973 PubMed DOI PMC

Kamikawa  R, Mochizuki  T, Sakamoto  M  et al.  Genome evolution of a nonparasitic secondary heterotroph, the diatom Nitzschia putrida. Sci Adv  2022;8:eabi5075. 10.1126/sciadv.abi5075 PubMed DOI PMC

Maberly  SC, Ball  LA, Raven  JA  et al.  Inorganic carbon acquisition by chrysophytes. J Phycol  2009;45:1052–61. 10.1111/j.1529-8817.2009.00734.x PubMed DOI

Terrado  R, Pasulka  AL, Lie  AAY  et al.  Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis. ISME J  2017;11:2022–34. 10.1038/ismej.2017.68 PubMed DOI PMC

Terrado  R, Monier  A, Edgar  R  et al.  Diversity of nitrogen assimilation pathways among microbial photosynthetic eukaryotes. J Phycol  2015;51:490–506. 10.1111/jpy.12292 PubMed DOI

Kamjunke  N, Henrichs  T, Gaedke  U. Phosphorus gain by bacterivory promotes the mixotrophic flagellate Dinobryon spp. during re-oligotrophication. J Plankton Res  2006;29:39–46. 10.1093/plankt/fbl054 DOI

Rothhaupt  KO. Utilization of substitutable carbon and phosphorus sources by the mixotrophic chrysophyte Ochromonas sp. Ecology  1996;77:706–15. 10.2307/2265495 DOI

Johnson  WM, Alexander  H, Bier  RL  et al.  Auxotrophic interactions: a stabilizing attribute of aquatic microbial communities?  FEMS Microbiol Ecol  2020;96:fiaa115. 10.1093/femsec/fiaa115 PubMed DOI PMC

Faure  E, Not  F, Benoiston  A-S  et al.  Mixotrophic protists display contrasted biogeographies in the global ocean. ISME J  2019;13:1072–83. 10.1038/s41396-018-0340-5 PubMed DOI PMC

Leles  SG, Mitra  A, Flynn  KJ  et al.  Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance. Proc R Soc B Biol Sci  2017;284:20170664. 10.1098/rspb.2017.0664 PubMed DOI PMC

Tanaka  R, Tanaka  A. Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol  2007;58:321–46. 10.1146/annurev.arplant.57.032905.105448 PubMed DOI

López  G, Yate  C, Ramos  FA  et al.  Production of polyunsaturated fatty acids and lipids from autotrophic, mixotrophic and heterotrophic cultivation of Galdieria sp. strain USBA-GBX-832. Sci Rep  2019;9:10791. 10.1038/s41598-019-46645-3 PubMed DOI PMC

Boëchat  IG, Weithoff  G, Krüger  A  et al.  A biochemical explanation for the success of mixotrophy in the flagellate Ochromonas sp. Limnol Oceanogr  2007;52:1624–32. 10.4319/lo.2007.52.4.1624 DOI

Brown  JW, Sorhannus  U. A molecular genetic timescale for the diversification of autotrophic stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. PLoS One  2010;5:e12759. 10.1371/journal.pone.0012759 PubMed DOI PMC

Burki  F, Kaplan  M, Tikhonenkov  DV  et al.  Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc R Soc B Biol Sci  2016;283:20152802. 10.1098/rspb.2015.2802 PubMed DOI PMC

Keeling  PJ. Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol  2009;56:1–8. 10.1111/j.1550-7408.2008.00371.x PubMed DOI

Ševčíková  T, Horák  A, Klimeš  V  et al.  Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte?  Sci Rep  2015;5:10134. 10.1038/srep10134 PubMed DOI PMC

Cavalier-Smith  T. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol  1999;46:347–66. 10.1111/j.1550-7408.1999.tb04614.x PubMed DOI

Khan  H, Parks  N, Kozera  C  et al.  Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol Biol Evol  2007;24:1832–42. 10.1093/molbev/msm101 PubMed DOI

Dorrell  RG, Gile  G, McCallum  G  et al.  Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. elife  2017;6:e23717. 10.7554/eLife.23717 PubMed DOI PMC

Baurain  D, Brinkmann  H, Petersen  J  et al.  Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol  2010;27:1698–709. 10.1093/molbev/msq059 PubMed DOI

