Pigment configuration in the light-harvesting protein of the xanthophyte alga Xanthonema debile
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
PHOTPROT project
European Research Council - International
ANR-10-INBS-05
French Infrastructure for Integrated Structural Biology (FRISBI)
675006 (SE2B)
H2020 Marie Skłodowska-Curie Actions
P501/12/G055
Czech Science Foundation
CZ.02.1.01/0.0/0.0/15_003/0000441
European Regional Development Fund
PubMed
30006883
DOI
10.1007/s11120-018-0557-1
PII: 10.1007/s11120-018-0557-1
Knihovny.cz E-zdroje
- Klíčová slova
- Algae, Carotenoids, Chl-a, Diadinoxanthin, Heteroxanthin, Light-harvesting complex, Resonance Raman,
- MeSH
- Heterokontophyta chemie MeSH
- karotenoidy chemie MeSH
- konformace proteinů MeSH
- Ramanova spektroskopie MeSH
- světlosběrné proteinové komplexy chemie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- karotenoidy MeSH
- světlosběrné proteinové komplexy MeSH
The soil chromophyte alga Xanthonema (X.) debile contains only non-carbonyl carotenoids and Chl-a. X. debile has an antenna system denoted Xanthophyte light-harvesting complex (XLH) that contains the carotenoids diadinoxanthin, heteroxanthin, and vaucheriaxanthin. The XLH pigment stoichiometry was calculated by chromatographic techniques and the pigment-binding structure studied by resonance Raman spectroscopy. The pigment ratio obtained by HPLC was found to be close to 8:1:2:1 Chl-a:heteroxanthin:diadinoxanthin:vaucheriaxanthin. The resonance Raman spectra suggest the presence of 8-10 Chl-a, all of which are 5-coordinated to the central Mg, with 1-3 Chl-a possessing a macrocycle distorted from the relaxed conformation. The three populations of carotenoids are in the all-trans configuration. Vaucheriaxanthin absorbs around 500-530 nm, diadinoxanthin at 494 nm and heteroxanthin at 487 nm at 4.5 K. The effective conjugation length of heteroxanthin and diadinoxanthin has been determined as 9.4 in both cases; the environment polarizability of the heteroxanthin and diadinoxanthin binding pockets is 0.270 and 0.305, respectively.
Zobrazit více v PubMed
Nature. 2007 Nov 22;450(7169):575-8 PubMed
J Biol Chem. 2013 Jun 28;288(26):18758-65 PubMed
J Biol Chem. 2017 Jan 27;292(4):1396-1403 PubMed
Biochim Biophys Acta. 1996 Dec 18;1277(3):243-52 PubMed
Sci Rep. 2015 May 28;5:10134 PubMed
J Biol Chem. 2000 Jul 21;275(29):22031-6 PubMed
J Am Chem Soc. 1973 Jul 11;95(14):4493-501 PubMed
Science. 1996 Jun 21;272(5269):1788-91 PubMed
J Phys Chem B. 2013 Sep 26;117(38):11015-21 PubMed
Biochim Biophys Acta. 2015 Jan;1847(1):12-8 PubMed
Photosynth Res. 2017 Oct;134(1):51-58 PubMed
Photosynth Res. 2010 Nov;106(1-2):57-71 PubMed
Photosynth Res. 2011 May;108(1):25-32 PubMed
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):534-43 PubMed
Photosynth Res. 2005 Nov;86(1-2):5-24 PubMed
Plant Physiol. 2007 Apr;143(4):1802-16 PubMed
BMC Evol Biol. 2010 Jul 30;10:233 PubMed
Nature. 2004 Mar 18;428(6980):287-92 PubMed
Biochim Biophys Acta. 2010 May;1797(5):543-9 PubMed
Photosynth Res. 2008 Feb-Mar;95(2-3):229-35 PubMed
J Phys Chem A. 2015 Jan 8;119(1):56-66 PubMed
Biochim Biophys Acta. 2016 Nov;1857(11):1759-1765 PubMed
J Phys Chem A. 2014 Mar 13;118(10):1817-25 PubMed
J Phys Chem B. 2012 Aug 2;116(30):8880-9 PubMed
Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):636-40 PubMed
Spectrochim Acta A Mol Biomol Spectrosc. 2011 Apr;78(4):1261-5 PubMed
Photosynth Res. 2005 Nov;86(1-2):241-50 PubMed
Biochemistry. 2006 Jul 18;45(28):8516-26 PubMed
J R Soc Interface. 2017 Oct;14(135):null PubMed
Biochemistry. 1998 Feb 24;37(8):2450-7 PubMed
J Phys Chem B. 2009 Sep 17;113(37):12565-74 PubMed
Photosynth Res. 2018 Mar;135(1-3):213-225 PubMed
Biochim Biophys Acta. 2011 Aug;1807(8):864-77 PubMed
Biochim Biophys Acta. 1977 Jun 9;460(3):408-30 PubMed
Mol Gen Genet. 1995 Feb 20;246(4):455-64 PubMed
Photosynth Res. 2016 Dec;130(1-3):137-150 PubMed
Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin
Electronic and Vibrational Properties of Allene Carotenoids
Modeling Dynamic Conformations of Organic Molecules: Alkyne Carotenoids in Solution