Molecular Origin of Photoprotection in Cyanobacteria Probed by Watermarked Femtosecond Stimulated Raman Spectroscopy

. 2018 Apr 05 ; 9 (7) : 1788-1792. [epub] 20180326

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29569927

Photoprotection is fundamental in photosynthesis to avoid oxidative photodamage upon excess light exposure. Excited chlorophylls (Chl) are quenched by carotenoids, but the precise molecular origin remains controversial. The cyanobacterial HliC protein belongs to the Hlip family ancestral to plant light-harvesting complexes, and binds Chl a and β-carotene in 2:1 ratio. We analyzed HliC by watermarked femtosecond stimulated Raman spectroscopy to follow the time evolution of its vibrational modes. We observed a 2 ps rise of the C═C stretch band of the 2Ag- (S1) state of β-carotene upon Chl a excitation, demonstrating energy transfer quenching and fast excess-energy dissipation. We detected two distinct β-carotene conformers by the C═C stretch frequency of the 2Ag- (S1) state, but only the β-carotene whose 2Ag- energy level is significantly lowered and has a lower C═C stretch frequency is involved in quenching. It implies that the low carotenoid S1 energy that results from specific pigment-protein or pigment-pigment interactions is the key property for creating a dissipative energy channel. We conclude that watermarked femtosecond stimulated Raman spectroscopy constitutes a promising experimental method to assess energy transfer and quenching mechanisms in oxygenic photosynthesis.

Zobrazit více v PubMed

Croce R.; van Amerongen H. Natural Strategies for Photosynthetic Light Harvesting. Nat. Chem. Biol. 2014, 10, 492–501. 10.1038/nchembio.1555. PubMed DOI

Ruban A. V.; Johnson M. P.; Duffy C. D. P. Natural Light Harvesting: Principles and Environmental Trends. Energy Environ. Sci. 2011, 4, 1643–1650. 10.1039/c0ee00578a. DOI

van Oort B.; Roy L. M.; Xu P. Q.; Lu Y. H.; Karcher D.; Bock R.; Croce R. Revisiting the Role of Xanthophylls in Nonphotochemical Quenching. J. Phys. Chem. Lett. 2018, 9, 346–352. 10.1021/acs.jpclett.7b03049. PubMed DOI

Ruban A. V.; Berera R.; Ilioaia C.; van Stokkum I. H. M.; Kennis J. T. M.; Pascal A. A.; van Amerongen H.; Robert B.; Horton P.; van Grondelle R. Identification of a Mechanism of Photoprotective Energy Dissipation in Higher Plants. Nature 2007, 450, 575–578. 10.1038/nature06262. PubMed DOI

Staleva H.; Komenda J.; Shukla M. K.; Slouf V.; Kana R.; Polivka T.; Sobotka R. Mechanism of Photoprotection in the Cyanobacterial Ancestor of Plant Antenna Proteins. Nat. Chem. Biol. 2015, 11, 287–291. 10.1038/nchembio.1755. PubMed DOI

Berera R.; Herrero C.; van Stokkum I. H. M.; Vengris M.; Kodis G.; Palacios R. E.; van Amerongen H.; van Grondelle R.; Gust D.; Moore T. A.; et al. A Simple Artificial Light-Harvesting Dyad as a Model for Excess Energy Dissipation in Oxygenic Photosynthesis. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 5343–5348. 10.1073/pnas.0508530103. PubMed DOI PMC

Berera R.; van Grondelle R.; Kennis J. T. M. Ultrafast Transient Absorption Spectroscopy: Principles and Application to Photosynthetic Systems. Photosynth. Res. 2009, 101, 105–118. 10.1007/s11120-009-9454-y. PubMed DOI PMC

Liguori N.; Xu P. Q.; van Stokkum I. H. M.; van Oort B.; Lu Y. H.; Karcher D.; Bock R.; Croce R. Different Carotenoid Conformations Have Distinct Functions in Light-Harvesting Regulation in Plants. Nat. Commun. 2017, 8, 1994.10.1038/s41467-017-02239-z. PubMed DOI PMC

Holt N. E.; Zigmantas D.; Valkunas L.; Li X. P.; Niyogi K. K.; Fleming G. R. Carotenoid Cation Formation and the Regulation of Photosynthetic Light Harvesting. Science 2005, 307, 433–436. 10.1126/science.1105833. PubMed DOI

