Molecular Origin of Photoprotection in Cyanobacteria Probed by Watermarked Femtosecond Stimulated Raman Spectroscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29569927
PubMed Central
PMC5942868
DOI
10.1021/acs.jpclett.8b00663
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Photoprotection is fundamental in photosynthesis to avoid oxidative photodamage upon excess light exposure. Excited chlorophylls (Chl) are quenched by carotenoids, but the precise molecular origin remains controversial. The cyanobacterial HliC protein belongs to the Hlip family ancestral to plant light-harvesting complexes, and binds Chl a and β-carotene in 2:1 ratio. We analyzed HliC by watermarked femtosecond stimulated Raman spectroscopy to follow the time evolution of its vibrational modes. We observed a 2 ps rise of the C═C stretch band of the 2Ag- (S1) state of β-carotene upon Chl a excitation, demonstrating energy transfer quenching and fast excess-energy dissipation. We detected two distinct β-carotene conformers by the C═C stretch frequency of the 2Ag- (S1) state, but only the β-carotene whose 2Ag- energy level is significantly lowered and has a lower C═C stretch frequency is involved in quenching. It implies that the low carotenoid S1 energy that results from specific pigment-protein or pigment-pigment interactions is the key property for creating a dissipative energy channel. We conclude that watermarked femtosecond stimulated Raman spectroscopy constitutes a promising experimental method to assess energy transfer and quenching mechanisms in oxygenic photosynthesis.
Zobrazit více v PubMed
Croce R.; van Amerongen H. Natural Strategies for Photosynthetic Light Harvesting. Nat. Chem. Biol. 2014, 10, 492–501. 10.1038/nchembio.1555. PubMed DOI
Ruban A. V.; Johnson M. P.; Duffy C. D. P. Natural Light Harvesting: Principles and Environmental Trends. Energy Environ. Sci. 2011, 4, 1643–1650. 10.1039/c0ee00578a. DOI
van Oort B.; Roy L. M.; Xu P. Q.; Lu Y. H.; Karcher D.; Bock R.; Croce R. Revisiting the Role of Xanthophylls in Nonphotochemical Quenching. J. Phys. Chem. Lett. 2018, 9, 346–352. 10.1021/acs.jpclett.7b03049. PubMed DOI
Ruban A. V.; Berera R.; Ilioaia C.; van Stokkum I. H. M.; Kennis J. T. M.; Pascal A. A.; van Amerongen H.; Robert B.; Horton P.; van Grondelle R. Identification of a Mechanism of Photoprotective Energy Dissipation in Higher Plants. Nature 2007, 450, 575–578. 10.1038/nature06262. PubMed DOI
Staleva H.; Komenda J.; Shukla M. K.; Slouf V.; Kana R.; Polivka T.; Sobotka R. Mechanism of Photoprotection in the Cyanobacterial Ancestor of Plant Antenna Proteins. Nat. Chem. Biol. 2015, 11, 287–291. 10.1038/nchembio.1755. PubMed DOI
Berera R.; Herrero C.; van Stokkum I. H. M.; Vengris M.; Kodis G.; Palacios R. E.; van Amerongen H.; van Grondelle R.; Gust D.; Moore T. A.; et al. A Simple Artificial Light-Harvesting Dyad as a Model for Excess Energy Dissipation in Oxygenic Photosynthesis. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 5343–5348. 10.1073/pnas.0508530103. PubMed DOI PMC
Berera R.; van Grondelle R.; Kennis J. T. M. Ultrafast Transient Absorption Spectroscopy: Principles and Application to Photosynthetic Systems. Photosynth. Res. 2009, 101, 105–118. 10.1007/s11120-009-9454-y. PubMed DOI PMC