Yoon  HS, Hackett  JD, Pinto  G  et al.  The single, ancient origin of chromist plastids. Proc Natl Acad Sci  2002;99:15507–12. 10.1073/pnas.242379899 PubMed DOI PMC

Fast  NM, Kissinger  JC, Roos  DS  et al.  Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol  2001;18:418–26. 10.1093/oxfordjournals.molbev.a003818 PubMed DOI

Tyler  BM, Tripathy  S, Zhang  X  et al.  Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science  2006;313:1261–6. 10.1126/science.1128796 PubMed DOI

Sargent  JR, Bell  M V., Henderson  RJ. Protists as sources of (n-3) polyunsaturated fatty acids for vertebrate development. In: Brugerolle  G, Mignot  JP (eds). Proceedings of the Second European Congress of Protistology. 1995. Clermont-Ferrand, pp. 54–64.

Harper  JT, Keeling  PJ. Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol  2003;20:1730–5. 10.1093/molbev/msg195 PubMed DOI

Wang  Q, Sun  H, Huang  J. Re-analyses of “algal” genes suggest a complex evolutionary history of oomycetes. Front Plant Sci  2017;8:1540. 10.3389/fpls.2017.01540 PubMed DOI PMC

Santos  HJ, Nozaki  T. The mitosome of the anaerobic parasitic protist Entamoeba histolytica: a peculiar and minimalist mitochondrion-related organelle. J Eukaryot Microbiol  2022;69:e12923. 10.1111/jeu.12923 PubMed DOI PMC

Muñoz-Gómez  SA. Energetics and evolution of anaerobic microbial eukaryotes. Nat Microbiol  2023;8:197–203. 10.1038/s41564-022-01299-2 PubMed DOI

Karnkowska  A, Vacek  V, Zubáčová  Z  et al.  A eukaryote without a mitochondrial organelle. Curr Biol  2016;26:1274–84. 10.1016/j.cub.2016.03.053 PubMed DOI

Hjort  K, Goldberg  AV, Tsaousis  AD  et al.  Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc B Biol Sci  2010;365:713–27. 10.1098/rstb.2009.0224 PubMed DOI PMC

Salomaki  E, Kolisko  M. There is treasure everywhere: reductive plastid evolution in apicomplexa in light of their close relatives. Biomol Ther  2019;9:378. 10.3390/biom9080378 PubMed DOI PMC

Makiuchi  T, Nozaki  T. Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie  2014;100:3–17. 10.1016/j.biochi.2013.11.018 PubMed DOI

Zhu  G, Marchewka  MJ, Keithly  JS. Cryptosporidium parvum appears to lack a plastid genome. Microbiology  2000;146:315–21. 10.1099/00221287-146-2-315 PubMed DOI

Gornik  SG, Febrimarsa  CAM, MacRae  JI  et al.  Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci USA  2015;112:5767–72. 10.1073/pnas.1423400112 PubMed DOI PMC

Schön  ME, Zlatogursky  VV, Singh  RP  et al.  Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat Commun  2021;12:6651. 10.1038/s41467-021-26918-0 PubMed DOI PMC

Burki  F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol  2014;6:a016147–7. 10.1101/cshperspect.a016147 PubMed DOI PMC

Adl  SM, Simpson  AGB, Lane  CE  et al.  The revised classification of eukaryotes. J Eukaryot Microbiol  2012;59:429–514. 10.1111/j.1550-7408.2012.00644.x PubMed DOI PMC

Petersen  J, Ludewig  A-K, Michael  V  et al.  Chromera velia, endosymbioses and the rhodoplex hypothesis—plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biol Evol  2014;6:666–84. 10.1093/gbe/evu043 PubMed DOI PMC

Hempel  F, Bullmann  L, Lau  J  et al.  ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Mol Biol Evol  2009;26:1781–90. 10.1093/molbev/msp079 PubMed DOI

Felsner  G, Sommer  MS, Gruenheit  N  et al.  ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genome Biol Evol  2011;3:140–50. 10.1093/gbe/evq074 PubMed DOI PMC

Kienle  N, Kloepper  TH, Fasshauer  D. Shedding light on the expansion and diversification of the Cdc48 protein family during the rise of the eukaryotic cell. BMC Evol Biol  2016;16:215. 10.1186/s12862-016-0790-1 PubMed DOI PMC

Sommer  MS, Gould  SB, Lehmann  P  et al.  Der1-mediated preprotein import into the periplastid compartment of chromalveolates?  Mol Biol Evol  2007;24:918–28. 10.1093/molbev/msm008 PubMed DOI

Bolte  K, Gruenheit  N, Felsner  G  et al.  Making new out of old: recycling and modification of an ancient protein translocation system during eukaryotic evolution. BioEssays  2011;33:368–76. 10.1002/bies.201100007 PubMed DOI

Stiller  JW, Schreiber  J, Yue  J  et al.  The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat Commun  2014;5:5764. 10.1038/ncomms6764 PubMed DOI PMC

Bodył  A, Stiller  JW, Mackiewicz  P. Chromalveolate plastids: direct descent or multiple endosymbioses?  Trends Ecol Evol  2009;24:119–21. PubMed

Strassert  JFH, Irisarri  I, Williams  TA  et al.  A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat Commun  2021;12:1879. 10.1038/s41467-021-22044-z PubMed DOI PMC

Kim  JI, Moore  CE, Archibald  JM  et al.  Evolutionary dynamics of cryptophyte plastid genomes. Genome Biol Evol  2017;9:1859–72. 10.1093/gbe/evx123 PubMed DOI PMC

Karnkowska  A, Yubuki  N, Maruyama  M  et al.  Euglenozoan kleptoplasty illuminates the early evolution of photoendosymbiosis. Proc Natl Acad Sci  2023;120:e2220100120. 10.1073/pnas.2220100120 PubMed DOI PMC

Shiratori  T, Nakayama  T, Ishida  K. A new deep-branching stramenopile, Platysulcus tardus gen. Nov., sp. nov. Protist  2015;166:337–48. 10.1016/j.protis.2015.05.001 PubMed DOI

Leonard  G, Labarre  A, Milner  DS  et al.  Comparative genomic analysis of the ‘pseudofungus’ Hyphochytrium catenoides. Open Biol  2018;8:170184. 10.1098/rsob.170184 PubMed DOI PMC

Spanu  PD, Panstruga  R. Editorial: biotrophic plant-microbe interactions. Front Plant Sci  2017;8:192. PubMed PMC

Martin  F, Kohler  A, Murat  C  et al.  Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol  2016;14:760–73. 10.1038/nrmicro.2016.149 PubMed DOI

Van der Auwera  G, De Baere  R, Van de Peer  Y  et al.  The phylogeny of the Hyphochytriomycota as deduced from ribosomal RNA sequences of Hyphochytrium catenoides. Mol Biol Evol  1995;12:671–8. PubMed

Lévesque  CA. Fifty years of oomycetes—from consolidation to evolutionary and genomic exploration. Fungal Divers  2011;50:35–46. 10.1007/s13225-011-0128-7 DOI

Lévesque  CA, Brouwer  H, Cano  L  et al.  Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol  2010;11:R73. 10.1186/gb-2010-11-7-r73 PubMed DOI PMC

Richards  TA, Soanes  DM, Jones  MDM  et al.  Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc Natl Acad Sci  2011;108:15258–63. 10.1073/pnas.1105100108 PubMed DOI PMC

Savory  F, Leonard  G, Richards  TA. The role of horizontal gene transfer in the evolution of the oomycetes. PLoS Pathog  2015;11:e1004805. 10.1371/journal.ppat.1004805 PubMed DOI PMC

Aleoshin  VV, Mylnikov  AP, Mirzaeva  GS  et al.  Heterokont predator Develorapax marinus gen. et sp. nov. – a model of the ochrophyte ancestor. Front Microbiol  2016;7:1194. PubMed PMC

Leipe  DD, Tong  SM, Goggin  CL  et al.  16S-like rDNA sequences from Developayella elegans, Labyrinthuloides haliotidis, and Proteromonas lacertae confirm that the stramenopiles are a primarily heterotrophic group. Eur J Protistol  1996;32:449–58. 10.1016/S0932-4739(96)80004-6 DOI

Weiler  BA, Elisabet  LS, Sieracki  ME  et al.  Mediocremonas mediterraneus, a new member within the developea. J Eukaryot Microbiol  2021;68:12825. 10.1111/jeu.12825 PubMed DOI

Silberman  JD, Sogin  ML, Leipe  DD  et al.  Human parasite finds taxonomic home. Nature  1996;380:398–8. 10.1038/380398a0 PubMed DOI