Ahn T. K.; Avenson T. J.; Ballottari M.; Cheng Y. C.; Niyogi K. K.; Bassi R.; Fleming G. R. Architecture of a Charge-Transfer State Regulating Light Harvesting in a Plant Antenna Protein. Science 2008, 320, 794–797. 10.1126/science.1154800. PubMed DOI

Park S.; Fischer A. L.; Li Z. R.; Bassi R.; Niyogi K. K.; Fleming G. R. Snapshot Transient Absorption Spectroscopy of Carotenoid Radical Cations in High-Light-Acclimating Thylakoid Membranes. J. Phys. Chem. Lett. 2017, 8, 5548–5554. 10.1021/acs.jpclett.7b02486. PubMed DOI

Bode S.; Quentmeier C. C.; Liao P. N.; Hafi N.; Barros T.; Wilk L.; Bittner F.; Walla P. J. On the Regulation of Photosynthesis by Excitonic Interactions between Carotenoids and Chlorophylls. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 12311–12316. 10.1073/pnas.0903536106. PubMed DOI PMC

Kloz M.; Pillai S.; Kodis G.; Gust D.; Moore T. A.; Moore A. L.; van Grondelle R.; Kennis J. T. M. Carotenoid Photoprotection in Artificial Photosynthetic Antennas. J. Am. Chem. Soc. 2011, 133, 7007–7015. 10.1021/ja1103553. PubMed DOI

Muller M. G.; Lambrev P.; Reus M.; Wientjes E.; Croce R.; Holzwarth A. R. Singlet Energy Dissipation in the Photosystem II Light-Harvesting Complex Does Not Involve Energy Transfer to Carotenoids. ChemPhysChem 2010, 11, 1289–1296. 10.1002/cphc.200900852. PubMed DOI

Komenda J.; Sobotka R. Cyanobacterial High-Light-Inducible Proteins - Protectors of Chlorophyll-Protein Synthesis and Assembly. Biochim. Biophys. Acta, Bioenerg. 2016, 1857, 288–295. 10.1016/j.bbabio.2015.08.011. PubMed DOI

Shukla M. K.; Llansola-Portoles M. J.; Tichy M.; Pascal A. A.; Robert B.; Sobotka R. Binding of Pigments to the Cyanobacterial High-Light-Inducible Protein HliC. Photosynth. Res. 2017, 10.1007/s11120-017-0475-7. PubMed DOI

Llansola-Portoles M. J.; Sobotka R.; Kish E.; Shukla M. K.; Pascal A. A.; Polivka T.; Robert B. Twisting a beta-Carotene, an Adaptive Trick from Nature for Dissipating Energy during Photoprotection. J. Biol. Chem. 2017, 292, 1396–1403. 10.1074/jbc.M116.753723. PubMed DOI PMC

Balevicius V.; Fox K. F.; Bricker W. P.; Jurinovich S.; Prandi I. G.; Mennucci B.; Duffy C. D. P. Fine Control of Chlorophyll-Carotenoid Interactions Defines the Functionality of Light-Harvesting Proteins in Plants. Sci. Rep. 2017, 7, 13956.10.1038/s41598-017-13720-6. PubMed DOI PMC

Polivka T.; Sundstrom V. Ultrafast Dynamics of Carotenoid Excited States - From Solution to Natural and Artificial Systems. Chem. Rev. 2004, 104, 2021–2071. 10.1021/cr020674n. PubMed DOI

Kukura P.; McCamant D. W.; Mathies R. A. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 2007, 58, 461–488. 10.1146/annurev.physchem.58.032806.104456. PubMed DOI

Kloz M.; Weissenborn J.; Polivka T.; Frank H. A.; Kennis J. T. M. Spectral Watermarking in Femtosecond Stimulated Raman Spectroscopy: Resolving the Nature of the Carotenoid S* State. Phys. Chem. Chem. Phys. 2016, 18, 14619–14628. 10.1039/C6CP01464J. PubMed DOI

Kloz M.; van Grondelle R.; Kennis J. T. M. Wavelength-Modulated Femtosecond Stimulated Raman Spectroscopy - Approach towards Automatic Data Processing. Phys. Chem. Chem. Phys. 2011, 13, 18123–18133. 10.1039/c1cp21650c. PubMed DOI

