Twisting a β-Carotene, an Adaptive Trick from Nature for Dissipating Energy during Photoprotection

. 2017 Jan 27 ; 292 (4) : 1396-1403. [epub] 20161219

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27994060
Odkazy

PubMed 27994060
PubMed Central PMC5270482
DOI 10.1074/jbc.m116.753723
PII: S0021-9258(20)32123-2
Knihovny.cz E-zdroje

Cyanobacteria possess a family of one-helix high light-inducible proteins (Hlips) that are homologous to light-harvesting antenna of plants and algae. An Hlip protein, high light-inducible protein D (HliD) purified as a small complex with the Ycf39 protein is evaluated using resonance Raman spectroscopy. We show that the HliD binds two different β-carotenes, each present in two non-equivalent binding pockets with different conformations, having their (0,0) absorption maxima at 489 and 522 nm, respectively. Both populations of β-carotene molecules were in all-trans configuration and the absorption position of the farthest blue-shifted β-carotene was attributed entirely to the polarizability of the environment in its binding pocket. In contrast, the absorption maximum of the red-shifted β-carotene was attributed to two different factors: the polarizability of the environment in its binding pocket and, more importantly, to the conformation of its β-rings. This second β-carotene has highly twisted β-rings adopting a flat conformation, which implies that the effective conjugation length N is extended up to 10.5 modifying the energetic levels. This increase in N will also result in a lower S1 energy state, which may provide a permanent energy dissipation channel. Analysis of the carbonyl stretching region for chlorophyll a excitations indicates that the HliD binds six chlorophyll a molecules in five non-equivalent binding sites, with at least one chlorophyll a presenting a slight distortion to its macrocycle. The binding modes and conformations of HliD-bound pigments are discussed with respect to the known structures of LHCII and CP29.

Zobrazit více v PubMed

Blankenship R. E. (2014) Molecular Mechanisms of Photosynthesis, Blackwell Science, Oxford, United Kingdom

Gust D., Kramer D., Moore A., Moore T. A., and Vermaas W. (2008) Engineered and artificial photosynthesis: human ingenuity enters the game. MRS Bull. 33, 383–387

Demmig-Adams B., Garab G., Adams W. Iii, and Govindjee (2014) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, Springer, The Netherlands

Ruban A. V. (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 170, 1903–1916 PubMed PMC

Müller M. G., Lambrev P., Reus M., Wientjes E., Croce R., and Holzwarth A. R. (2010) Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. ChemPhysChem 11, 1289–1296 PubMed

Holt N. E., Zigmantas D., Valkunas L., Li X.-P., Niyogi K. K., and Fleming G. R. (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436 PubMed

Ruban A. V., Berera R., Ilioaia C., van Stokkum I. H., Kennis J. T., Pascal A. A., van Amerongen H., Robert B., Horton P., and van Grondelle R. (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–578 PubMed

Bode S., Quentmeier C. C., Liao P.-N., Hafi N., Barros T., Wilk L., Bittner F., and Walla P. J. (2009) On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc. Natl. Acad. Sci. U.S.A. 106, 12311–12316 PubMed PMC

Dolganov N. A., Bhaya D., and Grossman A. R. (1995) Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. Proc. Natl. Acad. Sci. U.S.A. 92, 636–640 PubMed PMC

Neilson J. A., and Durnford D. G. (2010) Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynth. Res. 106, 57–71 PubMed

Engelken J., Brinkmann H., and Adamska I. (2010) Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. BMC Evol. Biol. 10, 233. PubMed PMC

Bhaya D., Dufresne A., Vaulot D., and Grossman A. (2002) Analysis of the hli gene family in marine and freshwater cyanobacteria. FEMS Microbiol. Lett. 215, 209–219 PubMed

He Q., Dolganov N., Bjorkman O., and Grossman A. R. (2001) The high light-inducible polypeptides in Synechocystis PCC6803: expression and function in high light. J. Biol. Chem. 276, 306–314 PubMed

Komenda J., and Sobotka R. (2016) Cyanobacterial high-light-inducible proteins: protectors of chlorophyll: protein synthesis and assembly. Biochim. Biophys. Acta 1857, 288–295 PubMed

Yao D., Kieselbach T., Komenda J., Promnares K., Prieto M. A., Tichy M., Vermaas W., and Funk C. (2007) Localization of the small CAB-like proteins in photosystem II. J. Biol. Chem. 282, 267–276 PubMed

Knoppová J., Sobotka R., Tichy M., Yu J., Konik P., Halada P., Nixon P. J., and Komenda J. (2014) Discovery of a chlorophyll binding protein complex involved in the early steps of photosystem II assembly in Synechocystis. Plant Cell 26, 1200–1212 PubMed PMC