Liguori N.; Xu P. Q.; van Stokkum I. H. M.; van Oort B.; Lu Y. H.; Karcher D.; Bock R.; Croce R. Different Carotenoid Conformations Have Distinct Functions in Light-Harvesting Regulation in Plants. Nat. Commun. 2017, 8, 1994.10.1038/s41467-017-02239-z. PubMed DOI PMC
Holt N. E.; Zigmantas D.; Valkunas L.; Li X. P.; Niyogi K. K.; Fleming G. R. Carotenoid Cation Formation and the Regulation of Photosynthetic Light Harvesting. Science 2005, 307, 433–436. 10.1126/science.1105833. PubMed DOI
Ahn T. K.; Avenson T. J.; Ballottari M.; Cheng Y. C.; Niyogi K. K.; Bassi R.; Fleming G. R. Architecture of a Charge-Transfer State Regulating Light Harvesting in a Plant Antenna Protein. Science 2008, 320, 794–797. 10.1126/science.1154800. PubMed DOI
Park S.; Fischer A. L.; Li Z. R.; Bassi R.; Niyogi K. K.; Fleming G. R. Snapshot Transient Absorption Spectroscopy of Carotenoid Radical Cations in High-Light-Acclimating Thylakoid Membranes. J. Phys. Chem. Lett. 2017, 8, 5548–5554. 10.1021/acs.jpclett.7b02486. PubMed DOI
Bode S.; Quentmeier C. C.; Liao P. N.; Hafi N.; Barros T.; Wilk L.; Bittner F.; Walla P. J. On the Regulation of Photosynthesis by Excitonic Interactions between Carotenoids and Chlorophylls. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 12311–12316. 10.1073/pnas.0903536106. PubMed DOI PMC
Kloz M.; Pillai S.; Kodis G.; Gust D.; Moore T. A.; Moore A. L.; van Grondelle R.; Kennis J. T. M. Carotenoid Photoprotection in Artificial Photosynthetic Antennas. J. Am. Chem. Soc. 2011, 133, 7007–7015. 10.1021/ja1103553. PubMed DOI
Muller M. G.; Lambrev P.; Reus M.; Wientjes E.; Croce R.; Holzwarth A. R. Singlet Energy Dissipation in the Photosystem II Light-Harvesting Complex Does Not Involve Energy Transfer to Carotenoids. ChemPhysChem 2010, 11, 1289–1296. 10.1002/cphc.200900852. PubMed DOI
Komenda J.; Sobotka R. Cyanobacterial High-Light-Inducible Proteins - Protectors of Chlorophyll-Protein Synthesis and Assembly. Biochim. Biophys. Acta, Bioenerg. 2016, 1857, 288–295. 10.1016/j.bbabio.2015.08.011. PubMed DOI
Shukla M. K.; Llansola-Portoles M. J.; Tichy M.; Pascal A. A.; Robert B.; Sobotka R. Binding of Pigments to the Cyanobacterial High-Light-Inducible Protein HliC. Photosynth. Res. 2017, 10.1007/s11120-017-0475-7. PubMed DOI
Llansola-Portoles M. J.; Sobotka R.; Kish E.; Shukla M. K.; Pascal A. A.; Polivka T.; Robert B. Twisting a beta-Carotene, an Adaptive Trick from Nature for Dissipating Energy during Photoprotection. J. Biol. Chem. 2017, 292, 1396–1403. 10.1074/jbc.M116.753723. PubMed DOI PMC
Balevicius V.; Fox K. F.; Bricker W. P.; Jurinovich S.; Prandi I. G.; Mennucci B.; Duffy C. D. P. Fine Control of Chlorophyll-Carotenoid Interactions Defines the Functionality of Light-Harvesting Proteins in Plants. Sci. Rep. 2017, 7, 13956.10.1038/s41598-017-13720-6. PubMed DOI PMC
Polivka T.; Sundstrom V. Ultrafast Dynamics of Carotenoid Excited States - From Solution to Natural and Artificial Systems. Chem. Rev. 2004, 104, 2021–2071. 10.1021/cr020674n. PubMed DOI
Kukura P.; McCamant D. W.; Mathies R. A. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 2007, 58, 461–488. 10.1146/annurev.physchem.58.032806.104456. PubMed DOI
