Pigment configuration in the light-harvesting protein of the xanthophyte alga Xanthonema debile

. 2018 Nov ; 138 (2) : 139-148. [epub] 20180713

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30006883

Grantová podpora
PHOTPROT project European Research Council - International
ANR-10-INBS-05 French Infrastructure for Integrated Structural Biology (FRISBI)
675006 (SE2B) H2020 Marie Skłodowska-Curie Actions
P501/12/G055 Czech Science Foundation
CZ.02.1.01/0.0/0.0/15_003/0000441 European Regional Development Fund

Odkazy

PubMed 30006883
DOI 10.1007/s11120-018-0557-1
PII: 10.1007/s11120-018-0557-1
Knihovny.cz E-zdroje

The soil chromophyte alga Xanthonema (X.) debile contains only non-carbonyl carotenoids and Chl-a. X. debile has an antenna system denoted Xanthophyte light-harvesting complex (XLH) that contains the carotenoids diadinoxanthin, heteroxanthin, and vaucheriaxanthin. The XLH pigment stoichiometry was calculated by chromatographic techniques and the pigment-binding structure studied by resonance Raman spectroscopy. The pigment ratio obtained by HPLC was found to be close to 8:1:2:1 Chl-a:heteroxanthin:diadinoxanthin:vaucheriaxanthin. The resonance Raman spectra suggest the presence of 8-10 Chl-a, all of which are 5-coordinated to the central Mg, with 1-3 Chl-a possessing a macrocycle distorted from the relaxed conformation. The three populations of carotenoids are in the all-trans configuration. Vaucheriaxanthin absorbs around 500-530 nm, diadinoxanthin at 494 nm and heteroxanthin at 487 nm at 4.5 K. The effective conjugation length of heteroxanthin and diadinoxanthin has been determined as 9.4 in both cases; the environment polarizability of the heteroxanthin and diadinoxanthin binding pockets is 0.270 and 0.305, respectively.

Zobrazit více v PubMed

Nature. 2007 Nov 22;450(7169):575-8 PubMed

J Biol Chem. 2013 Jun 28;288(26):18758-65 PubMed

J Biol Chem. 2017 Jan 27;292(4):1396-1403 PubMed

Biochim Biophys Acta. 1996 Dec 18;1277(3):243-52 PubMed

Sci Rep. 2015 May 28;5:10134 PubMed

J Biol Chem. 2000 Jul 21;275(29):22031-6 PubMed

J Am Chem Soc. 1973 Jul 11;95(14):4493-501 PubMed

Science. 1996 Jun 21;272(5269):1788-91 PubMed

J Phys Chem B. 2013 Sep 26;117(38):11015-21 PubMed

Biochim Biophys Acta. 2015 Jan;1847(1):12-8 PubMed

Photosynth Res. 2017 Oct;134(1):51-58 PubMed

Photosynth Res. 2010 Nov;106(1-2):57-71 PubMed

Photosynth Res. 2011 May;108(1):25-32 PubMed

Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):534-43 PubMed

Photosynth Res. 2005 Nov;86(1-2):5-24 PubMed

Plant Physiol. 2007 Apr;143(4):1802-16 PubMed

BMC Evol Biol. 2010 Jul 30;10:233 PubMed

Nature. 2004 Mar 18;428(6980):287-92 PubMed

Biochim Biophys Acta. 2010 May;1797(5):543-9 PubMed

Photosynth Res. 2008 Feb-Mar;95(2-3):229-35 PubMed

J Phys Chem A. 2015 Jan 8;119(1):56-66 PubMed

Biochim Biophys Acta. 2016 Nov;1857(11):1759-1765 PubMed

J Phys Chem A. 2014 Mar 13;118(10):1817-25 PubMed

J Phys Chem B. 2012 Aug 2;116(30):8880-9 PubMed

Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):636-40 PubMed

Spectrochim Acta A Mol Biomol Spectrosc. 2011 Apr;78(4):1261-5 PubMed

Photosynth Res. 2005 Nov;86(1-2):241-50 PubMed

Biochemistry. 2006 Jul 18;45(28):8516-26 PubMed

J R Soc Interface. 2017 Oct;14(135):null PubMed

Biochemistry. 1998 Feb 24;37(8):2450-7 PubMed

J Phys Chem B. 2009 Sep 17;113(37):12565-74 PubMed

Photosynth Res. 2018 Mar;135(1-3):213-225 PubMed

Biochim Biophys Acta. 2011 Aug;1807(8):864-77 PubMed

Biochim Biophys Acta. 1977 Jun 9;460(3):408-30 PubMed

Mol Gen Genet. 1995 Feb 20;246(4):455-64 PubMed

Photosynth Res. 2016 Dec;130(1-3):137-150 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...