Chidgey J. W., Linhartová M., Komenda J., Jackson P. J., Dickman M. J., Canniffe D. P., Koník P., Pilný J., Hunter C. N., and Sobotka R. (2014) A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell 26, 1267–1279 PubMed PMC

Niedzwiedzki D. M., Tronina T., Liu H., Staleva H., Komenda J., Sobotka R., Blankenship R. E., and Polívka T. (2016) Carotenoid-induced non-photochemical quenching in the cyanobacterial chlorophyll synthase-HliC/D complex. Biochim. Biophys. Acta 1857, 1430–1439 PubMed

Staleva H., Komenda J., Shukla M. K., Šlouf V., Kaňa R., Polívka T., and Sobotka R. (2015) Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat. Chem. Biol. 11, 287–291 PubMed

Ruban A. V., Lee P. J., Wentworth M., Young A. J., and Horton P. (1999) Determination of the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting complexes. J. Biol. Chem. 274, 10458–10465 PubMed

Ruban A. V., Pascal A. A., Robert B., and Horton P. (2001) Configuration and dynamics of xanthophylls in light-harvesting antennae of higher plants: spectroscopic analysis of isolated light-harvesting complex of photosystem II and thylakoid membranes. J. Biol. Chem. 276, 24862–24870 PubMed

Ruban A. V., Pascal A., Lee P. J., Robert B., and Horton P. (2002) Molecular configuration of xanthophyll cycle carotenoids in photosystem II antenna complexes. J. Biol. Chem. 277, 42937–42942 PubMed

Robert B. (1996) Resonance Raman studies in photosynthesis: chlorophyll and carotenoid molecules. in Biophysical Techniques in Photosynthesis (Amesz J., and Hoff A., eds) pp. 161–176, Springer, The Netherlands

Pascal A. A., Ruban A. V., and Robert B. (2014) Antenna protein conformational changes revealed by resonance Raman spectroscopy. in Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria (Demmig-Adams B., Garab G., Adams W. Iii, and Govindjee, eds) pp. 245–257, Springer, The Netherlands

Lutz M. (1977) Antenna chlorophyll in photosynthetic membranes: a study by resonance Raman spectroscopy. Biochim. Biophys. Acta 460, 408–430 PubMed

Fujiwara M., and Tasumi M. (1986) Metal-sensitive bands in the Raman and infrared spectra of intact and metal-substituted chlorophyll a. J. Phys. Chem. 90, 5646–5650

Lutz M., and Mäntele W. (1991) in The Chlorophylls (Scheer H., ed) pp. 855–902, CRC Press Inc., Boca Raton, FL

Näveke A., Lapouge K., Sturgis J. N., Hartwich G., Simonin I., Scheer H., and Robert B. (1997) Resonance Raman spectroscopy of metal-substituted bacteriochlorophylls: characterization of Raman bands sensitive to bacteriochlorin conformation. J. Raman Spectrosc. 28, 599–604

Feiler U., Mattioli T. A., Katheder I., Scheer H., Lutz M., and Robert B. (1994) Effects of vinyl substitutions on resonance Raman spectra of (bacterio)chlorophylls. J. Raman Spectrosc. 25, 365–370

Lapouge K., Näveke A., Sturgis J. N., Hartwich G., Renaud D., Simonin I., Lutz M., Scheer H., and Robert B. (1998) Non-bonding molecular factors influencing the stretching wavenumbers of the conjugated carbonyl groups of bacteriochlorophyll a. J. Raman Spectrosc. 29, 977–981

Pascal A., Wacker U., Irrgang K.-D., Horton P., Renger G., and Robert B. (2000) Pigment binding site properties of two photosystem II antenna proteins: a resonance Raman investigation. J. Biol. Chem. 275, 22031–22036 PubMed

Liu Z., Yan H., Wang K., Kuang T., Zhang J., Gui L., An X., and Chang W. (2004) Crystal structure of spinach major light-harvesting complex at 2.72-Å resolution. Nature 428, 287–292 PubMed

Standfuss J., Terwisscha van Scheltinga A. C., Lamborghini M., and Kühlbrandt W. (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5-Å resolution. The EMBO J. 24, 919–928 PubMed PMC

Robert B. (1999) The electronic structure, stereochemistry and resonance Raman spectroscopy of carotenoids. in The Photochemistry of Carotenoids (Frank H. A., Young A. J., Britton G., and Cogdell R. J., eds) pp. 189–201, Springer, The Netherlands

Koyama Y., and Fujii R. (1999) Cis-trans carotenoids in photosynthesis: configurations, excited-state properties and physiological functions. in The Photochemistry of Carotenoids (Frank H. A., Young A. J., Britton G., and Cogdell R. J., eds) pp. 161–188, Springer, The Netherlands

Andreeva A., Apostolova I., and Velitchkova M. (2011) Temperature dependence of resonance Raman spectra of carotenoids. Spectrochim. Acta A Mol. Biomol. Spectrosc. 78, 1261–1265 PubMed

Koyama Y., Takii T., Saiki K., and Tsukida K. (1983) Configuration of the carotenoid in the reaction centers of photosynthetic bacteria: 2. comparison of the resonance Raman lines of the reaction centers with those of the 14 different cis-trans isomers of β-carotene. Photochem. Photobiol. 5, 139–150

Mendes-Pinto M. M., Galzerano D., Telfer A., Pascal A. A., Robert B., and Ilioaia C. (2013) Mechanisms underlying carotenoid absorption in oxygenic photosynthetic proteins. J. Biol. Chem. 288, 18758–18765 PubMed PMC

Macernis M., Galzerano D., Sulskus J., Kish E., Kim Y.-H., Koo S., Valkunas L., and Robert B. (2015) Resonance Raman spectra of carotenoid molecules: influence of methyl substitutions. J. Phys. Chem. A 119, 56–66 PubMed

Telfer A., Frolov D., Barber J., Robert B., and Pascal A. (2003) Oxidation of the two β-carotene molecules in the photosystem II reaction center. Biochemistry 42, 1008–1015 PubMed

Lutz M., Szponarski W., Berger G., Robert B., and Neumann J.-M. (1987) The stereoisomerization of bacterial, reaction-center-bound carotenoids revisited: an electronic absorption, resonance Raman and NMR study. Biochim. Biophys. Acta 894, 423–433

Mendes-Pinto M. M., Sansiaume E., Hashimoto H., Pascal A. A., Gall A., and Robert B. (2013) Electronic absorption and ground state structure of carotenoid molecules. J. Phys. Chem. B 117, 11015–11021 PubMed

Fuciman M., Keşan G., LaFountain A. M., Frank H. A., and Polívka T. (2015) Tuning the spectroscopic properties of aryl carotenoids by slight changes in structure. J. Phys. Chem. B 119, 1457–1467 PubMed

Macernis M., Sulskus J., Malickaja S., Robert B., and Valkunas L. (2014) Resonance Raman spectra and electronic transitions in carotenoids: a density functional theory study. J. Phys. Chem. A 118, 1817–1825 PubMed

Polívka T., Kerfeld C. A., Pascher T., and Sundström V. (2005) Spectroscopic properties of the carotenoid 3′-hydroxyechinenone in the orange carotenoid protein from the cyanobacterium Arthrospira maxima. Biochemistry 44, 3994–4003 PubMed

Polívka T., Balashov S. P., Chábera P., Imasheva E. S., Yartsev A., Sundström V., and Lanyi J. K. (2009) Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin. Biophys. J. 96, 2268–2277 PubMed PMC

Polívka T., and Sundström V. (2004) Ultrafast dynamics of carotenoid excited states: from solution to natural and artificial systems. Chem. Rev. 104, 2021–2071 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

High-light-inducible proteins HliA and HliB: pigment binding and protein-protein interactions

. 2022 Jun ; 152 (3) : 317-332. [epub] 20220226

Electronic and Vibrational Properties of Allene Carotenoids

. 2022 Feb 17 ; 126 (6) : 813-824. [epub] 20220203

Plant LHC-like proteins show robust folding and static non-photochemical quenching

. 2021 Nov 25 ; 12 (1) : 6890. [epub] 20211125

Modeling Dynamic Conformations of Organic Molecules: Alkyne Carotenoids in Solution

. 2020 Apr 09 ; 124 (14) : 2792-2801. [epub] 20200330

Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from Tolypothrix

. 2020 Feb 01 ; 1861 (2) : 148120. [epub] 20191114

The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration

. 2019 Jul 19 ; 294 (29) : 11131-11143. [epub] 20190605

Pigment configuration in the light-harvesting protein of the xanthophyte alga Xanthonema debile

. 2018 Nov ; 138 (2) : 139-148. [epub] 20180713

Binding of pigments to the cyanobacterial high-light-inducible protein HliC

. 2018 Jul ; 137 (1) : 29-39. [epub] 20171226

Molecular Origin of Photoprotection in Cyanobacteria Probed by Watermarked Femtosecond Stimulated Raman Spectroscopy

. 2018 Apr 05 ; 9 (7) : 1788-1792. [epub] 20180326

Pigment structure in the violaxanthin-chlorophyll-a-binding protein VCP

. 2017 Oct ; 134 (1) : 51-58. [epub] 20170704

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...