Bahnweg  G, Sparrow  FK. Aplanochytrium kerguelensis gen. nov. spec. nov., a new phycomycete from subantarctic marine waters. Arch Mikrobiol  1972;81:45–9. 10.1007/BF00715023 PubMed DOI

Yubuki  N, Pánek  T, Yabuki  A  et al.  Morphological identities of two different marine stramenopile environmental sequence clades: Bicosoeca kenaiensis (Hilliard, 1971) and Cantina marsupialis (Larsen and Patterson, 1990) gen. nov., comb. nov. J Eukaryot Microbiol  2015;62:532–42. 10.1111/jeu.12207 PubMed DOI

Labarre  A, López-Escardó  D, Latorre  F  et al.  Comparative genomics reveals new functional insights in uncultured MAST species. ISME J  2021;15:1767–81. 10.1038/s41396-020-00885-8 PubMed DOI PMC

de Vargas  C, Audic  S, Henry  N  et al.  Eukaryotic plankton diversity in the sunlit ocean. Science  2015;348:1261605. 10.1126/science.1261605 PubMed DOI

Wideman  JG, Monier  A, Rodríguez-Martínez  R  et al.  Unexpected mitochondrial genome diversity revealed by targeted single-cell genomics of heterotrophic flagellated protists. Nat Microbiol  2019;5:154–65. 10.1038/s41564-019-0605-4 PubMed DOI

Cavalier-Smith  T, Scoble  JM. Phylogeny of Heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that Actinophryida evolved from raphidophytes. Eur J Protistol  2013;49:328–53. 10.1016/j.ejop.2012.09.002 PubMed DOI

Shiratori  T, Thakur  R, Ishida  K. Pseudophyllomitus vesiculosus (Larsen and Patterson 1990) lee, 2002, a poorly studied phagotrophic biflagellate is the first characterized member of Stramenopile environmental clade MAST-6. Protist  2017;168:439–51. 10.1016/j.protis.2017.06.004 PubMed DOI

Tsui  CKM, Marshall  W, Yokoyama  R  et al.  Labyrinthulomycetes phylogeny and its implications for the evolutionary loss of chloroplasts and gain of ectoplasmic gliding. Mol Phylogenet Evol  2009;50:129–40. 10.1016/j.ympev.2008.09.027 PubMed DOI

Raghukumar  S, Damare  VS. Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems. Bot Mar  2011;54:3–11. 10.1515/bot.2011.008 DOI

Xie  N, Hunt  DE, Johnson  ZI  et al.  Annual partitioning patterns of labyrinthulomycetes protists reveal their multifaceted role in marine microbial food webs. Appl Environ Microbiol  2021;87:e01652–20. 10.1128/AEM.01652-20 PubMed DOI PMC

Rubin  E, Tanguy  A, Pales Espinosa  E  et al.  Differential gene expression in five isolates of the clam pathogen, quahog parasite unknown (QPX). J Eukaryot Microbiol  2017;64:647–54. 10.1111/jeu.12400 PubMed DOI

Xie  N, Wang  Z, Hunt  DE  et al.  Niche partitioning of Labyrinthulomycete protists across sharp coastal gradients and their putative relationships with bacteria and fungi. Front Microbiol  2022;13:906864. 10.3389/fmicb.2022.906864 PubMed DOI PMC

Hamamoto  Y, Honda  D. Nutritional intake of Aplanochytrium (Labyrinthulea, Stramenopiles) from living diatoms revealed by culture experiments suggesting the new prey–predator interactions in the grazing food web of the marine ecosystem. PLoS One  2019;14:e0208941. 10.1371/journal.pone.0208941 PubMed DOI PMC

Gomaa  F, Mitchell  EAD, Lara  E. Amphitremida (Poche, 1913) is a new major, ubiquitous labyrinthulomycete clade. PLoS One  2013;8:e53046. 10.1371/journal.pone.0053046 PubMed DOI PMC

Takahashi  Y, Yoshida  M, Inouye  I  et al.  Fibrophrys columna gen. nov., sp. nov: a member of the family Amphifilidae. Eur J Protistol  2016;56:41–50. 10.1016/j.ejop.2016.06.003 PubMed DOI

Pan  J, del Campo  J, Keeling  PJ. Reference tree and environmental sequence diversity of Labyrinthulomycetes. J Eukaryot Microbiol  2017;64:88–96. 10.1111/jeu.12342 PubMed DOI

Takahashi  Y, Yoshida  M, Inouye  I  et al.  Diplophrys mutabilis sp. nov., a new member of Labyrinthulomycetes from freshwater habitats. Protist  2014;165:50–65. 10.1016/j.protis.2013.10.001 PubMed DOI

Qiu  X, Xie  X, Meesapyodsuk  D. Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res  2020;79:101047. 10.1016/j.plipres.2020.101047 PubMed DOI

Ishibashi  Y, Goda  H, Hamaguchi  R  et al.  PUFA synthase-independent DHA synthesis pathway in Parietichytrium sp. and its modification to produce EPA and n-3DPA. Commun Biol  2021;4:1378. 10.1038/s42003-021-02857-w PubMed DOI PMC

Sanders  RW, Porter  KG, Bennett  SJ  et al.  Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol Oceanogr  1989;34:673–87. 10.4319/lo.1989.34.4.0673 DOI

Hahn  MW, Höfle  MG. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol  2001;35:113–21. 10.1111/j.1574-6941.2001.tb00794.x PubMed DOI

Harder  CB, Ekelund  F, Karpov  SA. Ultrastructure and phylogenetic position of regin rotiferus and Otto terricolus genera et species novae (Bicosoecida, Heterokonta/Stramenopiles). Protist  2014;165:144–60. 10.1016/j.protis.2014.01.004 PubMed DOI

Moestrup  Ø.  Current status of chtysophyte ‘splinter groups’: Synurophytes, pedinellis, silicoflagellates. In: Sandgren  C, Smol  JP, Kristiansen  J (eds). Chrysophyte Algae: Ecology, Phylogeny and Development, 1st ed.  1995. Cambridge University Press, Cambridge, pp. 1535–5, 10.1017/CBO9780511752292.005. DOI

Preisig  HR. A modern concept of chrysophyte classification. In: Sandgren  C, Smol  JP, Kristiansen  J (eds). Chrysophyte Algae: Ecology, Phylogeny, Development, 1st ed.  1995. Cambridge University Press, Cambridge, pp. 47–74, 10.1017/CBO9780511752292.004. DOI

O’Kelly  CJ, Patterson  DJ. The flagellar apparatus of cafeteria roenbergensis Fenchel & Patterson, 1988 (Bicosoecales = Bicosoecida). Eur J Protistol  1996;32:216–26. 10.1016/S0932-4739(96)80021-6 DOI

Millette  NC, Gast  RJ, Luo  JY  et al.  Mixoplankton and mixotrophy: future research priorities. J Plankton Res  2023;45:576–96. 10.1093/plankt/fbad020 PubMed DOI PMC

Fenchel  T, Patterson  DJ. Cafeteria roenbergensis nov. gen., nov. sp., a heterotrophic microflagellate from marine plankton. Mar Microb Food Webs  1988;3:9–19.

Baricevic  A, Maric Pfannkuchen  D, Smodlaka Tankovic  M  et al.  Identification of the heterotrophic nanoflagellate Bilabrum latius in the southern Adriatic (Mediterranean Sea). Eur J Protistol  2023;90:125999. 10.1016/j.ejop.2023.125999 PubMed DOI

Burger  G, O’Kelly  C, Gray  MW  et al.  Cafeteria Roenbergensis Mitochondrial DNA Complete Sequence OGMP Accession no. AF193903, 1999.

Hackl  T, Martin  R, Barenhoff  K  et al.  Four high-quality draft genome assemblies of the marine heterotrophic nanoflagellate cafeteria roenbergensis. Sci Data  2020;7:29. 10.1038/s41597-020-0363-4 PubMed DOI PMC

Boegnik  J, Matz  C, Jürgens  K  et al.  Confusing selective feeding with differential digestion in bacterivorous nanoflagellates. J Eukaryot Microbiol  2001;48:425–32. 10.1111/j.1550-7408.2001.tb00175.x PubMed DOI

Ishigaki  T, Terazaki  M. Grazing behavior of heterotrophic nanoflagellates observed with a high speed VTR system. J Eukaryot Microbiol  1998;45:484–7. 10.1111/j.1550-7408.1998.tb05104.x DOI

Jürgens  K, Massana  R. Protistan grazing on marine bacterioplankton. In: Kirchman  D.L. (ed.), Microbial Ecology of the Oceans, 2nd edn. John Wiley & Sons, Inc., Hoboken, NJ, 2008, 383–441.

Fischer  MG, Allen  MJ, Wilson  WH  et al.  Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci USA  2010;107:19508–13. 10.1073/pnas.1007615107 PubMed DOI PMC

Massana  R, Del Campo  J, Dinter  C  et al.  Crash of a population of the marine heterotrophic flagellate cafeteria roenbergensis by viral infection. Environ Microbiol  2007;9:2660–9. 10.1111/j.1462-2920.2007.01378.x PubMed DOI

Gómez  F, Moreira  D, Benzerara  K  et al.  Solenicola setigera is the first characterized member of the abundant and cosmopolitan uncultured marine stramenopile group MAST-3. Environ Microbiol  2011;13:193–202. 10.1111/j.1462-2920.2010.02320.x PubMed DOI

Moriya  M, Nakayama  T, Inouye  I. A new class of the stramenopiles, placididea classis nova: description of Placidia cafeteriopsis gen. Et sp. nov. Protist  2002;153:143–56. 10.1078/1434-4610-00093 PubMed DOI

Okamura  T, Kondo  R. Suigetsumonas clinomigrationis gen. Et sp. nov., a novel facultative anaerobic nanoflagellate isolated from the meromictic Lake Suigetsu, Japan. Protist  2015;166:409–21. 10.1016/j.protis.2015.06.003 PubMed DOI

Park  JS, Simpson  AGB. Characterization of halotolerant Bicosoecida and Placididea (Stramenopila) that are distinct from marine forms, and the phylogenetic pattern of salinity preference in heterotrophic stramenopiles. Environ Microbiol  2010;12:1173–84. 10.1111/j.1462-2920.2010.02158.x PubMed DOI

Rybarski  AE, Nitsche  F, Soo Park  J  et al.  Revision of the phylogeny of Placididea (Stramenopiles): molecular and morphological diversity of novel placidid protists from extreme aquatic environments. Eur J Protistol  2021;81:125809. 10.1016/j.ejop.2021.125809 PubMed DOI

Kostka  M. Opalinata. In: Archibald  J.M., AGB  S., Slamovits  C.H.  et al. (eds.), Handbook of the Protists, 2nd edn. Cham: Springer International Publishing, 2016, 1–23.

Corliss  JO. The opalinid infusorians: flagellates or ciliates?  J Protozool  1955;2:107–14. 10.1111/j.1550-7408.1955.tb02410.x DOI

Zhao  W, Hu  G, Ponce-Gordo  F  et al.  Morphological description of Opalina obtrigonoidea Metcalf, 1923 (Heterokonta, Opalinea) from Duttaphrynus melanostictus and evaluation of the ITS region as a suitable genetic marker for inter-species identification in Opalina. Parasitol Int  2020;76:102103. 10.1016/j.parint.2020.102103 PubMed DOI

Wang  R, Zhao  W, Hu  G  et al.  Redescription of Opalina triangulata (Heterokonta, Opalinea) from Fejervarya limnocharis based on morphological and molecular data. Eur J Protistol  2019;71:125639. 10.1016/j.ejop.2019.125639 PubMed DOI

Li  M, Hu  G, Zhao  W  et al.  A revised taxonomy and phylogeny of opalinids (Stramenopiles: Opalinata) inferred from the analysis of complete nuclear ribosomal DNA genes. Zool J Linnean Soc  2023;201:269–89. 10.1093/zoolinnean/zlad150 DOI

Tan  KSW. New insights on classification, identification, and clinical relevance of Blastocystis spp. Clin Microbiol Rev  2008;21:639–65. 10.1128/CMR.00022-08 PubMed DOI PMC

Burki  F. The convoluted evolution of eukaryotes with complex plastids. Advances in Botanical Research, 2017;84:1–30. 10.1016/bs.abr.2017.06.001 DOI

Guillou  L, Chrétiennot-Dinet  M-J, Boulben  S  et al.  Symbiomonas scintillans gen. et sp. nov. and Picophagus flagellatus gen. et sp. nov. (Heterokonta): two new heterotrophic flagellates of picoplanktonic size. Protist  1999;150:383–98. 10.1016/S1434-4610(99)70040-4 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...