Hontani Y.; Inoue K.; Kloz M.; Kato Y.; Kandori H.; Kennis J. T. M. The Photochemistry of Sodium Ion Pump Rhodopsin Observed by Watermarked Femto- to Submillisecond Stimulated Raman Spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 24729–24736. 10.1039/C6CP05240A. PubMed DOI

Nuijs A. M.; Shuvalov V. A.; Van Gorkom H. J.; Plijter J. J.; Duysens L. N. M. Picosecond Absorbency Difference Spectroscopy on the Primary Reactions and the Antenna-Excited States in Photosystem-I Particles. Biochim. Biophys. Acta, Bioenerg. 1986, 850, 310–318. 10.1016/0005-2728(86)90186-6. DOI

Zigmantas D.; Hiller R. G.; Sundstrom V.; Polivka T. Carotenoid to Chlorophyll Energy Transfer in the Peridinin-Chlorophyll-a-Protein Complex Involves an Intramolecular Charge Transfer State. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 16760–16765. 10.1073/pnas.262537599. PubMed DOI PMC

Kloz M.; van Grondelle R.; Kennis J. T. M. Correction for the Time Dependent Inner Filter Effect Caused by Transient Absorption in Femtosecond Stimulated Raman Experiment. Chem. Phys. Lett. 2012, 544, 94–101. 10.1016/j.cplett.2012.07.005. DOI

Nagae H.; Kuki M.; Zhang J. P.; Sashima T.; Mukai Y.; Koyama Y. Vibronic Coupling Through the In-phase, C=C Stretching Mode Plays a Major role in the 2A(g)(−) to 1A(g)(−) Internal Conversion of All-Trans-Beta-Carotene. J. Phys. Chem. A 2000, 104, 4155–4166. 10.1021/jp9924833. DOI

McCamant D. W.; Kukura P.; Mathies R. A. Femtosecond Time-Resolved Stimulated Raman Spectroscopy: Application to the Ultrafast Internal Conversion in Beta-Carotene. J. Phys. Chem. A 2003, 107, 8208–8214. 10.1021/jp030147n. PubMed DOI PMC

Mendes-Pinto M. M.; Sansiaume E.; Hashimoto H.; Pascal A. A.; Gall A.; Robert B. Electronic Absorption and Ground State Structure of Carotenoid Molecules. J. Phys. Chem. B 2013, 117, 11015–11021. 10.1021/jp309908r. PubMed DOI

Pandit A.; Reus M.; Morosinotto T.; Bassi R.; Holzwarth A. R.; de Groot H. J. M. An NMR Comparison of the Light-Harvesting Complex II (LHCII) in Active and Photoprotective States Reveals Subtle Changes in the Chlorophyll a Ground-State Electronic Structures. Biochim. Biophys. Acta, Bioenerg. 2013, 1827, 738–744. 10.1016/j.bbabio.2013.02.015. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Multiple retinal isomerizations during the early phase of the bestrhodopsin photoreaction

. 2024 Mar 19 ; 121 (12) : e2318996121. [epub] 20240313

Spectroscopic and Computational Observation of Glutamine Tautomerization in the Blue Light Sensing Using Flavin Domain Photoreaction

. 2023 Jan 18 ; 145 (2) : 1040-1052. [epub] 20230106

High-light-inducible proteins HliA and HliB: pigment binding and protein-protein interactions

. 2022 Jun ; 152 (3) : 317-332. [epub] 20220226

Plant LHC-like proteins show robust folding and static non-photochemical quenching

. 2021 Nov 25 ; 12 (1) : 6890. [epub] 20211125

Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome

. 2021 Jan 04 ; 4 (1) : 3. [epub] 20210104

Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome

. 2021 ; 4 () : . [epub] 20210104

A Protein Environment-Modulated Energy Dissipation Channel in LHCII Antenna Complex

. 2020 Sep 25 ; 23 (9) : 101430. [epub] 20200802

The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration

. 2019 Jul 19 ; 294 (29) : 11131-11143. [epub] 20190605

Photoreaction Dynamics of Red-Shifting Retinal Analogues Reconstituted in Proteorhodopsin

. 2019 May 16 ; 123 (19) : 4242-4250. [epub] 20190507

Strong pH-Dependent Near-Infrared Fluorescence in a Microbial Rhodopsin Reconstituted with a Red-Shifting Retinal Analogue

. 2018 Nov 15 ; 9 (22) : 6469-6474. [epub] 20181101

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace