Twisting a β-Carotene, an Adaptive Trick from Nature for Dissipating Energy during Photoprotection
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27994060
PubMed Central
PMC5270482
DOI
10.1074/jbc.m116.753723
PII: S0021-9258(20)32123-2
Knihovny.cz E-zdroje
- Klíčová slova
- carotenoid, chlorophyll, cyanobacteria, light-harvesting complex (antenna complex), photosynthesis,
- MeSH
- bakteriální proteiny chemie genetika MeSH
- beta-karoten chemie genetika MeSH
- kvarterní struktura proteinů MeSH
- proteinové domény MeSH
- sekundární struktura proteinů MeSH
- světlosběrné proteinové komplexy chemie genetika MeSH
- Synechocystis chemie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- beta-karoten MeSH
- světlosběrné proteinové komplexy MeSH
Cyanobacteria possess a family of one-helix high light-inducible proteins (Hlips) that are homologous to light-harvesting antenna of plants and algae. An Hlip protein, high light-inducible protein D (HliD) purified as a small complex with the Ycf39 protein is evaluated using resonance Raman spectroscopy. We show that the HliD binds two different β-carotenes, each present in two non-equivalent binding pockets with different conformations, having their (0,0) absorption maxima at 489 and 522 nm, respectively. Both populations of β-carotene molecules were in all-trans configuration and the absorption position of the farthest blue-shifted β-carotene was attributed entirely to the polarizability of the environment in its binding pocket. In contrast, the absorption maximum of the red-shifted β-carotene was attributed to two different factors: the polarizability of the environment in its binding pocket and, more importantly, to the conformation of its β-rings. This second β-carotene has highly twisted β-rings adopting a flat conformation, which implies that the effective conjugation length N is extended up to 10.5 modifying the energetic levels. This increase in N will also result in a lower S1 energy state, which may provide a permanent energy dissipation channel. Analysis of the carbonyl stretching region for chlorophyll a excitations indicates that the HliD binds six chlorophyll a molecules in five non-equivalent binding sites, with at least one chlorophyll a presenting a slight distortion to its macrocycle. The binding modes and conformations of HliD-bound pigments are discussed with respect to the known structures of LHCII and CP29.
Zobrazit více v PubMed
Blankenship R. E. (2014) Molecular Mechanisms of Photosynthesis, Blackwell Science, Oxford, United Kingdom
Gust D., Kramer D., Moore A., Moore T. A., and Vermaas W. (2008) Engineered and artificial photosynthesis: human ingenuity enters the game. MRS Bull. 33, 383–387
Demmig-Adams B., Garab G., Adams W. Iii, and Govindjee (2014) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, Springer, The Netherlands
Ruban A. V. (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 170, 1903–1916 PubMed PMC
Müller M. G., Lambrev P., Reus M., Wientjes E., Croce R., and Holzwarth A. R. (2010) Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. ChemPhysChem 11, 1289–1296 PubMed
Holt N. E., Zigmantas D., Valkunas L., Li X.-P., Niyogi K. K., and Fleming G. R. (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436 PubMed
Ruban A. V., Berera R., Ilioaia C., van Stokkum I. H., Kennis J. T., Pascal A. A., van Amerongen H., Robert B., Horton P., and van Grondelle R. (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–578 PubMed
Bode S., Quentmeier C. C., Liao P.-N., Hafi N., Barros T., Wilk L., Bittner F., and Walla P. J. (2009) On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc. Natl. Acad. Sci. U.S.A. 106, 12311–12316 PubMed PMC
Dolganov N. A., Bhaya D., and Grossman A. R. (1995) Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. Proc. Natl. Acad. Sci. U.S.A. 92, 636–640 PubMed PMC
Neilson J. A., and Durnford D. G. (2010) Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynth. Res. 106, 57–71 PubMed
Engelken J., Brinkmann H., and Adamska I. (2010) Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. BMC Evol. Biol. 10, 233. PubMed PMC
Bhaya D., Dufresne A., Vaulot D., and Grossman A. (2002) Analysis of the hli gene family in marine and freshwater cyanobacteria. FEMS Microbiol. Lett. 215, 209–219 PubMed
He Q., Dolganov N., Bjorkman O., and Grossman A. R. (2001) The high light-inducible polypeptides in Synechocystis PCC6803: expression and function in high light. J. Biol. Chem. 276, 306–314 PubMed
Komenda J., and Sobotka R. (2016) Cyanobacterial high-light-inducible proteins: protectors of chlorophyll: protein synthesis and assembly. Biochim. Biophys. Acta 1857, 288–295 PubMed
Yao D., Kieselbach T., Komenda J., Promnares K., Prieto M. A., Tichy M., Vermaas W., and Funk C. (2007) Localization of the small CAB-like proteins in photosystem II. J. Biol. Chem. 282, 267–276 PubMed
Knoppová J., Sobotka R., Tichy M., Yu J., Konik P., Halada P., Nixon P. J., and Komenda J. (2014) Discovery of a chlorophyll binding protein complex involved in the early steps of photosystem II assembly in Synechocystis. Plant Cell 26, 1200–1212 PubMed PMC
Chidgey J. W., Linhartová M., Komenda J., Jackson P. J., Dickman M. J., Canniffe D. P., Koník P., Pilný J., Hunter C. N., and Sobotka R. (2014) A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell 26, 1267–1279 PubMed PMC
Niedzwiedzki D. M., Tronina T., Liu H., Staleva H., Komenda J., Sobotka R., Blankenship R. E., and Polívka T. (2016) Carotenoid-induced non-photochemical quenching in the cyanobacterial chlorophyll synthase-HliC/D complex. Biochim. Biophys. Acta 1857, 1430–1439 PubMed
Staleva H., Komenda J., Shukla M. K., Šlouf V., Kaňa R., Polívka T., and Sobotka R. (2015) Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat. Chem. Biol. 11, 287–291 PubMed
Ruban A. V., Lee P. J., Wentworth M., Young A. J., and Horton P. (1999) Determination of the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting complexes. J. Biol. Chem. 274, 10458–10465 PubMed
Ruban A. V., Pascal A. A., Robert B., and Horton P. (2001) Configuration and dynamics of xanthophylls in light-harvesting antennae of higher plants: spectroscopic analysis of isolated light-harvesting complex of photosystem II and thylakoid membranes. J. Biol. Chem. 276, 24862–24870 PubMed
Ruban A. V., Pascal A., Lee P. J., Robert B., and Horton P. (2002) Molecular configuration of xanthophyll cycle carotenoids in photosystem II antenna complexes. J. Biol. Chem. 277, 42937–42942 PubMed
Robert B. (1996) Resonance Raman studies in photosynthesis: chlorophyll and carotenoid molecules. in Biophysical Techniques in Photosynthesis (Amesz J., and Hoff A., eds) pp. 161–176, Springer, The Netherlands
Pascal A. A., Ruban A. V., and Robert B. (2014) Antenna protein conformational changes revealed by resonance Raman spectroscopy. in Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria (Demmig-Adams B., Garab G., Adams W. Iii, and Govindjee, eds) pp. 245–257, Springer, The Netherlands
Lutz M. (1977) Antenna chlorophyll in photosynthetic membranes: a study by resonance Raman spectroscopy. Biochim. Biophys. Acta 460, 408–430 PubMed
Fujiwara M., and Tasumi M. (1986) Metal-sensitive bands in the Raman and infrared spectra of intact and metal-substituted chlorophyll a. J. Phys. Chem. 90, 5646–5650
Lutz M., and Mäntele W. (1991) in The Chlorophylls (Scheer H., ed) pp. 855–902, CRC Press Inc., Boca Raton, FL
Näveke A., Lapouge K., Sturgis J. N., Hartwich G., Simonin I., Scheer H., and Robert B. (1997) Resonance Raman spectroscopy of metal-substituted bacteriochlorophylls: characterization of Raman bands sensitive to bacteriochlorin conformation. J. Raman Spectrosc. 28, 599–604
Feiler U., Mattioli T. A., Katheder I., Scheer H., Lutz M., and Robert B. (1994) Effects of vinyl substitutions on resonance Raman spectra of (bacterio)chlorophylls. J. Raman Spectrosc. 25, 365–370
Lapouge K., Näveke A., Sturgis J. N., Hartwich G., Renaud D., Simonin I., Lutz M., Scheer H., and Robert B. (1998) Non-bonding molecular factors influencing the stretching wavenumbers of the conjugated carbonyl groups of bacteriochlorophyll a. J. Raman Spectrosc. 29, 977–981
Pascal A., Wacker U., Irrgang K.-D., Horton P., Renger G., and Robert B. (2000) Pigment binding site properties of two photosystem II antenna proteins: a resonance Raman investigation. J. Biol. Chem. 275, 22031–22036 PubMed
Liu Z., Yan H., Wang K., Kuang T., Zhang J., Gui L., An X., and Chang W. (2004) Crystal structure of spinach major light-harvesting complex at 2.72-Å resolution. Nature 428, 287–292 PubMed
Standfuss J., Terwisscha van Scheltinga A. C., Lamborghini M., and Kühlbrandt W. (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5-Å resolution. The EMBO J. 24, 919–928 PubMed PMC
Robert B. (1999) The electronic structure, stereochemistry and resonance Raman spectroscopy of carotenoids. in The Photochemistry of Carotenoids (Frank H. A., Young A. J., Britton G., and Cogdell R. J., eds) pp. 189–201, Springer, The Netherlands
Koyama Y., and Fujii R. (1999) Cis-trans carotenoids in photosynthesis: configurations, excited-state properties and physiological functions. in The Photochemistry of Carotenoids (Frank H. A., Young A. J., Britton G., and Cogdell R. J., eds) pp. 161–188, Springer, The Netherlands
Andreeva A., Apostolova I., and Velitchkova M. (2011) Temperature dependence of resonance Raman spectra of carotenoids. Spectrochim. Acta A Mol. Biomol. Spectrosc. 78, 1261–1265 PubMed
Koyama Y., Takii T., Saiki K., and Tsukida K. (1983) Configuration of the carotenoid in the reaction centers of photosynthetic bacteria: 2. comparison of the resonance Raman lines of the reaction centers with those of the 14 different cis-trans isomers of β-carotene. Photochem. Photobiol. 5, 139–150
Mendes-Pinto M. M., Galzerano D., Telfer A., Pascal A. A., Robert B., and Ilioaia C. (2013) Mechanisms underlying carotenoid absorption in oxygenic photosynthetic proteins. J. Biol. Chem. 288, 18758–18765 PubMed PMC
Macernis M., Galzerano D., Sulskus J., Kish E., Kim Y.-H., Koo S., Valkunas L., and Robert B. (2015) Resonance Raman spectra of carotenoid molecules: influence of methyl substitutions. J. Phys. Chem. A 119, 56–66 PubMed
Telfer A., Frolov D., Barber J., Robert B., and Pascal A. (2003) Oxidation of the two β-carotene molecules in the photosystem II reaction center. Biochemistry 42, 1008–1015 PubMed
Lutz M., Szponarski W., Berger G., Robert B., and Neumann J.-M. (1987) The stereoisomerization of bacterial, reaction-center-bound carotenoids revisited: an electronic absorption, resonance Raman and NMR study. Biochim. Biophys. Acta 894, 423–433
Mendes-Pinto M. M., Sansiaume E., Hashimoto H., Pascal A. A., Gall A., and Robert B. (2013) Electronic absorption and ground state structure of carotenoid molecules. J. Phys. Chem. B 117, 11015–11021 PubMed
Fuciman M., Keşan G., LaFountain A. M., Frank H. A., and Polívka T. (2015) Tuning the spectroscopic properties of aryl carotenoids by slight changes in structure. J. Phys. Chem. B 119, 1457–1467 PubMed
Macernis M., Sulskus J., Malickaja S., Robert B., and Valkunas L. (2014) Resonance Raman spectra and electronic transitions in carotenoids: a density functional theory study. J. Phys. Chem. A 118, 1817–1825 PubMed
Polívka T., Kerfeld C. A., Pascher T., and Sundström V. (2005) Spectroscopic properties of the carotenoid 3′-hydroxyechinenone in the orange carotenoid protein from the cyanobacterium Arthrospira maxima. Biochemistry 44, 3994–4003 PubMed
Polívka T., Balashov S. P., Chábera P., Imasheva E. S., Yartsev A., Sundström V., and Lanyi J. K. (2009) Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin. Biophys. J. 96, 2268–2277 PubMed PMC
Polívka T., and Sundström V. (2004) Ultrafast dynamics of carotenoid excited states: from solution to natural and artificial systems. Chem. Rev. 104, 2021–2071 PubMed
High-light-inducible proteins HliA and HliB: pigment binding and protein-protein interactions
Electronic and Vibrational Properties of Allene Carotenoids
Plant LHC-like proteins show robust folding and static non-photochemical quenching
Modeling Dynamic Conformations of Organic Molecules: Alkyne Carotenoids in Solution
Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from Tolypothrix
Pigment configuration in the light-harvesting protein of the xanthophyte alga Xanthonema debile
Binding of pigments to the cyanobacterial high-light-inducible protein HliC
Pigment structure in the violaxanthin-chlorophyll-a-binding protein VCP