Kloz M.; Weissenborn J.; Polivka T.; Frank H. A.; Kennis J. T. M. Spectral Watermarking in Femtosecond Stimulated Raman Spectroscopy: Resolving the Nature of the Carotenoid S* State. Phys. Chem. Chem. Phys. 2016, 18, 14619–14628. 10.1039/C6CP01464J. PubMed DOI
Kloz M.; van Grondelle R.; Kennis J. T. M. Wavelength-Modulated Femtosecond Stimulated Raman Spectroscopy - Approach towards Automatic Data Processing. Phys. Chem. Chem. Phys. 2011, 13, 18123–18133. 10.1039/c1cp21650c. PubMed DOI
Hontani Y.; Inoue K.; Kloz M.; Kato Y.; Kandori H.; Kennis J. T. M. The Photochemistry of Sodium Ion Pump Rhodopsin Observed by Watermarked Femto- to Submillisecond Stimulated Raman Spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 24729–24736. 10.1039/C6CP05240A. PubMed DOI
Nuijs A. M.; Shuvalov V. A.; Van Gorkom H. J.; Plijter J. J.; Duysens L. N. M. Picosecond Absorbency Difference Spectroscopy on the Primary Reactions and the Antenna-Excited States in Photosystem-I Particles. Biochim. Biophys. Acta, Bioenerg. 1986, 850, 310–318. 10.1016/0005-2728(86)90186-6. DOI
Zigmantas D.; Hiller R. G.; Sundstrom V.; Polivka T. Carotenoid to Chlorophyll Energy Transfer in the Peridinin-Chlorophyll-a-Protein Complex Involves an Intramolecular Charge Transfer State. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 16760–16765. 10.1073/pnas.262537599. PubMed DOI PMC
Kloz M.; van Grondelle R.; Kennis J. T. M. Correction for the Time Dependent Inner Filter Effect Caused by Transient Absorption in Femtosecond Stimulated Raman Experiment. Chem. Phys. Lett. 2012, 544, 94–101. 10.1016/j.cplett.2012.07.005. DOI
Nagae H.; Kuki M.; Zhang J. P.; Sashima T.; Mukai Y.; Koyama Y. Vibronic Coupling Through the In-phase, C=C Stretching Mode Plays a Major role in the 2A(g)(−) to 1A(g)(−) Internal Conversion of All-Trans-Beta-Carotene. J. Phys. Chem. A 2000, 104, 4155–4166. 10.1021/jp9924833. DOI
McCamant D. W.; Kukura P.; Mathies R. A. Femtosecond Time-Resolved Stimulated Raman Spectroscopy: Application to the Ultrafast Internal Conversion in Beta-Carotene. J. Phys. Chem. A 2003, 107, 8208–8214. 10.1021/jp030147n. PubMed DOI PMC
Mendes-Pinto M. M.; Sansiaume E.; Hashimoto H.; Pascal A. A.; Gall A.; Robert B. Electronic Absorption and Ground State Structure of Carotenoid Molecules. J. Phys. Chem. B 2013, 117, 11015–11021. 10.1021/jp309908r. PubMed DOI
Pandit A.; Reus M.; Morosinotto T.; Bassi R.; Holzwarth A. R.; de Groot H. J. M. An NMR Comparison of the Light-Harvesting Complex II (LHCII) in Active and Photoprotective States Reveals Subtle Changes in the Chlorophyll a Ground-State Electronic Structures. Biochim. Biophys. Acta, Bioenerg. 2013, 1827, 738–744. 10.1016/j.bbabio.2013.02.015. PubMed DOI
Multiple retinal isomerizations during the early phase of the bestrhodopsin photoreaction
High-light-inducible proteins HliA and HliB: pigment binding and protein-protein interactions
Plant LHC-like proteins show robust folding and static non-photochemical quenching
Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome
Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome
A Protein Environment-Modulated Energy Dissipation Channel in LHCII Antenna Complex
Photoreaction Dynamics of Red-Shifting Retinal Analogues Reconstituted in Proteorhodopsin